
Euclidean Heuristic Optimization

Chris Rayner and Michael Bowling
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{rayner,bowling}@cs.ualberta.ca

Nathan Sturtevant
Computer Science Department

University of Denver
Denver, CO 80208

sturtevant@cs.du.edu

Abstract

We pose the problem of constructing good search heuris-
tics as an optimization problem: minimizing the loss between
the true distances and the heuristic estimates subject to ad-
missibility and consistency constraints. For a well-motivated
choice of loss function, we show performing this optimiza-
tion is tractable. In fact, it corresponds to a recently pro-
posed method for dimensionality reduction. We prove this
optimization is guaranteed to produce admissible and consis-
tent heuristics, generalizes and gives insight into differential
heuristics, and show experimentally that it produces strong
heuristics on problems from three distinct search domains.

Introduction

An important problem in heuristic search is the selection of
a strong heuristic function. This is especially true of many
end-user applications of heuristic search, where high perfor-
mance must be achieved under tight constraints on mem-
ory. Examples include virtual worlds and road networks on
mobile GPS devices. Search domains such as these often
specify an underlying geometry which can define a default
heuristic. However, this underlying geometry–while small
enough to keep in memory–may poorly represent the actual
distances that must be traversed to move between two points.

We illustrate this with a map of one floor of a tower from
the game Dragon Age: Origins in Figure 1. The original
map, shown in Figure 1(a), has a wall at the top which pre-
vents the walkable portions of the map from forming a com-
plete loop. The default heuristic given by the underlying ge-
ometry is very poor, as two points at the top of the map that
look close are actually quite far apart. Figure 1(b) demon-
strates what would happen if the map were ‘unrolled’. This
unrolled map contains the same rooms and obstacles as the
original, but rearranged in such a way that the default heuris-
tic given by the underlying geometry is far more accurate. If
this layout could be built automatically, search queries to
this domain could be made faster and more efficient.

This motivates the following question: how can a graph
be arranged in multidimensional Euclidean space so that
the underlying Euclidean distance heuristic is more accu-
rate, while still maintaining consistency and admissibility?

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b)

Figure 1: This map from Dragon Age: Origins (a) is topo-
logically closer to an open plane (b).

We formulate this as an optimization problem, which is a
fundamentally different approach than traditional heuristic-
building techniques. Furthermore, analysis of this approach
reveals that a popular existing technique, differential heuris-
tics, is equivalent to answering the same question when con-
fined to a single dimension. In this paper we show how this
optimization’s general form can be solved efficiently, which
allows a map or graph to be laid out in multiple dimensions.

This paper makes several layers of contributions to heuris-
tic search. First, we introduce a new approach for building
a heuristic in Euclidean space by solving a constrained op-
timization problem. We show that this optimization corre-
sponds exactly to a recently proposed method for manifold
learning in the field of dimensionality reduction (Weinberger
and Saul 2006), drawing a previously unobserved but fun-
damental connection between these two subfields. Second,
as the optimization provides information about the funda-
mental dimensionality of a search space, we can use our
approach to make insights into the nature of heuristic con-
struction. In particular, after showing that differential heuris-
tics can be viewed as constructing a one dimensional Eu-
clidean embedding, we observe that maps with a low funda-
mental dimensionality (e.g., the map in Figure 1(a) is nearly
1-dimensional) are particularly suited to differential heuris-
tics. The inverse is also true – maps with higher intrinsic

81

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

dimensionality (such as 2, 3, or more dimensions) cannot
be covered with a low number of differential heuristics, but
we are able to find good multidimensional heuristics with
our approach. Third, we demonstrate these insights empiri-
cally on graphs with low and high intrinsic dimensionality,
showing competitive to significantly-improved search per-
formance compared to the default and differential heuristics.

Related Work in Building Heuristics

One major area of research in heuristic search over the last
fifteen years has been the use of memory to improve search.
The two primary uses of memory have been to build heuris-
tics for depth-first search algorithms (Culberson and Scha-
effer 1998) and to enable large breadth-first searches (Zhou
and Hansen 2004). Much of this work focuses on combi-
natorial puzzles, like the sliding tile puzzle, but researchers
have also begun to use memory-based heuristics for plan-
ning. A common property of these domains is that they do
not fit into main memory, so abstractions are used.

