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Abstract

Researchers from interval analysis and constraint (logic) pro-
gramming communities have studied intervals for their abil-
ity to manage infinite solution sets of numerical constraint
systems. In particular, inner regions represent subsets of the
search space in which all points are solutions. Our main con-
tribution is the use of recent and new inner region extraction
algorithms in the upper bounding phase of constrained global
optimization.
Convexification is a major key for efficiently lower bounding
the objective function. We have adapted the convex interval
taylorization proposed by Lin & Stadtherr for producing a
reliable outer and inner polyhedral approximation of the so-
lution set and a linearization of the objective function. Other
original ingredients are part of our optimizer, including an
efficient interval constraint propagation algorithm exploiting
monotonicity of functions.
We end up with a new framework for reliable continuous
constrained global optimization. Our interval B&B is imple-
mented in the interval-based explorer Ibex and extends this
free C++ library. Our strategy significantly outperforms the
best reliable global optimizers.

1 Introduction

Interval B&B algorithms are used to solve constrained
global optimization problems1 in a reliable way, i.e., they
provide an optimal solution and its cost with a bounded error
or a proof of infeasibility. The story of interval B&B started
with interval analysis (Moore 1966). Numerous pioneer-
ing ideas are detailed in books like (Moore 1966), (Hansen
2003), (Kearfott 1996), to name a few. In the middle of
the nineties, Kearfott designed the GlobSol solver, and re-
searchers from the constraint programming community de-
signed the solvers Numerica (Van Hentenryck, Michel,
and Deville 1997) and Icos (Lebbah, Michel, and Rue-
her 2007) that introduce interval constraint propagation al-
gorithms and safe linear relaxations respectively. More re-
cently, the mathematical programming community has also
contributed with a solver, called here IBBA+, that integrates
constraint propagation and affine arithmetic (Ninin, Mes-
sine, and Hansen 2011).

For ensuring reliability at a good performance, the inter-
val paradigm is faced with two main difficulties.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We consider minimization in this paper w.l.o.g.

Upper bounding in the feasible space. Local search is
the most used approach for finding a feasible point2 (i.e.,
a solution satisfying the constraints) that improves the best
value of the objective function f . However, to ensure re-
liability in presence of equality constraints, the exploration
of a search space containing feasible and unfeasible points
requires an additional iterative correction of the unfeasi-
ble points found during the local search and their certifi-
cation with expensive interval analysis techniques (Lebbah,
Michel, and Rueher 2007). This additional time-consuming
iterative correction makes it simply impossible the compe-
tition, in terms of performance, with state-of-the-art non
reliable global optimizers like Baron (Tawarmalani and
Sahinidis 2005).

In this paper, we propose a radically different approach
where the search effort is spent only inside inner regions
of the search space, i.e., regions in which all points are
feasible. Several researchers from interval constraint pro-
gramming have intensively studied inner boxes for paving
the solution set (Collavizza, Delobel, and Rueher 1999;
Benhamou and Goualard 2000). Inner boxes have also been
used for minimizing the number of violated numerical in-
equality constraints (Normand et al. 2010). However, the
paradigm remained not exploited in general global optimiza-
tion under inequality and equality constraints.

Lower bounding with reliable convexification. All the
existing solvers compute, at each node of the B&B, a con-
vex, generally polyhedral, outer approximation of the so-
lution set. The best solution of the obtained relaxation (of
the initial problem) yields a lower bound of the cost that
is needed to terminate the search. Most of the linear re-
laxations are sophisticated, rendering tedious the task of
making them conservative. Indeed, the outer approximation
must enclose the solution set in spite of floating-point cal-
culation errors. Specific Reformulation-Linearization Tech-
niques (Sherali and Adams 1999) are presented in (Kearfott
1996) and (Lebbah, Michel, and Rueher 2007) that add new
variables equal to powers or products in the system, and de-
fine linear constraints between them. Ninin et al. use affine

2A second approach resorts to a satisfaction problem by look-
ing for points where the gradient of f is null. The minimum of
f is obtained at a solution of this problem or at a bound of the
domain. Taking into account the constrains in this formulation re-
quires Lagrangian machinery and Kuhn-Tucker theorem. This can
lead to a huge aggregate function unadapted for interval computa-
tions (Hansen 2003).
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arithmetic for computing a safe linearization of each opera-
tor (Ninin, Messine, and Hansen 2011). Instead, we propose
in this paper a reliable linearization based on a first-order in-
terval Taylor. The simplicity of this interval relaxation also
leads to a dual version that can extract an inner polyhedral
region inside the solution set and improve the upper bound.

