
Extensible Automated Constraint Modelling

Ozgur Akgun
ozgur.akgun@st-andrews.ac.uk

University of St. Andrews

Ian Miguel
ianm@cs.st-andrews.ac.uk
University of St. Andrews

Chris Jefferson
caj@cs.st-andrews.ac.uk

University of St. Andrews

Alan M. Frisch
frisch@cs.york.ac.uk

University of York

Brahim Hnich
brahim.hnich@ieu.edu.tr

Izmir University of Economics

Abstract

In constraint solving, a critical bottleneck is the formulation
of an effective constraint model of a given problem. The
CONJURE system described in this paper, a substantial step
forward over prototype versions of CONJURE previously re-
ported, makes a valuable contribution to the automation of
constraint modelling by automatically producing constraint
models from their specifications in the abstract constraint
specification language ESSENCE. A set of rules is used to re-
fine an abstract specification into a concrete constraint model.
We demonstrate that this set of rules is readily extensible to
increase the space of possible constraint models CONJURE
can produce. Our empirical results confirm that CONJURE
can reproduce successfully the kernels of the constraint mod-
els of 32 benchmark problems found in the literature.

Introduction

This paper attacks the problem of overcoming the modelling
bottleneck through automating the constraint modelling pro-
cess. In constraint solving, a critical bottleneck is the for-
mulation of an effective constraint model of a given prob-
lem. This is considered to be one of the key challenges fac-
ing the constraints field (Puget 2004), and one of the princi-
pal obstacles preventing widespread adoption of constraint
solving. Without help, it is very difficult for a novice user
to formulate an effective (or even correct) model of a given
problem. Recently, a variety of approaches have been taken
to automate aspects of constraint modelling, including: ma-
chine learning (Bessiere et al. 2006); case-based reason-
ing (Little et al. 2003); theorem proving (Charnley, Colton,
and Miguel 2006); automated transformation of medium-
level solver-independent constraint models (Rendl 2010;
Nethercote et al. 2007; Van Hentenryck 1999; Mills et
al. 1999); and refinement of abstract constraint specifi-
cations (Frisch et al. 2005a) in languages such as ESRA
(Flener, Pearson, and Ågren 2003), ESSENCE (Frisch et
al. 2008), F (Hnich 2003) or Zinc (Marriott et al. 2008;
Koninck, Brand, and Stuckey 2010).

We focus on the refinement-based approach, in which a
user writes abstract constraint specifications that describe a
problem above the level at which modelling decisions are

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

given co,ca: int

letting item be new type of size co

letting nat be domain int(1..)

given vol,val: function (total) item → nat

find x: set of item

maximising
∑

i : x . val(i)

such that (
∑

i : x . vol(i)) ≤ ca

Figure 1: The knapsack problem, given in ESSENCE

made. Abstract constraint specification languages, such as
ESSENCE, and to a lesser extent Zinc, support abstract de-
cision variables with types such as set, multiset, function,
and relation, as well as nested types, such as set of sets and
multiset of functions. Problems can typically be specified
very concisely in this way, as demonstrated by the exam-
ple in Fig. 1. However, existing constraint solvers do not
support these abstract decision variables directly, so abstract
constraint specifications must be refined into concrete con-
straint models.

CONJURE was introduced in prototype form by Frisch
et al. (2005a). It was able to refine a fragment of
ESSENCE limited to nested set and multiset decision vari-
ables into models in ESSENCE′, a solver-independent mod-
elling language. Subsequent work (Martı́nez-Hernández and
Frisch 2007; Martı́nez-Hernández 2008), considered issues
involved in automatically channelling among different rep-
resentations of abstract variables. The subject of this paper
is CONJURE 1.0, a major step forward over the previously
reported prototypes (henceforth CONJURE 0.X). We sum-
marise its contributions:

Coverage of ESSENCE: CONJURE 1.0 is able to refine
all ESSENCE specifications. Whereas CONJURE 0.X
demonstrated that refinement could handle types with un-
bounded nesting, CONJURE 1.0 confirms that refinement
can handle all features of ESSENCE.