Only recently has it become important to quickly find
routes through graphs that fit in memory. The two major
applications of this research are computer games (Sturte-
vant 2007) and road networks (Geisberger et al. 2008).
Heuristics for these domains fall into a broad class of true-
distance heuristics (Sturtevant et al. 2009), where a sub-
set of the shortest path distances in the graph are stored
as the basis of heuristics. A variety of these true-distance
methods have been developed, including differential heuris-
tics (Ng and Zhang 2002; Goldberg and Harrelson 2005;
Sturtevant et al. 2009) and portal heuristics (Goldenberg et
al. 2010). Meanwhile, abstraction techniques such as con-
traction hierarchies (Geisberger et al. 2008) have also proved
effective in these domains. The best techniques on road net-
works combine heuristics and contraction hierarchies (Bauer
et al. 2008). In games, abstraction and refinement is most of-
ten used, but heuristics and contraction hierarchies have also
been explored together (Sturtevant and Geisberger 2010).

One highly successful true-distance method is that of dif-
ferential heuristics, which uses the triangle inequality to pro-
vide an admissible bound on distances in the search space.
Suppose there is a pivot state s from which the distances to
all other states are known. Then the distance between any
two states a and b must be at least |δ(a, s)− δ(b, s)|, where
δ(i, j) is the shortest path distance between states i and j.
When multiple pivot states are available, the greatest dis-
tance over all available pivots is used. Later, we will show
that a differential heuristic is equivalent to a one dimensional
embedding, and is a special case of our approach to finding
(possibly) multidimensional Euclidean heuristics.

Euclidean Heuristic Optimization

Many of the heuristics described in the previous section
are computed by simply performing a breadth-first search
through a domain (or an abstract domain), and caching
the results for use as a heuristic. More complicated ap-
proaches exist, but heuristic building is generally formulated
as a search problem. In this work, heuristic generation is
uniquely formulated as an optimization problem.

Euclidean heuristics are heuristic values that can be com-
puted as distances in some Euclidean space of d dimensions.
That is, each state i in a search graph of size n is represented
as a vector yi ∈ R

d, and the heuristic value between two
states is h(i, j) = ‖yi−yj‖, the Euclidean distance between
the vectors. Let Y be an n by d matrix whose rows are these
vectors; Y , then, implicitly encodes the heuristic function.

General Approach

By manipulating the location of these points, we propose to
construct a consistent and admissible Euclidean heuristic as
the solution to an optimization problem. In its general form:

minimize
Y

L(Y) (1)

subject to Y is admissible and consistent
where L is a loss function which measures the error in the
heuristic values in Y compared to the true shortest path dis-
tances. This optimization problem can be thought of as look-
ing among all admissible and consistent Euclidean heuris-
tics, as encoded by Y , for the one with lowest error. We call
such a Y an optimal Euclidean heuristic, and will examine
the constraints and objective of this optimization in turn.

Constraints. The constraints on the admissibility and the
consistency of the heuristic encoded by Y can be respec-
tively formalized as the following:

∀i, j ‖yi − yj‖ ≤ δ(i, j) (2)
∀i, j, k ‖yi − yj‖ ≤ δ(i, k) + ‖yj − yk‖ (3)

where δ(i, j) is the true shortest path distance between i and
j. These constraints apply to all combinations of states in
the search space. However, we can drastically simplify them
by observing that a subset of them satisfies all of them. We
show this here, but also note it has also been proved in earlier
work on building heuristics (Passino and Antsaklis 1994):
Theorem 1 A Euclidean heuristic is admissible and consis-
tent if and only if the heuristic is locally admissible, i.e.,
∀(i, j) ∈ E ‖yi− yj‖ ≤ δ(i, j) where E is the set of edges.
Proof. The backward implication is trivially true as local
admissibility conditions are a subset of global admissibil-
ity conditions. The forward implication involves repeated
application of the triangle inequality. For states i, j, k, let
p1, p2, ..., p� be the vertices on a shortest path from i to j
with (pl, pl+1) ∈ E:

‖yi − yj‖ = ‖p1 − p�‖ ≤ ∑�−1
l=1 ‖pl − pl+1‖ (4)

≤ ∑�−1
l=1 δ(l, l + 1) = δ(i, j) (5)

and
‖yi − yj‖ ≤ ‖yi − yk‖+ ‖yj − yk‖ (6)

≤ δ(i, k) + ‖yj − yk‖, (7)
where line 4 (repeatedly) and 6 are applications of the tri-
angle inequality; line 5 is the local admissibility condition;
and line 7 comes from admissibility which was just proved.
Thus proving admissibility and consistency. �
Therefore, when solving the optimization problem on line 1,
it is only necessary to require constraints on the local admis-
sibility of Y . This requires just one constraint per edge in
the search graph, which greatly simplifies the optimization.

