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Abstract

Anytime variants of Dijkstra’s and A* shortest path algo-
rithms quickly produce a suboptimal solution and then im-
prove it over time. For example, ARA* introduces a weight-
ing value (ε) to rapidly find an initial suboptimal path and
then reduces ε to improve path quality over time. In ARA*,
ε is based on a linear trajectory with ad-hoc parameters cho-
sen by each user. We propose a new Anytime A* algorithm,
Anytime Nonparametric A* (ANA*), that does not require
ad-hoc parameters, and adaptively reduces ε to expand the
most promising node per iteration, adapting the greediness of
the search as path quality improves. We prove that each node
expanded by ANA* provides an upper bound on the subop-
timality of the current-best solution. We evaluate the perfor-
mance of ANA* with experiments in the domains of robot
motion planning, gridworld planning, and multiple sequence
alignment. The results suggest that ANA* is as efficient as
ARA* and in most cases: (1) ANA* finds an initial solution
faster, (2) ANA* spends less time between solution improve-
ments, (3) ANA* decreases the suboptimality bound of the
current-best solution more gradually, and (4) ANA* finds the
optimal solution faster. ANA* is freely available from Maxim
Likhachev’s Search-based Planning Library (SBPL).

1 Introduction

The A* algorithm (Hart, Nilsson, and Raphael 1968) is
widely used to compute minimum-cost paths in graphs in
applications ranging from map navigation software to robot
path planning to AI for games. Given an admissible heuris-
tic, A* is guaranteed to find an optimal solution (Dechter and
Pearl 1985). In time-critical applications such as robotics,
rather than waiting for the optimal solution, anytime algo-
rithms quickly produce an initial, suboptimal solution and
then improve it over time. Most existing anytime A* algo-
rithms are based on Weighted A*, which inflates the heuris-
tic node values by a factor of ε ≥ 1 to trade off running time
versus solution quality (Pohl 1970). Weighted A* repeatedly
expands the “open” state s that has a minimal value of:

f (s) = g(s)+ ε ·h(s),
where g(s) is the current-best cost to move from the start
state to s, and h(s) is the heuristic function, an estimate of
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the cost to move from s to a goal state. The higher ε , the
greedier the search and the sooner a solution is found. If
the heuristic is admissible (i.e. a lower-bound on the true
distance to the goal), the suboptimality of the solution is
bounded by ε . That is, the solution is guaranteed to be no
costlier than ε times the cost of the optimal path. These ob-
servations can be used in anytime algorithms, for instance
as in ARA* (Likhachev, Gordon, and Thrun 2004), which
initially runs Weighted A* with a large value of ε to quickly
find an initial solution, and continues the search with pro-
gressively smaller values of ε to improve the solution and
reduce its suboptimality bound. To our knowledge, all exist-
ing anytime A* algorithms require users to set parameters.
ARA*, for instance, has two parameters: the initial value of
ε and the amount by which ε is decreased in each iteration.
Setting these parameters requires trial-and-error and domain
expertise (Aine, Chakrabarti, and Kumar 2007).

This motivated us to develop an anytime A* algorithm
that does not require parameters. Instead of minimizing
f (s), Anytime Nonparametric A* (ANA*) expands the open
state s with a maximal value of

e(s) =
G−g(s)

h(s)
,

where G is the cost of the current-best solution, initially an
arbitrarily large value. The value of e(s) is equal to the
maximal value of ε such that f (s) ≤ G. Hence, continu-
ally expanding the node s with maximal e(s) corresponds to
the greediest possible search to improve the current solution
that in effect automatically adapts the value of ε as the al-
gorithm progresses and path quality improves. In addition,
we will prove that the maximal value of e(s) provides an up-
per bound on the suboptimality of the current best solution,
which is hence gradually reduced while ANA* searches for
an improved solution. ARA*, in contrast, lets the value of ε
follow a “linear” trajectory, resulting in highly unpredictable
search times between the fixed decrements of ε .