1.1 Intervals and constrained global optimization

An interval [xi] = [xi, xi] defines the set of reals xi s.t.
xi ≤ xi ≤ xi. IR denotes the set of all intervals. The
size or width of [xi] is w([xi]) = xi − xi. A box [x] is the
Cartesian product of intervals [x1] × ... × [xi] × ... × [xn].
Its width is defined by maxi w([xi]). Mid([x]) denotes the
middle of [x]. A numerical or continuous constrained global
optimization problem is defined as follows.

Definition 1 (Constrained global optimization)
Consider a vector of variables x = {x1, ..., xi, ...xn} vary-
ing in a box [x], a real-valued function f : Rn → R, vector-
valued functions g : Rn → R

m and h : Rn → R
p.

Given the system S = (f, g, h, x, [x]), the constrained
global optimization problem consists in finding:

min
x∈[x]

f(x) subject to g(x) ≤ 0 ∧ h(x) = 0.

f denotes the objective function; g and h are inequality and
equality constraints respectively. x is said to be feasible if
it satisfies the constraints.

Our interval optimizer extracts inner boxes and inner re-
gions inside classical (outer) boxes.

Definition 2 Consider a system (f, g, ∅, x, [x]out) compris-
ing only inequality constraints. An inner region rin is a
feasible subset of [x]out, i.e., rin ⊂ [x]out and all points
x ∈ rin satisfy g(x) ≤ 0.

An inner box [x]in is an inner region which is a box.

Due to the inner linearizations achieved by our strategy, the
considered inner regions are polytopes.

Interval arithmetic (Moore 1966) extends to IR elemen-
tary functions over R. For instance, the interval sum (i.e.,
[x1] + [x2] = [x1 + x2, x1 + x2]) encloses the image of the
sum function over its arguments, and this enclosing property
basically defines what we call an interval extension.

Definition 3 (Extension of a function to IR)
Consider a function f : Rn → R.
[f ] :IRn → IR is said to be an extension of f to intervals if:

∀[x] ∈ IR
n [f ]([x]) ⊇ {f(x), x ∈ [x]}

∀x ∈ R
n f(x) = [f ](x)

In our context, the expression of a function f is always a
composition of elementary functions. The natural exten-
sion [f ]N is then simply a composition of the corresponding
interval operators.

The outer and inner interval linearizations proposed in this
paper are related to the first-order interval Taylor exten-
sion (Moore 1966), defined as follows:

[f ]T ([x]) = f(ẋ) +
∑
i

[
∂f

∂xi

]
N

([x]) ∗ ([xi]− ẋi)

where ẋ denotes any point in [x], e.g., Mid([x]).

Example. Consider f(x1, x2) = 3x2
1+x2

2+x1 ∗x2 in the
box [x] = [−1, 3]×[−1, 5]. The natural evaluation provides:
[f ]N ([x1], [x2]) = 3∗[−1, 3]2+[−1, 5]2+[−1, 3]∗[−1, 5] =
[0, 27]+[0, 25]+[−5, 15] = [−5, 67]. The partial derivatives
are: ∂f

∂x1
(x1, x2) = 6x1 + x2, [ ∂f

∂x1
]N ([−1, 3], [−1, 5]) =

[−7, 23], ∂f
∂x2

(x1, x2) = x1 + 2x2, [ ∂f
∂x2

]N ([x1], [x2]) =

[−3, 13]. The interval Taylor evaluation with ẋ = (1, 2)
yields: [f ]t([x1], [x2]) = 9+ [−7, 23] ∗ [−2, 2] + [−3, 13] ∗
[−3, 3] = [−76, 94].