Extensible Domain-specific Rule Language: The rules
used by CONJURE 1.0 are expressed in a new domain-
specific declarative language. In contrast each CONJURE
0.X rule was implemented by a piece of Haskell code.
This provision separates the tasks of implementation
and rule writing and, as we demonstrate, allows the

4

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

straightforward addition of new rules to extend the space
of possible constraint models CONJURE can produce.

Refinement at a Finer Grain: CONJURE 0.X performed
refinement at the level of an individual constraint. This
greatly inflates the size of the rule base unnecessarily.
Moreover, it requires constraints to be flattened prior to
refinement – that is decomposing nested expressions into
atomic constraints through the introduction of auxiliary
variables As we will show, this process can mask the
structure of the original specification and lead to weaker
models. By contrast, CONJURE 1.0 rewrites expressions
rather than essentially entire constraints, which both re-
duces the number of rules required and allows us to ex-
ploit specification structure to the benefit of the models
generated.

Extensive Evaluation: Our working hypothesis is that the
kernels1 of constraint models generated by experts can be
automatically generated by refining a problem’s specifi-
cation. The much broader coverage of ESSENCE afforded
by CONJURE 1.0 has allowed us to test this hypothesis in
much greater detail than previously.

Background

ESSENCE (Frisch et al. 2008) is a language for specifying
combinatorial (decision or optimisation) problems. It has a
high level of abstraction to allow users to specify problems
without making constraint modelling decisions, supporting
decision variables whose types match the combinatorial ob-
jects problems typically ask us to find, such as: sets, mul-
tisets, functions, relations and partitions. First introduced
by the language is its support for the nesting of these types,
allowing decision variables of type set of sets, multiset of
sets of functions, etc. Hence, problems such as the So-
cial Golfers Problem (Harvey 2001), which is naturally con-
ceived of as finding a set of partitions of golfers subject to
some constraints, can be specified directly without the need
to model the sets or partitions as matrices.

An ESSENCE specification (see (Frisch et al. 2008) for
full details), such as that in Fig. 1, identifies: the parame-
ters of the problem class (given), whose values are input to
specify the instance of the class; the combinatorial objects
to be found (find); and the constraints the objects must sat-
isfy to be a solution (such that). An objective function
may also be specified (min/maximising) and, for conci-
sion, identifiers may be declared (letting).

Today’s constraint solvers typically support decision vari-
ables with atomic types, such as integer or Boolean, have
limited support for more complex types like sets or multi-
sets, and no support for nested complex types. Hence, ab-
stract specifications are refined by modelling abstract de-
cision variables as constrained collections of variables of
unnested primitive types. CONJURE 1.0, like CONJURE 0.X,
employs a system of rules to refine ESSENCE specifications
into constraint models in ESSENCE′ (Rendl 2010), a lan-
guage derived from ESSENCE mainly by removing facili-

1By which we mean to exclude advanced features of models,
such as symmetry breaking and implied constraints.

ties for abstraction and adding facilities common to existing
constraint solvers and toolkits. From ESSENCE′ a tool such
as TAILOR (Rendl 2010) can be used to translate the model
into the format required for a particular constraint solver.

An abstract specification typically can be implemented by
many alternative concrete constraint models. CONJURE is
intended to generate these alternatives by providing multiple
refinement rules for each abstract type, corresponding to the
various ways in which a decision variable of that type can
be modelled. Furthermore, for each way of modelling the
decision variables there can be multiple rules to generate al-
ternative models for a constraint on those variables. Conse-
quently, CONJURE often generates many alternative models
for an input specification. We aim to encode each rule that
for some problem is used in the generation of some good (or
perhaps reasonable) model. Given a problem specification
and a set of rules the system generates all possible models.
If we have encoded a sufficient set of rules, then the kernels
of all good (or reasonable) models of the problem should be
contained within the set of models. In future, we will inves-
tigate restricting this set to good models and the selection
of either one recommended model or a portfolio of models
with complementary strengths.