In addition to eliminating ad-hoc parameters, results of
experiments in representative search domains suggest that
ANA* has superior “anytime characteristics” compared to
ARA*. That is: (1) ANA* usually finds an initial solution
faster, (2) ANA* usually spends less time between solution
improvements, (3) ANA* more gradually decreases the sub-
optimality bound of the current-best solution, and (4) ANA*
usually finds the optimal solution faster.
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Our implementation of ANA* is freely available from
Maxim Likhachev’s Search-based Planning Library (SBPL)
at http://www.cs.cmu.edu/˜maxim/software.html.

2 Preliminaries and Previous Work

2.1 Dijkstra’s, A*, and Weighted A*

Dijkstra’s algorithm (Dijkstra 1959) finds a minimum-cost
path between a start state sstart and a goal state sgoal in a graph
with non-negative edge costs. For each state s in the graph,
it maintains a value g(s), which is the minimum cost proven
so far to reach s from sstart. Initially, all g(s) are ∞, except
for sstart, whose g-value is initialized at 0. The algorithm
maintains an OPEN queue containing all locally inconsis-
tent states, i.e. states s that may have successors s′ for which
g(s′)> g(s)+ c(s,s′), where c(s,s′) is the cost of traversing
the edge between s and s′. Initially, OPEN only contains the
start state sstart. Dijkstra’s algorithm extracts the state s from
OPEN with minimal g(s)-value, and expands it by updating
the g-values of the successors of s and putting them on the
OPEN queue if their g-value was decreased. This continues
until state sgoal is extracted from OPEN, or until OPEN is
empty, in which case a solution does not exist. Dijkstra’s al-
gorithm is asymptotically optimal (Cormen, Leiserson, and
Rivest 1990), and runs in O(n logn+ k) time, where n and k
are the number of states and edges, respectively.

The A* algorithm (Hart, Nilsson, and Raphael 1968) is a
generalization of Dijkstra’s algorithm that improves its run-
ning time by using a heuristic to focus the search towards
the goal. The difference from Dijkstra’s is that A* expands
the state s in OPEN with a minimal value of g(s) + h(s),
where h(s) is the heuristic that estimates the cost of mov-
ing from s to sgoal. Let c∗(s,s′) denote the cost of the op-
timal path between s and s′. If the heuristic is admissi-
ble, i.e. if h(s) ≤ c∗(s,sgoal) for all s, A* is guaranteed to
find the optimal solution in optimal running time (Dechter
and Pearl 1985). If the heuristic is also consistent, i.e. if
h(s) ≤ c∗(s,s′)+ h(s′) for all s and s′, it can be proven that
no state is expanded more than once by the A* algorithm.

Weighted A* (Pohl 1970) extends A* by allowing to trade-
off running time and solution quality. It is similar to A*, ex-
cept that it inflates the heuristic by a value ε ≥ 1 and expands
the state s in OPEN with minimal f (s) = g(s)+ε ·h(s). The
higher ε , the greedier the search, and the sooner a solution
is typically found. The suboptimality of solutions found by
Weighted A* is bounded by ε , i.e. the solution is guaran-
teed to be no costlier than ε times the cost of the optimal
solution. Weighted A* may expand states more than once
(as the inflated heuristic ε · h(s) is typically not consistent).
However, if h(s) itself is consistent, it can be proven that re-
stricting states to being expanded no more than once does
not invalidate the ε-suboptimality bound (Likhachev, Gor-
don, and Thrun 2004).

2.2 Anytime A* Algorithms

Anytime Heuristic Search (AHS) (Hansen and Zhou 2007)
is an anytime version of Weighted A*. It finds an initial so-
lution for a given value of ε , and continues the search after
an initial solution is found (with the same ε). Each time

the goal state is extracted from OPEN, an improved solution
is found. Eventually, AHS will find the optimal solution.
Throughout, AHS expands the state in OPEN with minimal
f (s) = g(s) + ε · h(s), where ε is a parameter of the algo-
rithm. The suboptimality of intermediate solutions can be
bounded by G/mins∈OPEN{g(s) + h(s)}, as G, the cost of
the current-best solution, is an upper bound of the cost of
the optimal solution, and mins∈OPEN{g(s)+h(s)} is a lower
bound of the cost of the optimal solution.