1.2 Handling equations as inequality constraints

To handle equalities, in a first option followed by the inter-
val community, one finds approximately a point that satis-
fies exactly the constraints. The solvers return a tiny box of
width εsol in which the existence of a real-valued point is
(often) guaranteed by interval Newton methods. In a sec-
ond option, one finds exactly a point that satisfies approxi-
mately the constraints. Equations are handled with a (tiny)
admissible precision error εeq , i.e., a feasible floating-point
x verifies h(x) ∈ [−εeq,+εeq]. All the constraints can thus
be viewed as inequalities: {g(x) ≤ 0, h(x) − εeq ≤ 0,
−h(x) − εeq ≤ 0}. Ninin et al. were guided to this choice
by their affine arithmetic, but we believe that this is a rele-
vant approach for any global optimization solver. First, both
policies are of equal status regarding reliability. Second, a
precision error εeq on the images of functions h better fits
the original feasibility problem than a precision εsol on the
unknowns. Third, most of the equations defined by interval
practitioners are already “thick” and do not require a relax-
ation with εeq . Indeed, constraints often have coefficients
known with a bounded uncertainty (e.g., an imprecision on
a measured distance) and sometimes contain irrational con-
stants, like π, that can be specified by tiny intervals. Finally,
our experiments give an evidence that handling thick equal-
ities can work efficiently in practice. The reason behind this
good surprise is that this policy allows optimizers to extract
inner regions in continua of solutions. Efficient inner region
extraction and filtering algorithms can then focus the search
in the tiny solution set defined by thick equations.

2 Description of our interval B&B
Our IbexOpt strategy follows the well-known branch and
bound schema described in (Horst and Tuy 1966) to solve
a constrained global optimization problem. Starting from
an initial box, the algorithm splits it recursively until a so-
lution minimizing the objective function is found. During
the search, a current (generally non feasible) lower bound
of the objective function is computed for each box in the
list managed by the algorithm. We call lb (for lower bound)
the minimum value of these lower bounds. Also, ub (for
upper bound) is the cost of the current best feasible point
found during the search. A termination occurs when ub− lb
reaches a precision εobj ,3 and the floating-point vector xub

of cost ub is returned. Note that boxes the width of which
does not exceed a precision εsol are not put again in the list
and their lower bound accounts in the computation of lb.

At each iteration, the algorithm selects in the list the box
[x] with the lowest lower bound, thus following a best-first

3Following standard implementations, εobj is a percentage of
ub if |ub| ≥ 1; εobj is an absolute distance if |ub| ≤ 1.
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search. It chooses a branching variable xi ∈ x heuristically,
bisects [xi] and applies the main Contract&Bound pro-
cedure on the two sub-boxes. Note that the search tree, i.e.,
the “list” of boxes to be handled, is managed by a heap data
structure to access to the minimum lower bound in constant
time. More details about the overall schema can be found
in (Ninin, Messine, and Hansen 2011).

Like for instance in Numerica (Van Hentenryck, Michel,
and Deville 1997), the first task of our optimizer is to au-
tomatically introduce a new variable y in the input system
(f, g, h, x, [x]). This variable is linked to the others by an
additional constraint y = f(x). The domain [y] is therefore
an interval that encompasses the image of the objective func-
tion on [x]. It can be used as a simple way to propagate and
retro-propagate contractions between [x] and global bounds
on the minimum. Hence, the extended box [x]× [y] defines
the backtrackable state of the optimizer, and three variables
shared by all nodes in the search tree are updated globally
during the search: the current best candidate xub, its cost ub
(f(xub) = ub) and the minimum of the lower bounds lb.

2.1 A variant of the smear branching strategy

At each search node, a variant of the well-known smear
function (Kearfott and Novoa III 1990) selects the next vari-
able to be split. Given a system (f, g, h, x, [x]), the standard
smear-based strategy selects the variable xi in x with the
greatest value smearMax(xi) = Maxfj smear(xi, fj) or
smearSum(xi) =

∑
fj
smear(xi, fj), according to two dif-

ferent variants, where fj ranges over all the functions (f and
the components of g, h).
smear(xi, fj) reflects an impact of the variable xi on

function fj . It depends on the partial derivative of fj w.r.t.
xi and on the width of [xi]. More precisely:

smear(xi, fj) =

∣∣∣∣
[
∂fj
∂xi

]
N

([x])

∣∣∣∣ ∗ w([xi]).

We propose a variant smearRel(xi, fj) of smear(xi, fj)
that simply measures a relative impact falling in [0, 1]:

smearRel(xi, fj) =
smear(xi, fj)∑

xk∈x smear(xk, fj)
.