The CONJURE 1.0 Architecture

CONJURE 1.0 is structured like a compiler. Its pipeline starts
with parsing, validating the input, and type-checking. After
these foundation phases, it prepares the input specification
for, and performs, refinement, and does some housekeeping:

1. Parsing
2. Validation

- Are all identifiers defined?
- Check consistency of declarations. e.g. a function vari-

able cannot be declared both total and partial.

3. Type Checking
4. Refinement
5. Model Presentation

Phases 1–3 are foundational, while Phase 5 aids perspicu-
ity. Phase 4 is the core of the refinement process, and is the
focus of the remainder of the paper. It consists of multiple
reentrant levels: following each rule application the process
returns to Phase 4i) in case the result of the rule requires the
attention of any of the other levels. We summarise Phase 4:

4i) Partial Evaluation CONJURE 1.0 contains a partial
evaluator for ESSENCE. This not only simplifies the out-
put models, but also saves the system from applying rules
to expressions that can be evaluated readily.

4ii) Representation Selection Refinement of an abstract
expression depends crucially on the representation of the
abstract decision variables and parameters it involves.
Hence, it is natural2 to select decision variable repre-
sentations first. This also simplifies the generation of
channelling constraints (Level iii) considerably. Typically
structural constraints are added to the variables in the
2Although in contrast with CONJURE 0.X.

5

concrete representation to ensure that the abstract variable
is properly represented. For example, if a set of cardinal-
ity n is represented by a matrix M containing n elements
then the structural constraint alldifferent(M) needs to be
added.

4iii) Auto-Channelling Since different occurrences of a
variable can have different representations, constraints
are necessary to maintain consistency among these dif-
ferent representations. Such constraints are called chan-
nelling constraints (Cheng et al. 1999). Following
previous work (Martı́nez-Hernández and Frisch 2007;
Martı́nez-Hernández 2008), channelling constraints are
generated simply by constraining the different represen-
tations of each abstract variable so that they represent the
same abstract object. The resultant equality constraints
are refined in the same way as any other constraint in the
problem specification.

4iv) Expression Refinement Having decided on the repre-
sentation of each abstract decision variable, it remains
to refine the expressions that contain them. Transforma-
tions are applied to expressions in a bottom-up manner;
namely, smaller expressions constructing larger ones are
dealt with earlier in the process. We preserve the ability
to apply transformations to larger expressions before their
components using rule precedences. Every expression
transformation has an associated precedence level and a
transformation at a higher precedence level is guaranteed
to be applied before those with at relatively lower prece-
dence level by the refinement process.

In order to produce multiple models, refinement branches
in two places in Phase 4: Representation Selection and Ex-
pression Refinement. Depending on the rules available in
the rule base, each abstract decision variable and each ex-
pression can be refined in several alternative ways.

A Rule Language for Refinement

To represent the rules at the heart of CONJURE 1.0, we de-
signed a new domain-specific language3 that provides all
and only the facilities we require, rather than use a general
system like Cadmium (Duck, Koninck, and Stuckey 2008).
CONJURE is run by inputting an ESSENCE specification and
a set of rules. This arrangement facilitates the straightfor-
ward addition of new rules to extend the space of models
CONJURE can produce, as the next section demonstrates.

All CONJURE rules adhere to a single template:
<pattern> [� <output>]* [where <guards>]

[letting <local identifiers>]

A rule rewrites an expression that matches against
pattern, producing one or more outputs provided the
guards are satisfied. A pattern is very similar to an
ESSENCE domain or expression, but may contain meta-
variables, identifiers which will be bound to domains or ex-
pressions once the pattern matching is performed. To illus-
trate, the expression x ∪ y = z ∩ t can be matched against

3As noted, CONJURE 0.X’s rules were written as fragments of
Haskell. Some primitive rules, such as those dealing with partial
evaluation, are built into CONJURE 1.0 for efficiency.