Anytime Repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2004) is also based on Weighted A*. It finds an ini-
tial solution for a given initial value of ε , and continues the
search with progressively smaller values of ε to improve the
solution and reduce its suboptimality bound. The value of
ε is decreased by a fixed amount each time an improved so-
lution is found or the current-best solution is proven to be
ε-suboptimal. The f (s)-values of the states s ∈ OPEN are
then updated to account for the new value of ε . The initial
value of ε and the amount by which it is decreased in each
iteration are parameters of the algorithm. The algorithm we
present in this paper was motivated by ARA*. We will dis-
cuss their relation in detail in Section 4.

Restarting Weighted A* (RWA*) (Richter, Thayer, and
Ruml 2010) is similar to ARA*, but it restarts the search
each time ε is decreased. That is, each search is started with
only the start state on the OPEN queue. It reuses the effort of
previous searches by putting the states explored in previous
iterations on a SEEN list. Each time the search encounters a
seen state, it is put on the OPEN queue with the best g-value
known for that state. Restarting has proven to be effective
in situations where the quality of the heuristic varies sub-
stantially across the search space. As with ARA*, the initial
value of ε and the amount by which it is decreased in each
iteration are parameters of the algorithm.

Anytime Window A* (AWA*) (Aine, Chakrabarti, and Ku-
mar 2007), Beam-Stack Search (BSS) (Zhou and Hansen
2005) and ITSA* (Furcy 2006), are not based on weighted
A*, but rather limit the “breadth” of a regular A* search. It-
eratively increasing this breadth provides the anytime char-
acteristic of these algorithms.

3 Anytime Nonparametric A*

3.1 Algorithm

Our algorithm ANA* is given in Fig. 1. Throughout the
algorithm, a global variable G is maintained storing the cost
of the current-best solution. Initially, G = ∞, as no solution
has yet been found.

IMPROVESOLUTION implements a version of A* that is
adapted such that it expands the state s ∈ OPEN with the
maximal value of

e(s) =
G−g(s)

h(s)
(1)

(line 2). Each time a state s is expanded, it is checked
whether the g-value of each of the successors s′ of s can be
decreased (line 10). If so, g(s′) is updated (line 11) and the
predecessor of s′ is set to s (line 12) such that the solution
can be reconstructed once one is found. Subsequently, s′ is
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IMPROVESOLUTION()

1: while OPEN �= /0 do
2: s ← argmaxs∈OPEN{e(s)}
3: OPEN ← OPEN \{s}
4: if e(s)< E then
5: E ← e(s)
6: if ISGOAL(s) then
7: G ← g(s)
8: return
9: for each successor s′ of s do

10: if g(s)+ c(s,s′)< g(s′) then
11: g(s′)← g(s)+ c(s,s′)
12: pred(s′)← s
13: if g(s′)+h(s′)< G then
14: Insert or update s′ in OPEN with key e(s′)

ANA*()
15: G ← ∞; E ← ∞; OPEN ← /0; ∀s : g(s)← ∞; g(sstart)← 0
16: Insert sstart into OPEN with key e(sstart)
17: while OPEN �= /0 do
18: IMPROVESOLUTION()
19: Report current E-suboptimal solution
20: Update keys e(s) in OPEN and prune if g(s)+h(s)≥ G

Figure 1: The Anytime Nonparametric A* algorithm.

inserted into the OPEN queue with key e(s′), or if it was al-
ready on the OPEN queue, its key e(s′) is updated (line 14).
States for which g(s)+ h(s) ≥ G, or equivalently e(s) ≤ 1,
are not put on the OPEN queue, though, as such states will
never contribute to improving the current-best solution (line
13). As a result, when a goal state is extracted from OPEN,
it is guaranteed that a solution has been found with lower
cost than the current-best solution, so G is updated (line 7)
and IMPROVESOLUTION terminates (line 8).