Finally, our branching strategy SmearSumRel selects the
variable xi in x with the greatest impact:

smearSumRel(xi) =
∑
fj

smearRel(xi, fj).

Although not always the best, this strategy appears to be
more robust than its competitors on the tested benchmark.

2.2 The Contract&Bound procedure

The main algorithm Contract&Bound (see Algorithm 1)
is called at each node of our B&B. The first line introduces
in the current system the best cost ub ever found (like in any
B&B). The procedure OuterContractLB filters the do-
mains and improves the lower bound. InnerExtractUB
extracts inner regions inside [x], chooses a point x in those
regions (if any), and potentially replaces xub by x and its
cost ub by f(x). OuterContractLB calls two main pro-
cedures. First, the Mohc algorithm (Araya, Trombettoni,
and Neveu 2010) contracts the box [x]× [y]. It can thus

Algorithm 1 Contract&Bound (in S, [x]; in-out: ub)
y ← ub− εobj
OuterContractLB (S, [x]× [y]) /* contraction */
if [x]× [y] = ∅ then exit endif /* no solution */
InnerExtractUB (S, [x], ub, xub) /* inner regions */

also lower bound the objective function. This recent inter-
val constraint propagation algorithm exploits monotonicity
of functions. It uses an efficient Revise procedure that can
optimally contract the box w.r.t. a single constraint (e.g.,
gj(x) ≤ 0), when gj(x) is monotonic w.r.t. every variable in
the box, even if gj(x) contains multiple occurrences of vari-
ables. Note that the smaller a box is, i.e., the deeper in the
search tree, the likelier functions are monotonic w.r.t. vari-
ables. Second, OuterContractLB calls an interval lin-
earization, called here OuterLinearization, for lower
bounding the objective function, i.e., for increasing y.

2.3 Outer interval linearization

A safe polyhedral convexification is built upon a straightfor-
ward adaptation of a specific first order interval Taylor form
of a nonlinear function (Lin and Stadtherr 2004). Consider a
function f : Rn → R defined on a domain [x]. For any vari-
able xi ∈ x, let [ai] be

[
∂f
∂xi

]
N
([x]). The idea is to (lower)

tighten f(x) with linear functions like:

∀x ∈ [x], f(x) + a1 ∗ xl
1 + ...+ an ∗ xl

n ≤ f(x) (1)

∀x ∈ [x], f(x) + a1 ∗ xr
1 + ...+ an ∗ xr

n ≤ f(x) (2)

where: xl
i = xi − xi and xr

i = xi − xi. The first-order
interval Taylor form can select any expansion point ẋ inside
the box to achieve the linearization. Instead of the usual
midpoint, a corner of the box is chosen here: x in form (1)
or x in form (2). If we consider an inequality gj(x) ≤ 0,
Expression (1) or (2) defines a hyper-plane glj(x) bounding
the solution set from below: glj(x) ≤ gj(x) ≤ 0. Applying,
for instance, the form (1) to the objective function f(x) and
to the inequalities gj(x) ≤ 0 (j = 1...m), we can derive a
linear problem LP lb:

LP lb = min f(x) + a1 ∗ xl
1 + ...+ an ∗ xl

n

subject to : ∀j gj(x) + aj1 ∗ xl
1 + ...+ ajn ∗ xl

n ≤ 0

∀i 0 ≤ xl
i, xl

i ≤ w([xi])

where : xl
i = xi − xi

OuterLinearization calls a Simplex algorithm to
solve LP lb and returns infeasibility or the optimal value yl.
Infeasibility means that [x] contains no solution and can be
discarded. Otherwise, if yl ≥ y, then the best lower bound
of the box is updated: y ← yl.

Proposition 1 The interval linearizations (1) and (2) are
correct and safe, i.e., they can be made robust to compu-
tation errors over floating point numbers.
Safety is ensured by the interval-based taylorisation (Neu-
maier 1990). The correction of relation (1) lies on the fact
that any variable xl

i is positive since its domain is [0, di],
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with di = w([xi]) = xi − xi. Therefore, minimizing each
term [ai] ∗ xl

i for any point xl
i ∈ [0, di] is obtained with ai.