the expression pattern a = b, where a is bound to x ∪ y and
b is bound to z ∩ t. It can also be matched against a∪ b = c,
where a is bound to x, b is bound to y and c is bound to z∩t.
Both the expressions and patterns use the common operator
precedences. Pattern matching on domains, used exclusively
by the representation selection rules, operates similarly. The
domain set of int(x..y+ z) can be matched against the do-
main pattern set of int(a..b), where a is bound to x and b
is bound to y + z. The same domain can also be matched
against the domain pattern set of t, where t is bound to the
domain int(x..y + z). Notice, in both ESSENCE and the
refinement rule language used by CONJURE, identifiers can
refer to both expressions and domains.

Local identifiers are used for concision and to identify
new variables created by the refinement process. Based upon
this template, the CONJURE rule base contains three types of
rule:

Representation Selection Rules label an occurrence of an
abstract decision variable in a constraint expression with
one of its possible refinements, and add structural con-
straints to the model associated with that refinement.

Vertical Rules rewrite an expression, reducing its level of
abstraction. The expression is rewritten with respect to
the labels associated with its constituent variables by the
representation selection rules.

Horizontal Rules rewrite an expression without changing
its level of abstraction. These rules are used to reduce the
number of vertical rules required. It is important to de-
crease the number of vertical rules required, since vertical
rules need to be given per representation whereas horizon-
tal rules are independent of representation and are only
given once and used for all representations.
Thanks to the horizontal rules, expressions involving any
ESSENCE operator are transformed to equivalent expres-
sions containing a smaller set of operators. This transfor-
mation enables us to use far fewer vertical rules and still
be able to refine all valid expressions written in the input
language.

The rule language defines a few operators, used mostly
for accessing properties of their arguments. The operators
used in this paper and their semantics are briefly defined
here. Rule language operators are executed at the time of
rule application.

refn can be used in both vertical rules and representation
selection rules.

• In a vertical rule, it accepts an abstract decision variable
or a parameter as the argument and returns the refined
version.

• In a representation selection rule, it used without any
arguments and returns the refined version of the ab-
stract variable or parameter to which the rule is applied.

repr can be used in vertical or representation selection
rules, accepts an abstract decision variable or a parameter
as the argument and returns the name of the representation
chosen for its argument.

6

indices returns a k-tuple containing the ranges of the in-
dex values of a k-dimensional matrix. The usual tuple
projection operator ([]) can be used to access individual
elements of the returned value.

:: is an infix operator to check type constructor matching.
Accepts two arguments, an expression and a type con-
structor name and returns a Boolean value.

domSize accepts a finite domain as an argument, and re-
turns the number of elements in this domain.

We will explain and illustrate the operation of each of the
three types of rule by means of an example involving the
refinement of the following simple ESSENCE specification:

given x,y : int(0..9)

find f : function (total) int(0..9) → int(0..9)

such that f(x) = y, |preimage(f,x)| = y

This specification contains two constraints and a single
abstract decision variable f, a total function f mapping dig-
its to digits. preimage(f,x) is the set of all values that are
mapped to x by f.

This is a trivial problem, but it serves to illustrate the re-
finement process. After parsing, validation and type check-
ing, CONJURE arrives at the refinement phase. Representa-
tion selection rules are the first to be applied, in Phase 4ii.
Consider the following pair of representation selection rules
for total functions, which encode one- and two-dimensional
matrix representations of a function respectively.

function (total) fr → to

� Matrix1D

� matrix indexed by [fr] of to

where fr :: int

function (total) fr → to

� Matrix2D

� matrix indexed by [fr,to] of bool

� ∀ i : fr . ((
∑

j : to . refn[i,j]) = 1)

where fr :: int, to :: int

These rules output the identifiers for the representation
(Matrix1D and Matrix2D), the variables in the representa-
tion and the structural constraints on these variables, if any.
The operator refn returns the refined version of the abstract
variable to which the representation selection rule is applied.