ANA* is the “main” function that iteratively calls IM-
PROVESOLUTION to improve the current solution. It starts
by initalizing the g-value of the start state sstart to zero and
putting it on OPEN (line 16). In the first iteration, G = ∞, as
no solution has yet been found, in which case IMPROVES-
OLUTION expands the state in OPEN with the smallest h-
value, and in case of ties the one with the smallest g-value.
This follows naturally from Equation (1) if one thinks of G
as a very large but finite number. This is equivalent to ex-
ecuting Weighted A* minimizing f (s) with ε = ∞, so the
search for an initial solution is maximally greedy.

Each time IMPROVESOLUTION terminates, either an im-
proved solution has been found, or the OPEN queue has
run empty, in which case the current-best solution is opti-
mal (or no solution exists if none was found yet). After an
improved solution has been found, the solution may be re-
ported (line 19) and the keys of the states in OPEN are up-
dated to account for the new value of G (line 20). States s
for which g(s)+ h(s) ≥ G are pruned from OPEN, as they
will never contribute to an improved solution (line 20). Sub-
sequently, the OPEN queue is reordered given the updated
keys, and IMPROVESOLUTION is called again. This repeats
until OPEN is empty, in which case the optimal solution has
been found. Note that successive executions of IMPROVES-
OLUTION reuse the search effort of previous iterations.

3.2 Suboptimality Bound

Our algorithm ANA* provides a suboptimality bound of the
current-best solution that gradually decreases as the algo-
rithm progresses. Each time a state s is selected for expan-
sion in line 2 of IMPROVESOLUTION, its e(s)-value bounds
the suboptimality of the current-best solution. We prove the
theorem below. We denote by G∗ the cost of the optimal so-
lution, so G/G∗ is the true suboptimality of the current-best
solution (recall that G is the cost of the current solution).
Further, we denote by g∗(s) = c∗(sstart,s) the cost of the op-
timal path between the start state sstart and s.

Lemma: If the optimal solution has not yet been found,
there must be a state s ∈ OPEN that is part of the optimal
solution and whose g-value is optimal, i.e. g(s) = g∗(s).

Proof: Initially, sstart ∈OPEN is part of the optimal solution
and g(sstart) = g∗(sstart) = 0. At each iteration a state s from
OPEN is expanded. s is either part of the optimal solution
and g(s) is optimal, or not. In the latter case, the state with
the above property remains in OPEN (its g-value is optimal
and cannot be decreased). In the former case, s must have
a successor s′ that is part of the optimal solution. The suc-
cessor’s updated g-value is optimal since edge (s,s′) is part
of the optimal solution and g(s′) = g(s)+ c(s,s′). This con-
tinues until the goal state is dequeued with optimal g-value
when the optimal path has been found. �

Theorem: Each time a state s is selected for expansion in
line 2 of IMPROVESOLUTION, its e(s)-value bounds the
suboptimality of the current solution:

max
s∈OPEN

{e(s)} ≥ G
G∗ .

Proof: We assume that the heuristic is admissible. If the
current solution is optimal, the theorem trivially holds, as
OPEN only contains states with an e-value greater than 1.
If the optimal solution has not yet been found, there must
be a state s′ ∈ OPEN that is part of the optimal solution and
whose g-value is optimal, i.e. g(s′) = g∗(s′) (see Lemma).
The minimal cost to move from s′ to the goal is G∗ −g∗(s′),
since s′ is part of the optimal solution. As the heuristic is
admissible, h(s′)≤ G∗ −g∗(s′). Therefore:

e(s′) =
G−g∗(s′)

h(s′)
≥ G−g∗(s′)