Symmetrically, relation (2) is correct since xr
i ∈ [−di, 0] ≤

0, and the minimal value of a term is obtained with ai (Lin
and Stadtherr 2004).

Note that, even though our linearizations are safe, the
floating-point calculation errors made by the Simplex algo-
rithm could make its output yl unsafe. A cheap postpro-
cessing proposed in (Neumaier and Shcherbina 2004), using
interval arithmetic, has been added to certify the solution.

An improvement has been brought to this outer convexifi-
cation for computing a tighter polytope. We lower tighten a
function f(x) with expressions (1) and (2) simultaneously,
using an expanded form:

1. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − ai xi =∑
i aixi + f(x)−∑

i ai xi

2. f(x) +
∑

i ai(xi − xi) = f(x) +
∑

i aixi − aixi =∑
i aixi + f(x)−∑

i ai xi

2.4 Upper bounding with inner regions

The call to OuterContractLB is followed by a call to
InnerExtractUB (see Algorithm 2). The procedure
first calls an adaptation of a recent algorithm (Chabert and
Beldiceanu 2010), named here InHC4, for extracting an in-
ner box from the outer box [x]out.4 For a single constraint,
InHC4 returns a box that is inner w.r.t. that constraint.
The different boxes returned for all the constraints are in-
tersected to obtain an inner box. Like HC4 (Benhamou et
al. 1999), the algorithm reasons on the syntactical tree of the
constraints and uses projections for unary operators, with
inward rounding however. Furthermore, in case of unions
(e.g., in x2 and sinus operators), one single interval is kept
since holes contain inconsistent points, making the whole
algorithm heuristic. For binary operators, the projections in
the backward phase are different and also lead to heuristics
choices. Details can be found in (Chabert and Beldiceanu
2010), Section 3.

If an inner box [x]in is found by InHC4, then
MonotonicityAnalysis analyzes the monotonicity of
the objective function f w.r.t. every variable xi. If the par-
tial derivative [ai] =

[
∂f
∂xi

]
N
([x]in) ≥ 0, then f is increas-

ing and [xi] is replaced by the degenerate interval [xi, xi] in
[x]in to minimize f(x) over [x]in. If [ai] ≤ 0, f is decreas-
ing and [xi] is replaced by [xi, xi] in [x]in.

Next, we pick randomly a point x inside the box5 and re-
places xub by x if x satisfies the constraints and improves the
best cost ub. Two different cases may occur. If an inner box
has been extracted by InHC4, then a point is selected inside
[x]in. The feasibility does not need be checked since [x]in

contains only feasible points. If no inner box is available,
a random point is however picked in the outer box [x]out,
and the constraints must be checked. Replacing this simple
probing by a gradient descent did not improve the strategy.

4The published algorithm handles in fact a dual problem of find-
ing unfeasible boxes, i.e., boxes in which all points satisfy the nega-
tion of the constraints...

5Selecting several points instead of just one turned out to be
experimentally counter-productive.

Algorithm 2 InnerExtractUB (in: S, [x]out; in-out:
ub, xub)
[x]in ← InHC4 (S, [x]out) /* Inner box extraction */
if [x]in �= ∅ then

[x]in ← MonotonicityAnalysis (f , [x]in)
x ← RandomProbing([x]in)

else
x ← RandomProbing([x]out)

end if
cost ← f([x, x]) /* Cost evaluation */
if cost < ub and ([x]in �= ∅ or g(x) ≤ 0) then

ub ← cost; xub ← x
end if

LPub ← InnerLinearization (S, [x]out)
xl ← Simplex(LPub)
if xl �= ⊥ then

cost ← f([xl, xl])
if cost < ub then ub ← cost; xub ← xl end if

end if

This is easy to understand in presence of equations since the
inner boxes are tiny. This was more surprising for optimiza-
tion problems under inequality constraints only. The last
part of InnerExtractUB performs an inner linearization
of the system for extracting a polyhedral inner region.