The 1-d matrix is indexed by the domain of the original
function whose elements are decision variables with domain
equal to the range of the original function. Hence, f(i)=v
is represented by assigning the ith element of the matrix
v. Since the matrices supported by ESSENCE′ are indexed
by integers, there is a guard requiring that the function has
an integer domain. There is no such guard on the range of
the function — it might have an arbitrarily complex type, in
which case the 1-d matrix will be further refined.

The 2-d matrix is indexed by the domain and range of the
original function, hence both are required to have an integer
domain. Each element of the matrix is a Boolean variable
and f(i) = v is represented as m[i,v] = true. This rule
has a third output, a structural constraint that ensures the
function is total. This is not necessary in the 1-d representa-
tion because each variable must be assigned a value.

In the constraints in the specification, there are two occur-
rences of f. Either of the two rules above may fire on either
occurrence, hence refinement branches four ways. We will
focus on a single branch in which the 1-d rule has fired on
the occurrence in the first constraint, and the 2-d rule has
fired on the occurrence in the second. Since the same ab-
stract variable is being represented in two different ways, a
channelling constraint is required, and is added in Level iii,
giving the intermediate specification:
given x,y: int(0..9)

find f : function (total) int(0..9) → int(0..9)

find f1: matrix indexed by [int(0..9)] of int(0..9)

find f2: matrix indexed by [int(0..9),int(0..9)] of bool

such that
f#Matrix1D(x) = y,

|preimage(f#Matrix2D,x)| = y,

∀ i: int(0..9) . ((
∑

j: int(0..9) . f2[i,j]) = 1),

f#Matrix1D = f#Matrix2D

For demonstration purposes, occurrences of f in unre-
fined expressions are labelled using a hash sign with their
chosen representation. For instance in the above intermedi-
ate problem specification f#Matrix1D means the instance
of decision variable f with representation Matrix1D. The
vertical rules use the labels to refine these expressions with
respect to their chosen representations. To illustrate, con-
sider this vertical rule for function application, where the
1-d matrix representation has been selected for the function:
f(i) � refn(f)[i]

where f :: function, repr(f) = Matrix1D

Here, refn(f#Matrix1D) returns the corresponding
concrete variable, f1. Similarly, repr(f) returns the identi-
fier for the representation chosen, corresponding to the first
output of the representation selection rules. Following the
application of the above rule, the first constraint is rewritten
to:

f1[x] = y

We now consider an example of a horizontal rule:
|s| �

∑
i : s . 1 where s :: set

This rule replaces the cardinality operator with a summa-
tion counting the elements in the set, eliminating the need
for a dedicated vertical rule for cardinality. This horizontal
rule doesn’t result in a poorer model compared to a dedicated
vertical rule, it simply decreases the number of vertical rules
required. Following its application, the second constraint
becomes:

(
∑

i : preimage(f#Matrix2D,x) . 1) = y,

The following is a vertical rule to refine quantification
over inverse function application:

∑
i : preimage(f,j) . k �

∑
i : r . m[i,j] * k

where f :: function, repr(f) = Matrix2D

letting m be refn(f), r be indices(m)[1]

Note the introduction of local identifiers, m and r, for con-
cision. This rule operates in the context of the selection of
the Matrix2D representation, transforming the sum over the
elements of the inverse of the function into a summation over
the indices of the matrix. Following the application of this
rule, the second constraint becomes:

7

∑
i : int(0..9) . f2[i,x] = y

Partial evaluation has removed the redundant 1. Finally,
we demonstrate the refinement of the channelling constraint
between the two representations of the same abstract deci-
sion variable. The following horizontal rule removes the
need for a vertical rule between every pair or representations
for function variables. It transforms an equality between two
functions to a universal quantification over the intersection
of values being mapped by these two functions and imposing
equality on the actual mappings.

a = b � (defined(a) = defined(b))

∧ ∀ i : defined(a) . (a(i) = b(i))

where a :: function, b :: function

When applied to the last constraint a is substituted by
f#Matrix1D and b is substituted by f#Matrix2D. The first
component of the conjunction is then evaluated true and
subsequently removed from the conjunction. Furthermore,
defined(f#Matrix1D) is replaced with int(0..9) as f
is a total function. Eventually, the channeling constraint is
transformed to the following.