G∗ −g∗(s′)
≥ G

G∗ ,

where the last inequality follows as G > G∗ ≥ g∗(s′) ≥ 0.
So, maxs∈OPEN{e(s)} ≥ e(s′)≥ G/G∗. �

In the algorithm of Fig. 1, we keep track of the subopti-
mality bound of the current-best solution in the variable E.
Initially E =∞, as no solution has been found yet. Each time
a state s is encountered in line 2 of IMPROVESOLUTION
with e(s) < E, we update the value of E (line 5). Hence,
the algorithm gradually decreases the suboptimality bound
of the current solution while it is searching for an improved
solution.
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IMPROVESOLUTION()

1: while OPEN �= /0 and mins∈OPEN{ f (s)} ≤ G do
2: s ← argmins∈OPEN{ f (s)}
3: OPEN ← OPEN \{s}
4: if ISGOAL(s) then
5: G ← g(s)
6: return
7: for each successor s′ of s do
8: if g(s)+ c(s,s′)< g(s′) then
9: g(s′)← g(s)+ c(s,s′)

10: pred(s′)← s
11: if g(s′)+h(s′)< G then
12: Insert or update s′ in OPEN with key f (s′)

ARA*(ε0,Δε)
13: G ← ∞; ε ← ε0; OPEN ← /0; ∀s : g(s)← ∞; g(sstart)← 0
14: Insert sstart into OPEN with key f (sstart)
15: while OPEN �= /0 do
16: IMPROVESOLUTION()
17: Report current ε-suboptimal solution
18: ε ← ε −Δε
19: Update keys f (s) in OPEN and prune if g(s)+h(s)≥ G

Figure 2: A simplified version of the ARA* algorithm.

4 Comparison with ARA*

Selecting the state s ∈ OPEN with a maximal value of e(s)
for expansion as we do in ANA* can intuitively be un-
derstood as selecting the state that is most promising for
improving the current-best solution, as e(s) is the ratio of
the “budget” that is left to improve the current solution
(G − g(s)) and the estimate of the cost between the state
and the goal h(s). This, however, is not our motivation for
choosing the ordering criterion e(s); in fact, it is derived
by careful analysis of the existing anytime algorithm ARA*
(Likhachev, Gordon, and Thrun 2004). We discuss this con-
nection in detail in this section.

For completeness, a simplified version of the ARA* algo-
rithm is given in Fig. 2. Like Weighted A*, ARA* expands
the state s ∈ OPEN with a minimal value of

f (s) = g(s)+ ε ·h(s).
ARA* is similar in structure to ANA*, and iteratively calls
its version of IMPROVESOLUTION, initially with ε = ε0, and
after each iteration, ε is decreased by a fixed amount Δε
(line 18). IMPROVESOLUTION terminates either when an
improved solution is found (line 6), which is then guaranteed
to be ε-suboptimal, or when mins∈OPEN{ f (s)}> G (line 1),
in which case the current-best solution is proven to be ε-
suboptimal.

The initial value ε0 of ε and the amount Δε by which it
is decreased after each iteration are parameters of the ARA*
algorithm. Setting these parameters is non-trivial. A first
property of a good anytime algorithm is that it finds an initial
solution as soon as possible, such that a solution can be given
even if little time is available. Ideally, therefore, ε0 = ∞, as
the higher ε , the greedier the search and the sooner a solution
is found. However, setting ε0 = ∞ is not possible in ARA*,
as ε is later decreased with finite steps (line 18). For that
reason, ε is initialized with a finite value ε0 in ARA*.