82

Objective. The loss function L combines the errors be-
tween the heuristic distances and the true distances into a
single scalar value. It specifies the relative importance of the
heuristic between each pair of states, as well as a trade-off
between many small errors versus a single large error. We
propose the following loss on Y :

L(Y) =
∑

i,j Wij

∣∣δ(i, j)2 − ‖yi − yj‖2
∣∣ (8)

Each entry in the weight matrix W specifies the impor-
tance of the heuristic between two states. For example, if
it is important that the heuristic value between two states
be accurate, the corresponding entries in W can be set to
large values. The squaring of terms emphasizes heuristic
errors on longer paths over the same magnitude errors on
shorter paths,1 and will prove to be computationally conve-
nient since it induces a convex objective function.

In the context of the optimization described on line 1, this
loss can be greatly simplified. Since Y must be admissible,
the square of the optimal distance must be at least as great
as the squared heuristic. It is therefore unnecessary to take
the absolute value, and the loss can be broken up as follows:

L(Y) =
∑

i,j Wij

(
δ(i, j)2 − ‖yi − yj‖2

)
(9)

=
∑

i,j Wij δ(i, j)
2 −∑

i,j Wij‖yi − yj‖2 (10)
Since the first term of Equation 10 does not depend on Y ,
minimizing L(Y) is equivalent to maximizing the weighted
sum of squared distances between the points in Y . Alto-
gether, we arrive at a specific optimization problem:

maximize
Y

∑
i,j Wij‖yi − yj‖2 (11)

subject to ∀(i, j) ∈ E ‖yi − yj‖ ≤ δ(i, j)

Unfortunately, the objective function on line 11 is not con-
vex and so is not easy to solve efficiently. However, a change
of variables allows us to rewrite the optimization in terms of
a kernel matrix, which results in a convex objective. The next
section goes into the technical detail of how to accomplish
this, however the reformulated optimization is identical to
the one above, and although necessary to make the problem
tractable, it adds little to the understanding of the problem.

Semidefinite Formulation

Let K = Y Y T be the matrix of inner products between the
vector representations of the states, so Kij = yi ·yj = yTi yj .
We note that squared distances can be directly expressed in
terms of the entries of this kernel matrix:

‖yi − yj‖2 = (yi − yj)
T (yi − yj) (12)

= yTi yi − 2yTi yj + yTj yj (13)

= Kii − 2Kij +Kjj (14)
Since the optimization on line 11 only refers to Y through
distances ‖yi − yj‖, we can then rewrite it in terms of K:

maximize
K

∑
i,j Wij(Kii − 2Kij +Kjj) (15)

subject to ∀(i, j) ∈ E Kii − 2Kij +Kjj ≤ δ(i, j)
2

K � 0

1For example, a heuristic distance of 9 when the true distance is
10 will be penalized by a significantly larger amount than a heuris-
tic distance of 1 when the true distance is 2.

Since both sides of the inequality in each local admissibil-
ity constraint are positive, an equivalent constraint has in-
stead been imposed on the squared distances (heuristic and
true). Also, note a positive semidefinite constraint K � 0
was added. This importantly ensures that there exists some
Y such that K = Y Y T , or in other words that K represents
inner products in some Euclidean space.

Since the optimization as stated is indifferent to transla-
tions of the points in Y , we force a unique solution by adding
a “centering” constraint. We define this as

∑
i,j WijKij = 0

which also further simplifies the objective. Let ΔW be a di-
agonal matrix with the sums of the rows of W on the diago-
nal. We arrive at the following optimization:

maximize
K

Tr(KΔW) (16)

subject to ∀(i, j) ∈ E Kii − 2Kij +Kjj ≤ δ(i, j)
2

∑
i,j WijKij = 0 K � 0

This rewritten optimization involves a linear objective and
linear constraints, plus a non-linear, but convex, semidefinite
constraint. Such semidefinite programs can be solved using
a standard toolbox solver such as SDPT3 (Toh, Todd, and
Tutuncu 1999).