∀ i : int(0..9) . (f#Matrix1D(i) = f#Matrix2D(i))

The vertical rule for handling function application is al-
ready given for Matrix1D. The following is a similar rule
for Matrix2D.

f(i) �
∑

j : r . m[i,j] * j

where f :: function, repr(f) = Matrix2D

letting m be refn(f), r be indices(m)[1]

After the function applications are refined,

∀ i: int(0..9). (f1[i] = (
∑

j: int(0..9). f2[i,j] * j))

This expression is now in normal form, namely, no other
rule is applicable to it. The final model generated is:

given x,y: int(0..9)

find f1: matrix indexed by [int(0..9)] of int(0..9)

find f2: matrix indexed by [int(0..9),int(0..9)] of bool

such that
f1[x] = y,

(
∑

i: int(0..9) . f2[i,x]) = y,

∀ i: int(0..9) . ((
∑

j: int(0..9) . f2[i,j]) = 1),

∀ i: int(0..9). f1[i] = (
∑

j: int(0..9). f2[i,j] * j)

CONJURE automatically removes the find f statement
when f no longer occurs in any of the constraints.

The output of CONJURE is ESSENCE′ annotated with
some metadata. The metadata enables any solution to an
instance of an ESSENCE′ model to be automatically re-
expressed as a solution to the original ESSENCE specifica-
tion. The metadata are inserted to the output model file as
line comments and tools dealing with ESSENCE′ input are
simply expected to ignore them.

The CONJURE Rule Base and Its Extension

Refining ESSENCE specifications is a complex task. In or-
der to cover the entire ESSENCE language, CONJURE must
be able to cope with arbitrarily nested expressions of de-
cision variables with arbitrarily nested abstract types. In
order to deal with this complexity, CONJURE 0.X resorted

to flattening an input specification: decomposing nested ex-
pressions into atomic constraints through the introduction of
auxiliary variables. A refinement rule was then provided for
each flat constraint (for the fragment of ESSENCE that CON-
JURE 0.X considered). However, the flattening process can
mask the structure of the original specification and lead to
weaker models as the following example demonstrates.

Consider the constraint: (a ∪ b) ⊆ (c ∩ d). Flatten-
ing this constraint gives the constraints aux0 = a ∪ b,
aux1 = c ∩ d, aux0 ⊆ aux1 containing two auxiliary
set variables. This is expensive: each auxiliary set variable
incurs the cost of a set of concrete variables and constraints
to represent it. This cost increases considerably if the sets
have nested types. If we do not flatten, we can use horizon-
tal rules to rewrite the expression to a far more efficient pair
of quantified expressions:

∀ i : a . (i ∈ c ∧ i ∈ d), ∀ i : b . (i ∈ c ∧ i ∈ d)

As we have seen, therefore, CONJURE 1.0 refines at a
finer grain than CONJURE 0.X, refining expressions rather
than entire constraints, hence eliminating the need for flat-
tening. Even so, a large number of rules are ostensibly re-
quired to refine all of ESSENCE. The key to reducing this
number are the horizontal rules, which rewrite expressions
into a form for which we have a vertical rule, as per the car-
dinality horizontal rule in the previous section. Horizontal
rules are representation independent — a horizontal rewrite
of an expression is valid irrespective of the concrete repre-
sentation of its constituent variables. Hence, the horizontal
rules reduce the set of vertical rules required and the set of
horizontal rules does not grow as new representations are
added.

Using horizontal rules we have been able to reduce the set
of rules required for each ESSENCE type. For each repre-
sentation of an abstract type, a representation selection rule
is required as well as a small set of vertical rules. For set,
multiset, relation, and partition variables, one vertical rule
per quantifier is necessary. For functions, vertical rules are
required for function application, quantification over the in-
verse of the function and quantification over the ‘defined’ el-
ements of a partial function. Consequently, at present CON-
JURE 1.0 has 37 representation selection rules, and 96 verti-
cal and horizontal rules.