2.5 Inner interval linearization

Symmetrically to the relation (1) used in outer linearization:

∀x ∈ [x], f(x) ≤ f l(x) = f(x) +
∑
i

ai ∗ (xi − xi). (3)

If an inequality f(x) ≤ 0 is handled, relation (3) enables
us to build a hyper-plane f l(x) s.t. f(x) ≤ f l(x) ≤ 0.
That is to say, the linear function f l(x) can be used to define
an inner region of [x]. Applying this idea to the objective
function f(x) and to the inequalities gj(x) ≤ 0, we can
derive the linear program LPub:

LPub = min f(x) +
∑

i ai ∗ (xi − xi)

subject to : ∀j gj(x) +
∑

i a
j
i ∗ (xi − xi) ≤ 0

∀i xi ≤ xi ∧ xi ≤ xi

A Simplex algorithm solves LPub and returns infeasibil-
ity or the optimal solution xl (see Algorithm 2). Infeasi-
bility proves nothing because the linearized system is more
constrained than the original system, so that one could still
find solutions in the original one. If the Simplex algorithm
returns an optimal solution of the inner approximation, then
xl is also a solution of the original system, maybe not the
optimal one. We evaluate the (original) objective function at
the point xl and potentially update xub and ub.

3 Experiments
We have implemented our strategy in the Interval-Based EX-
plorer Ibex (Chabert and Jaulin 2009). This free C++ li-
brary has facilitated the implementation of our global opti-
mizer by providing us a direct access to the Mohc algorithm,
different branching strategies, automatic differentiation, etc.
All parameters have been fixed to a given set of adequate
values common to all the tested instances. The precision
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has been fixed to εobj = 1.e-8 Also, εsol =
εobj
10 . Fi-

nally, the admissible precision error εeq in thick equations
h(x) ∈ [−εeq,+εeq] has been fixed to εeq =1.e-8 for all
the experiments.

Tests have been performed on the benchmark of 74 sys-
tems used by our best competitor IBBA+ (Ninin, Messine,
and Hansen 2011). Table 1 presents a qualitative study ana-
lyzing which ingredients improve the performance.

Table 1: Qualitative study. The columns include
the number of systems whose loss/gain in performance
cputime(strategy\{ingredient})

cputime(strategy)
, caused by the removal of a

single ingredient from our strategy, belongs to a given range
(first line). The tested removals are: Mohc replaced by
HC4 (Mohc/HC4); OuterLinearization (OuterLinear.);
InnerExtractUB replaced by a simple probing in the outer
box (Inner/Probing); InnerLinearization (InnerLin-
ear.); InHC4; SmearSumRel replaced resp. by SmearMax
(SSR/SM); Round Robin (SSR/RR); LF (SSR/LF); the
largest-first heuristic selects the variable with the largest interval.

Gain 0.02 [0.1, 0.5] [0.5, 2] [2, 10] [10, 100] >100

Mohc/HC4 0 1 62 5 0 2
OuterLinear. 0 1 35 9 5 20

Inner/Probing 0 0 33 24 9 4
InnerLinear. 0 0 62 7 0 1
InHC4 0 0 66 4 0 0

SSR/SM 0 2 59 4 1 4
SSR/RR 0 1 42 13 11 3
SSR/LF 1 0 40 9 16 4

Interesting observations can be drawn. First, all five
original devices proposed in our strategy appear to be use-
ful in practice. Second, our simple outer linearization
seems very helpful in the lower bounding phase. A fu-
ture study should compare this convex interval taylorization
with affine arithmetic and with the Quad RLT operator used
by Icos. Third, extracting inner regions is also very use-
ful in the upper bounding phase. Table 1 underlines that
it is often sufficient to endow the strategy with InHC4 or
InnerLinearization, although putting both devices is
sometimes beneficial and never counter-productive on the
selected benchmark.

We have also compared our strategy to the available and
maintained reliable global optimizers: Globsol, Icos
and IBBA+,6 and with the non reliable deterministic solver
Baron. Be aware that Baron does not guarantee its re-
turned best solution that is sometimes not feasible and may
have a too low cost.

Fig.1 shows the performance profiles of IbexOpt,
Baron and our best reliable competitor IBBA+. We give
details on the 28 systems that are solved by IbexOpt
in more than one second. Table 2 corresponds to the
12 systems solved by IbexOpt in less than 10 sec-
onds. Table 3 includes the 13 systems solved in more
than 10 seconds. Three systems (ex6 2 5, ex6 2 7 and
ex7 2 3) are removed from this table because they are
not solved by any solver, including Baron. The re-
sults for Globsol, IBBA+, Icos and IbexOpt have

6IBBA+ corresponds to the most efficient strategy described in
(Ninin, Messine, and Hansen 2011).