A second desirable property is to reduce the time spent
between improvements of the solution, such that when the
current-best solution is requested, the least amount of time
has been spent in vain. The amount Δε by which ε is de-
creased should therefore be as small as possible (this is also
argued in (Likhachev, Gordon, and Thrun 2004)). How-
ever, if ε is decreased by too little, it is possible that the
subsequent iteration of IMPROVESOLUTION does not ex-
pand a single state: recall that IMPROVESOLUTION ter-
minates when mins∈OPEN{ f (s)} > G. If ε is hardly de-
creased in the next iteration, it might still be the case that
mins∈OPEN{ f (s)} > G. So, what is the maximal value of ε
for which at least one state can be expanded? That is when

ε = max
s∈OPEN

{e(s)}, (2)

which follows from the fact that f (s) ≤ G ⇐⇒ ε ≤ e(s).
The one state that can then be expanded is indeed the state
s ∈ OPEN with a maximal value of e(s). This is precisely
the state that ANA* expands.

As an alternative to ANA*, one could imagine an adapted
version of ARA* that uses Equation (2) to decrease ε by the
least possible amount after each iteration of IMPROVESO-
LUTION. This would also allow initializing ε at ∞ for the
first iteration. However, such an algorithm would very often
have to update the f (s)-keys of the states s ∈ OPEN (and
reorder the OPEN queue) to account for the new value of ε .
This takes O(n) time, if n is the number of states in OPEN.
Also, ARA* is not maximally greedy to find an improved
solution: after the new value of ε has been determined, it re-
mains fixed during the subsequent iteration of IMPROVES-
OLUTION. However, new states s for which f (s) < G may
be put on the OPEN queue and expanded during that itera-
tion of IMPROVESOLUTION. If f (s)< G, state s would also
have been expanded if ε were increased again (up to e(s)).
A higher ε corresponds to a greedier search, so instead one
could always maximize ε such that there is at least one state
s ∈ OPEN for which f (s) ≤ G. This is equivalent to what
ANA* does, by continually expanding the state s ∈ OPEN
with a maximal value of e(s).

In summary, ANA* improves on ARA* in five ways: (1)
ANA* does not require parameters to be set; (2) ANA* is
maximally greedy to find an initial solution; (3) ANA* is
maximally greedy to improve the current-best solution; (4)
ANA* gradually decreases the suboptimality bound of the
current-best solution; and (5) ANA* only needs to update
the keys of the states in the OPEN queue when an improved
solution is found.

5 Experimental Results

In preliminary testing (for more information, see http://
goldberg.berkeley.edu/ana/), we found that ARA*
had the strongest performance compared to the other any-
time A* algorithms mentioned in Section 2, so we focused
our experiments on the comparison between ANA* and
ARA*. We implemented ANA* within Maxim Likhachev’s
publicly available SBPL library, which contains his own
ARA* planner and multiple benchmark domains. We tested
ANA* and ARA* on Likhachev’s robotic arm trajectory
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planning and gridworld problems, as well as a multiple se-
quence alignment problem. The first has a high branch-
ing factor and few duplicate states, whereas the latter two
have search domains of bounded depth and relatively small
branching factor (Thayer and Ruml 2010). All experiments
were implemented in C++ and executed on a 32-bit Win-
dows, Intel Pentium Dual Core machine with 1.8 GHz pro-
cessors and 3GB of RAM.

In our experiments we explore the relative performance
of ARA* and ANA* with respect to five quality metrics: (1)
the speed with which the algorithm finds an initial solution,
(2) the speed and (3) frequency with which the algorithm
decreases the suboptimality bound of the current-best solu-
tion, (4) the speed with which the algorithm converges to
the optimal solution, and (5) the frequency with which each
algorithm improves the current-best solution.

5.1 Robot Arm Experiment

We consider both a 6-degree-of-freedom (DOF) arm and a
20-DOF arm with fixed base in a 2D environment with ob-
stacles. The objective is to move the end-effector from its
initial location to a goal location while avoiding obstacles.
An action is defined as a change of a global angle of any
particular joint (i.e., the next joint further along the arm ro-
tates in the opposite direction to maintain the global angle
of the remaining joints). The cost of each action is either
non-uniform, i.e. changing a joint angle closer to the base is
more expensive, or all actions have the same cost. The envi-
ronment is discretized into a 50x50 2D grid. The heuristic is
calculated as the shortest distance from the current location
of the end-effector to the goal location that avoids obstacles.
To avoid having the heuristic overestimate true costs, joint
angles are discretized so as to never move the end-effector
by more than one cell on the 50x50 grid in a single action.
Memory for each state is allocated on demand, resulting in
an expansive planning space of over 109 states for the 6 DOF
robot arm and over 1026 states for the 20 DOF robot arm.