Extracting Y . The optimization on line 16 produces a ker-
nel matrix K, but we want the Euclidean vectors in Y . This
entails kernel principal component analysis, which involves
centering the kernel to get K ′ = (I − 1

n11
T)K(I − 1

n11
T)

and then doing an eigendecomposition of K ′. The result-
ing eigenvectors scaled by their eigenvalues correspond to
the columns of Y . The number of non-zero columns may be
prohibitively large (n in the worst case), but the optimization
tends to keep this number small.

Under precise memory constraints, a reasonable way to
create a representation with d values per state is to choose
the d eigenvectors with the largest associated eigenvalues
(the top principal components). This is because eigenvectors
with small associated eigenvalues have small effects on the
resulting heuristic estimates, so less is lost by ignoring them.

Maximum Variance Unfolding

This exact optimization problem is not new. It is a
weighted generalization of maximum variance unfolding
(MVU) (Weinberger and Saul 2006) which was originally
introduced for non-linear dimensionality reduction. True to
its name, the optimization has a nice visual interpretation.
Imagine neighboring states in the search graph being con-
nected by rods. A rod can pass through other rods, it can be
compressed, or it can grow to a length no greater than the
edge cost. Once these rods are all in place, the structure is
pulled apart as far as the rods allow. The result is an embed-
ding of points in Euclidean space whose squared interpoint
distances are maximized, thus maximizing the variance. The
observation that maximizing variance often results in low-
dimensional embeddings (i.e., small d) corresponds to its
proposed use in dimensionality reduction. As noted, this is a
fortunate side-effect for our application.

While MVU has been applied in a number of dimension-
ality reduction applications, such as visualization (Wein-
berger and Saul 2006), sensor networks (Weinberger et

83

al. 2006), and mapping (Bowling, Wilkinson, and Ghodsi
2006), its connection to identifying admissible and consis-
tent heuristics in search has not been observed previously.

Analysis

Heuristic admissibility and consistency are vital to the guar-
anteed solution optimality of many search algorithms. Here
we prove these hold for optimal Euclidean heuristics. We
then show that differential heuristics are a special case of
our framework under a specific choice of weight matrix.

Admissibility and Consistency

While the optimization is constrained to produce admissi-
ble and consistent heuristics, the complete procedure took a
subset of d principal components We show this reduction in
dimensionality preserves admissibility and consistency.
Theorem 2 If Y is the first d principal components of K, as
per line 16, then Y is admissible and consistent.

Proof. According to Theorem 1, we only need to show that
Y is locally admissible. Let Ỹ contain all n principal com-
ponents of K, so K = Ỹ Ỹ T . Since Y is the first d princi-
pal components, we can represent Ỹ as [Y Y ′] for some Y ′
which contains the remaining principal components. Then:

h(i, j)2 = ‖yi − yj‖2 = (yi − yj)
T (yi − yj) (17)

≤ (yi − yj)
T (yi − yj) + (y′i − y′j)

T (y′i − y′j) (18)

= (ỹi − ỹj)
T (ỹi − ỹj) = Kii − 2Kij +Kjj (19)

Line 18 holds since the dot-product of real-valued vectors is
always non-negative. The constraints on K on line 16 guar-
antee for (i, j) ∈ E that Kii − 2Kij + Kjj ≤ δ(i, j)2.
Thus for (i, j) ∈ E we have that h(i, j)2 ≤ δ(i, j)2, so
h(i, j) ≤ δ(i, j) since both are non-negative. �

Generalizing Differential Heuristics

Recall that differential heuristics are constructed by measur-
ing the optimal path length from a pivot state to all other
states, then applying the triangle inequality on these mea-
surements to get a heuristic for the distance between any
two states. This heuristic is well thought of as a one dimen-
sional embedding: the pivot is embedded at the origin, and
every other state is embedded at its shortest path distance
from the pivot. In fact, differential heuristics are optimal Eu-
clidean heuristics for a carefully chosen weight matrix Wdiff
and thus are a special case of our general framework.

Without loss of generality assume the index 1 refers to
the pivot. Let Wdiff be the weight matrix with zeros on the
diagonal, ones on the non-diagonal entries of the first row
and column, and −1

n−1 elsewhere. For example, for n = 4:

Wdiff =

⎡
⎢⎣

0 1 1 1
1 0 −1/3 −1/3

1 −1/3 0 −1/3

1 −1/3 −1/3 0

⎤
⎥⎦

Theorem 3 The optimization on line 16 with weight matrix
Wdiff results in a single principal component (K will be rank
one); the resulting heuristics are h(i, j) = | δ(i, 1)−δ(j, 1)|.