The use of horizontal rules to keep vertical rules to a min-
imum also reduces the effort of adding new representations
to the system. To illustrate, consider adding rules to sup-
port the Gent representation of sets (Jefferson 2007). The
properties of this representation are irrelevant — this exam-
ple is chosen as being a non-trivial, unusual representation
of a set typical of a representation one might wish to add
to those already present in the rule base. In brief, a set S
of integers drawn from some range d is represented by a
matrix g, indexed by d, of decision variables with domain
0..n, where n is either the fixed or the maximum cardinal-
ity of S. Element i is in S iff g[i] is non-zero. Further-
more, the non-zero elements of g are required to be in as-
cending order. If, for example, S = {1, 2, 4}, drawn from
1..5, then g = [1, 2, 0, 3, 0]. Just four rules, in addition to
the existing horizontal rules, are necessary to integrate the

8

set of τ [Representation selection]

� Gent

� matrix indexed by [τ] of int(0..n)

� ∀ i : τ . ((refn[i] = 0) ∨
(refn[i] = 1 +

(
∑

j : int(..i-1) ∩ τ . (refn[j] > 0))))

where τ :: int

letting n be domSize(τ)

∀ i : s . k [Vertical]

� ∀ i : r . (m[i] > 0) ⇒ k

where s :: set, repr(s) = Gent

letting m be refn(s), r be indices(m)[0]

∃ i : s . k [Vertical]

� ∃ i : r . (m[i] > 0) ∧ k

where s :: set, repr(s) = Gent

letting m be refn(s), r be indices(m)[0]

∑
i : s . k [Vertical]

�
∑

i : r . (m[i] > 0) * k

where s :: set, repr(s) = Gent

letting m be refn(s), r be indices(m)[0]

Figure 2: The four refinement rules sufficient to integrate the
Gent representation of sets into CONJURE.

Gent representation fully into CONJURE 1.0 (Fig.2), such
that any of the set operators available in ESSENCE can be
refined. In this respect, CONJURE 1.0 is clearly superior to
Conjure 0.X, which would require a distinct rule for every
operator and for every combination of representations of the
arguments of that operator. We estimate that CONJURE 0.X
would require up to 85 rules to add the Gent representation
in addition to the existing two set representations. Adding
a fourth representation to CONJURE 0.X would require even
more rules.

Evaluation

A milestone achieved uniqely by CONJURE 1.0 is full cover-
age of ESSENCE: it has at least one variable representation
rule for every abstract variable type, and rules for the oper-
ators defined on them. We now test the hypothesis that the
kernels of constraint models written by experts can be au-
tomatically generated by refining a problem’s specification.
We wrote specifications for a diverse set of 32 benchmark
problems drawn from the literature and refined them with
CONJURE. Table 1 presents the results: the number of gen-
erated models, papers that contain a kernel CONJURE 1.0
generate and the abstract parameters and variables involved
in the problem. Papers containing n kernels generated by
CONJURE 1.0 are labelled ×n. Notice the variety of de-
cision variable types involved in the benchmark problems,
representing a proof that the current collection of rules, the
rewrite rule language, and the Conjure system as a whole is
capable of refining a variety of abstract problem specifica-
tions into concrete models.

The number of models generated for a problem specifi-
cation depends on the number of representation options for
the involved abstract decision variables. For instance, the
Maximum Density Still Life contains a set decision variable

whose elements are tuples and currently the system has only
one variable selection rule that matches this type. Problems
such as Magic Hexagon only contain decision variables that
are concrete, so do not require refinement. We did find pa-
pers containing kernels which we are currently unable to
generate, for example for Langford’s Number Problem and
Maximum Density Still Life. These come from complex re-
formulations of the problem. In each of these cases, an al-
ternative ESSENCE specification would allow CONJURE to
generate the missing kernel.