For each planning domain, we executed ARA* with dif-
ferent values of parameters ε0 and Δε . We found that
ARA*’s performance is not linearly correlated with these
parameters, suggesting that finding good values is non-
trivial. In the interest of space, we focus on the effect of
parameter ε0 and fix the parameter Δε at the value of 0.2 as
recommended by (Likhachev, Gordon, and Thrun 2004).

Figs. 3(a) and 3(b) illustrate the cost and suboptimality,
respectively, of the current-best solution over time for ARA*
and ANA* in the 6-DOF arm domain with uniform cost. The
vertical lines in the graphs signify the first solution found
for each algorithm, as the suboptimality and best-cost val-
ues drop from infinity to that value. ARA* was tested for
values of ε0 ∈ [1.2,1000]. The optimal solution was found
by ANA* before ARA*. For ANA* this required 5.0 sec-
onds, whereas ARA* with ε0 = 1.4 required 36.8 seconds.
ANA* finds an initial solution of suboptimality 2.9 in 0.016
seconds, and its rapid convergence to E = 1 and consistent
decrease in suboptimality are illustrated by the graph and
represent the anytime nature of ANA*.

Fig. 3(c) illustrates the the solution cost of the current-
best solution over time for both algorithms in the 6-DOF

(a) 6DOF, Uniform

(b) 6DOF, Uniform

(c) 6DOF, Non-uniform

(d) 20DOF, Uniform

Figure 3: Experimental results of the robot motion planning
problem; illustrating performance over time for 6 DOF and
20 DOF robotic arms
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Figure 4: Experimental results of the 100x1200 grid-world
path-planning experiment with obstacles and uniform cost.

arm domain with non-uniform cost. ARA* was executed
with values of ε0 ∈ [3,1000]. ANA* finds an initial solution
of cost 386 in 0.078 seconds, while ARA* with the best ε0
takes 0.090 seconds to find an initial solution with the same
cost. Over time, ANA* consistently maintains a solution of
lower cost in comparison to ARA*.

Fig. 3(d) illustrates the suboptimality of the current-best
solution over time for each planner in the 20-DOF arm
domain with uniform cost. Again, ANA* finds an initial
solution (14.8 seconds) faster than ARA*. While ARA*
achieves a better solution for a period of time, ANA* finds
a series of solutions lower than those achieved by ARA* for
any ε0 value within 250 seconds. For this domain, ARA*
was tested with ε0 ∈ [3,300]. Due to the expansiveness of the
search space in this experiment, neither algorithm can prove
optimality of the best solution it finds before it runs out of
memory. The graph shows that ANA* has the most num-
ber of steps in its decrease to a lower suboptimality. This
indicates a larger number of improvements to the current-
best solution cost and illustrates the maximal greediness of
ANA* to improve on the current-best solution.

5.2 Gridworld Planning

We consider two planar Gridworld path-planning problems
with different sizes and number of obstacles from the SBPL
library mentioned above. In both problems, we set the start
state as the cell at the top left corner, and the goal state at
the bottom right cell (Thayer and Ruml 2008). The first
grid-world problem is a 100x1200 8-connected grid with
obstacles, with unit uniform cost to move between adja-
cent obstacle-free cells. The second grid-world problem is
a 5000x5000 4-connected grid in which each transition be-
tween adjacent cells is assigned a random cost between 1
and 1,000. We considered two cases for this environment,
one with obstacles and one without.