Proof. (sketch) The proof is rather involved, but shows that
if K is not rank one we can find an alternative embedding
that strictly improves the objective. Further, for any rank one
K, unless yi = δ(i, 1) the objective can be improved. �
Thus, differential heuristics are one example of optimal Eu-
clidean heuristics for a particular choice of weight matrix.

The design of Wdiff shows that differential heuristics op-
timize a strange objective. The negative weights between
non-pivot states drive these states closer together. That is,
differential heuristics are in some sense designed to give
poor heuristic values between the non-pivot states (albeit
with small weight). Intuitively, good heuristics should use
non-negative weights so all distances decrease the loss. This
suggests the differential heuristic notion might be improved
upon, in some domains, by solving for the optimal Euclidean
heuristic using W+

diff where the negative entries are replaced
with small positive values. We explore this issue empirically.

Complexity of Optimization

The semidefinite program scales linearly with the number
of points, but has a time complexity in O(N3) where N is
the number of constraints and space complexity in O(n2)
to store instantiations of the kernel matrix K ∈ R

n×n,
where n is the number of states. Recall that in our formula-
tion one constraint is required per edge in the search graph.
In practical terms, performing the optimization on a search
graph with thousands of states with octile connectivity re-
quires several hours of computation. Techniques for scaling
it to significantly larger problems have been proposed in the
application to dimensionality reduction (Weinberger et al.
2006, for example), but will not be examined in this paper.

Experiments

We consider three experimental domains exhibiting different
dimensionality. In each, we measure the performance of the
A* search algorithm (Hart, Nilsson, and Raphael 1968) with
different generated heuristics. Our performance metric is an
average count of the number of nodes A* expands, bucketed
by solution length. Note that drastically more computation
is needed for longer paths than shorter ones, and so perfor-
mance on long paths is a key detail in these results.

The inset bar plots accompanying each figure illustrate
the notion of intrinsic dimensionality for each domain (or a
sample average for the game maps). They show how much
statistical variance each of the first five dimensions of the
embedding contributes to the heuristic values when the ob-
jective is posed with uniform weights.

Cube World. The cube world is a synthetic domain, gen-
eralizing the octile grid-world to three dimensions. A large
cube whose sides measure 20 units each is divided into 8,000
unit cubes which may be transitioned between if they share
a vertex. The edge costs between cubes are the distances be-
tween their centers. A perfect heuristic for this simple do-
main is obvious by its construction, but for the purpose of
demonstration we examine building heuristics from scratch.

The differential heuristics have pivots in the four corner
states on the bottom half of the large cube. Meanwhile the

84

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows equally contributing dimensions.
Euclidean heuristics excel, while also using less memory.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performances of these heuristics are compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon
Age: Origins and the path planning problems are typical
to many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality – they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have only
one descriptive dimension corresponding to the longest cor-
ridor. Storage of the less descriptive dimensions is wasteful
compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,

Figure 3: Dragon Age: Origins results on standard problem
sets. Inset plot reveals low intrinsic dimensionality: the first
dimension of each embedding supports most of the variance.

which tends to capture most of the available variance.
Figure 3 shows results from the Hierarchical Open Graph

(HOG) search platform for five groups of heuristics: the de-
fault “octile” heuristic (where diagonal moves cost 1.5), Dif-
ferential (1) and (3) (sets of one and three differential heuris-
tics, respectively) and Euclidean (1) and (3) (sets of one and
three one dimensional optimal Euclidean heuristics, respec-
tively). The sets of heuristics in each group are combined
with each other and the default heuristic by taking the maxi-
mum over all available heuristic values. We see that optimal
Euclidean heuristics based on W+

diff are an improvement (al-
beit small) over differential heuristics, which optimize using
the weights Wdiff. It is prudent to note here that differential
heuristics can be computed more quickly and scale to much
larger problems. Yet, we have shown that the concept of dif-
ferential heuristics can be improved upon as suggested by
our optimization interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top
6 and 18 dimensions of this single embedding. The perfor-
mances of these heuristics are compared in Figure 4. Note
that differential heuristics actually excel on the longest prob-
lems. This is because over half of these longest problems
(of which there are roughly 180) start or end on the state
for the word ‘upas’, which is often chosen as a pivot point.
However, across the vast majority of paths, the multidimen-
sional Euclidean heuristic offers a substantial improvement
over combining one dimensional differential heuristics.