Figure 1: Performance profiles. For a given strategy, a
point (t, p) on the corresponding curve indicates that p per-
cent of the systems have been solved in less than t seconds.

been obtained on very similar computers (Intel X86,
3Ghz). Baron 9.0.7 has been run on the Neos server (see
www.neos-server.org/neos/) also on a X86, thus
making the comparison rather fair.

The figure and tables show that IbexOpt often out-
performs its reliable competitors by one or several or-
ders of magnitude. The performance profile illustrates that
IbexOpt show performances which are intermediary be-
tween IBBA+ and Baron and that it can solve the same
systems as Baron in 1000 seconds. The results obtained
by Baron are impressive, although it should be noticed
that several instances are solved during a pre-processing (the
number of branching nodes is 1 in the tables).

Note that IbexOpt is better than Baron on 5 of the 28
difficult systems (see Tables 2 and 3), especially on the se-
ries ex6 2 * having huge non polynomial objective func-
tions. To our knowledge, no reliable solver could compete
with Baron on non trivial instances that Baron solve in
seconds or more.

We have also tested a variant of our strategy where Mohc
is replaced by 3BCID(Mohc) (Trombettoni and Chabert
2007). Although generally counterproductive in terms of
performances, the variant is more robust and can solve the
ex7 2 3 instance in 38 seconds with 6235 branching nodes,
while Baron raises a memory overflow.

4 Conclusion
We have proposed a new framework for reliable global op-
timization that exploits inner regions in the upper bound-
ing phase, thus avoiding the recourse to local search. Pro-
vided that equations can be defined with a tiny admissi-
ble precision error, the approach is also relevant for han-
dling equality constraints. Our strategy is endowed with
five significant devices. Three of them, i.e., Mohc, InHC4
and OuterLinearization have never been used in
global optimization. Two of them, i.e., SmearSumRel and
InnerLinearization, are new. All five have proven
their efficiency in a sample of non trivial constrained global
optimization systems. They confirm the relevance of inner
region exploitation and polyhedral approximations based on
convex interval taylorization.

Due to the number of novel ingredients, there is still
significant space for improvement in the hope of reaching
Baron performance in a long-term.
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Table 2: Comparison on mean-difficult systems. The first two
lines indicate the name of the competitor with the used precision
εobj on the cost. Each entry contains generally the CPU time in sec-
ond (first line of a multi-line) and the number of branching nodes
(second line). A timeout of one hour (>3600) is shared by IBBA+,
GlobSol and IbexOpt. It is 10 min (>600) for Icos, 1000
seconds for Baron (imposed by the Neos server). An empty en-
try indicates that the information is not available. In particular,
GlobSol restricts itself to problems having less than 9 variables.

System n Baron GlobSol IBBA+ Icos IbexOpt IbexOpt
εobj 1.e-8 1.e-8 1.e-8 1.e-3 1.e-3 1.e-8
ex2 1 7 20 0.33 16.75 >600 5.52 6.24

89 1574 2102 2320
ex2 1 8 24 0.07 26.78 >600 5.78 6.50

7 1916 1540 1702
ex3 1 1 8 0.51 >3600 116 180 0.48 1.31

453 131195 8930 605 1516
ex6 1 4 6 0.25 14 2.70 4.28 0.37 1.11

242 1622 1109 471 1053
ex6 2 14 4 5.2 32 208 >600 0.77 1.59

1824 95170 765 1237
ex7 2 1 7 0.05 24.72 >600 0.80 1.17

1 8419 825 1197
ex7 2 6 3 0.06 1 1.23 2.68 0.02 5.35

7 1319 986 73 16171
ex7 3 4 12 0.93 >3600 >600 1.27 1.31

268 771 775
ex14 2 1 5 0.03 4 36.73 >600 0.82 1.09

1 16786 533 704
ex14 2 3 6 0.03 11 173 >600 2.57 2.92

1 46673 996 1048
ex14 2 4 5 0.03 127 >600 0.95 1.02

1 30002 435 449
ex14 2 6 5 0.03 237 >600 1.20 1.29

1 74630 498 515
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