Fig. 4 shows the solution cost results for the 100x1200
gridworld experiment, with fixed transition cost and obsta-
cles in the environment. The disparity in the ARA* results
illustrates a non-linear relationship between ε0 and perfor-
mance of ARA*, suggesting that setting this value is non-
trivial, as a higher or lower ε0 value does not necessarily
guarantee better or worse performance. ARA* was tested

(a) Without obstacles

(b) With obstacles

Figure 5: Experimental results of the 5000x5000 grid-world
path-planning experiments with random cost.

with ε0 ∈ [2,500]. ANA* finds an initial solution first (in 4
ms), and reaches an optimal solution in the smallest amount
of time (E = 1 in 15 ms), whereas the next best ARA* takes
478 ms to obtain the same solution.

Figs. 5(a) and 5(b) show results without and with ob-
stacles in the 5000x5000 domain with random transition
cost. ARA* was tested with ε0 ∈ [3,500] and ε0 ∈ [3,2000],
respectively. The results suggest that the performance of
ANA* is superior in all cases of the domain without obsta-
cles. In the domain with obstacles, ANA* finds an initial
solution first (in 50ms), but after 50s, ARA* with ε0 = 500
has found a solution of lower cost than ANA*. ANA* re-
quired an additional 193s to find this solution. This is due to
the fact that ANA* improves its current-best solution so of-
ten (with small improvements) that the overhead of updating
the keys in the OPEN queue reduces the effective running
time of ANA* in this case. Note, however, that the values
for ε0 produce very different results for ARA* in these do-
mains: in Fig. 5(a), ε0 = 30 is the best of those tested, while
in Fig. 5(b) ε0 = 500 is best of those tested. ANA* does not
require setting of parameters.

5.3 Multiple Sequence Alignment

The multiple sequence alignment problem is central for
computational molecular biology and can be formalized as a
shortest-path problem in an n-dimensional lattice, where n is
the number of protein sequences to be aligned (Yoshizumi,
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Figure 6: Results for the multiple sequence alignment prob-
lem with five protein sequences.

Miura, and Ishida 2000). A state is represented by the num-
ber of characters consumed from each string, and a goal is
reached when all characters are consumed (Ruml and Do
2007). Moves that consume from only some of the strings
represent the insertion of a “gap” character into the oth-
ers. We computed alignments of five sequences at a time,
using the standard sum-of-pairs cost function in which a
gap costs 2, a substitution (mismatched non-gap characters)
costs 1, and costs are computed by summing all the pair-
wise alignments. Each problem consists of five dissimilar
protein sequences obtained from (Ikeda and Imai 1994) and
(Kobayashi and Imai 1998). The heuristic is based on pair-
wise alignments that were precomputed by dynamic pro-
gramming.

Fig. 6 compares the performance of ANA* to that of
ARA*. ANA* found an initial solution (after 11ms) before
ARA* in all cases. ANA* spent an average of 18s between
solution improvements, while in the best run of ARA* it
took on average 200s to find a better solution. Also, ANA*
found a new solution 52 times compared to 16 for the best
case of ARA*. ARA* was tested with ε0 ∈ [2,100] (the ideal
value of ε0 for ARA* was small in this case).

6 Conclusion

We present ANA*, a new anytime A* algorithm that requires
no parameters to be set by a user and is easy to implement.
Both qualitative analysis and quantitative experimental re-
sults suggest that ANA* has superior anytime characteristics
compared to existing anytime A* algorithms. ANA* intro-
duces a novel order-criterion to choose the state to expand,
which was derived through analyzing the existing anytime
algorithm ARA* (Likhachev, Gordon, and Thrun 2004).

Subjects of ongoing research include graph search in dy-
namic domains, where the cost of transitions between states
changes over time and solutions need to be updated quickly.
In (Likhachev et al. 2008), an anytime algorithm for dy-
namic domains was presented that is based on ARA*. We
are currently exploring how ANA* can be adapted for ap-
plication in dynamic domains, such that it offers similar ad-
vantages: ANA* is as easy to implement as ARA*, has com-
parable and in many cases superior performance, and frees
users from the burden of setting parameters.
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