85

Figure 4: Word search results, averaged over 10,000 random
problems. Inset plot shows variance over many dimensions.

Conclusion

This paper introduced a novel approach to constructing ad-
missible and consistent heuristics as the solution to a con-
strained optimization problem – one that has already been
studied in the field of dimensionality reduction. The ap-
proach generalizes differential heuristics beyond a single di-
mension. Furthermore it enabled a number of insights, re-
vealing a bias in the implied objective of differential heuris-
tics, and showing how the success of differential heuristics
is tied to the intrinsic dimensionality of the search space as
recovered by our proposed optimization.

The observed connection between heuristic search and di-
mensionality reduction appears highly profitable. Heuristic
search is a natural application for manifold learning tech-
niques of which MVU is just one. The work in this pa-
per can be extended in a number of directions: scaling to
larger problems (Weinberger et al. 2006), fundamentally dif-
ferent objective functions, or away from Euclidean metrics
and into non-Euclidean geometries (Walter 2004). We have
only touched the surface of what could grow into a highly
beneficial relationship between these two subfields.

Acknowledgments

This research was supported by iCORE and NSERC. Thanks
to A. Felner and anonymous reviewers for valued feedback.

References

Bauer, R.; Delling, D.; Sanders, P.; Schieferdecker, D.;
Schultes, D.; and Wagner, D. 2008. Combining Hierarchical
and Goal-Directed Speed-Up Techniques for Dijkstra’s Al-
gorithm. In Proceedings of the 7th Workshop on Experimen-
tal Algorithms, volume 5038 of Lecture Notes in Computer
Science, 303–318. Springer.
Bowling, M.; Wilkinson, D.; and Ghodsi, A. 2006. Subjec-
tive Mapping. In Proceedings of the 21st National Confer-
ence on Artificial Intelligence (AAAI), 1569–1572.
Culberson, J., and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence 14(3):318–334.

Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction Hierarchies: Faster and Simpler Hierar-
chical Routing in Road Networks. In Proceedings of the
7th Workshop on Experimental Algorithms, volume 5038 of
Lecture Notes in Computer Science, 319–333. Springer.
Goldberg, A. V., and Harrelson, C. 2005. Computing the
Shortest Path: A* Search Meets Graph Theory. In Proceed-
ings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 156–165.
Goldenberg, M.; Felner, A.; Sturtevant, N.; and Schaeffer,
J. 2010. Portal-Based True-Distance Heuristics for Path
Finding. In Proceedings of the 3rd Annual Symposium on
Combinatorial Search (SoCS).
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Ng, T. S. E., and Zhang, H. 2002. Predicting Internet
Network Distance with Coordinates-Based Approaches. In
IEEE International Conference on Computer Communica-
tions (INFOCOM), 170–179.
Passino, K. M., and Antsaklis, P. J. 1994. A Metric Space
Approach to the Specification of the Heuristic Function for
the A Algorithm. IEEE Transactions on Systems, Man, and
Cybernetics 24:159–166.
Sturtevant, N., and Geisberger, R. 2010. A Comparison
of High-Level Approaches for Speeding up Pathfinding. In
Proceedings of the 4th Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), 76–82.
Sturtevant, N.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-Based Heuristics for Explicit
State Spaces. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), 609–614.
Sturtevant, N. 2007. Memory-Efficient Abstractions for
Pathfinding. In Proceedings of the 3rd Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment (AI-
IDE), 31–36.
Toh, K. C.; Todd, M. J.; and Tutuncu, R. H. 1999. SDPT3
– a Matlab software package for semidefinite programming.
Optimization Methods and Software 11:545–581.
Walter, J. A. 2004. H-MDS: A New Approach for Interac-
tive Visualization with Multidimensional Scaling in the Hy-
perbolic Space. Information Systems 29(4):273–292.
Weinberger, K. Q., and Saul, L. K. 2006. An Introduction to
Nonlinear Dimensionality Reduction by Maximum Variance
Unfolding. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI).
Weinberger, K. Q.; Sha, F.; Zhu, Q.; and Saul, L. K. 2006.
Graph Laplacian Regularization for Large-Scale Semidefi-
nite Programming. In Advances in Neural Information Pro-
cessing Systems 19, 1489–1496.
Zhou, R., and Hansen, E. 2004. Structured Duplicate De-
tection in External-Memory Graph Search. In Proceedings
of the 19th National Conference on Artificial Intelligence
(AAAI), 683–689.

86