Further research is necessary to improve the quality of
generated models. This is not surprising since producing
a good model is well known to be difficult even by human
modellers. We have established that good rewrite rules are
applicable to many problems and we hope as our refinement
rules database improves further, we will produce better mod-
els for all problems.

The following is an example where a specific rule helps
producing better models. A common method of iterating
over pairs of distinct elements in a set is to use an expres-
sion like ∀i, j : s.(i �= j) ⇒ k. Constraints of this form
arise in many problems, including Golomb ruler and Social
golfers. Our standard rules would refine i �= j using the
representation chosen for the elements of s, which can lead
to a complex constraint. However, if s is represented with
the explicit representation then i �= j is true if and only if i
and j are represented by different elements of the matrix in
the refinement. This leads to the rule:

∀ i,j : s . (i �= j) ⇒ k �

∀ i’,j’ : r . (i’ �= j’) ⇒ k {i → m[i’],j → m[j’]}
where s :: set, repr(s) = Explicit

letting m be refn(s), r be indices(m)[0]

The substitution operator used in the above rule is a part
of the rule language: a {b �→ c} replaces every occurrence
of b found in a with c.

Conclusion and Future Work

We have presented the CONJURE 1.0 automated constraint
modelling system and demonstrated its ability to reproduce
the kernels of the constraint models of 32 benchmark prob-
lems found in the literature. It achieves full coverage of
the ESSENCE language via a new domain-specific rule lan-
guage, whose features include: fine-grained refinement to
avoid the need for flattening, which, as we have demon-
strated, can impair the models produced; horizontal rules
that normalise expressions to reduce considerably the total
number of rules necessary for refinement; easy extensibility.

In future we of course wish to go beyond model kernels
to produce full models of the same quality as those found
in the literature, including symmetry breaking and implied
constraints. CONJURE’s flexible rule-based architecture is
ideally placed to achieve these aims in large part by adding
new rules to those available (cf. the example in the previ-
ous section). Furthermore, we will prune the set of models
produced to contain only the most effective models. In part,
we plan to achieve this by applying a prioritisation system
to rule application. This will allow refinement paths that are
provably superior to dominate those shown to be weaker.

9

Table 1: Runnning CONJURE on benchmark problems.

Problem name Models Reference Nb. abstract params2 and vars
Car Sequencing 128 (Gravel, Gagné, and Price 2005) 4 functions, 1 relation
Template Design 16 (Proll and Smith 1998) 2 function variables, 1 mapping msets to integers
Low Autocorellation Binary Sequences 4 (Gent and Smith 1999) 1 function
Golomb Ruler 81 (Smith, Stergiou, and Walsh 2000; Prestwich 2003) 1 set
All-interval series 8 (Choi and Lee 2002) 2 functions
Vessel loading 256 (Brown 1998) 9 functions, 1 mapping from a set
Perfect Square Placement 1024 (Cambazard and O’Sullivan 2010) 2 functions
Social Golfers 3 (Kiziltan and Hnich 2001; Hawkins, Lagoon, and Stuckey 2005) multiset of partitions
Progressive Party 81 (Smith et al. 1995) 1 set, 1 set of functions
Schur’s Lemma 81 (Flener et al. 2002b)×2 1 partition
Traffic Lights 2 (Hower 1998) 1 set of functions mapping integers to tuples
Magic Squares 1 (Refalo 2004) 1 2-dimensional matrix
Bus Driver Scheduling 27 (Muller 1998) 1 set of sets, 1 partition
Magic Hexagon 1 Model from CSPLib 23 1 2-dimensional matrix
Langford’s Number Problem 32 (Hnich, Smith, and Walsh 2004) 1 function
Round Robin Tournament Scheduling 27 (Frisch, Jefferson, and Miguel 2004) 1 relation between 2 integers and 1 set
BIBD 16 (Petrie 2005) 1 relation between 2 unnamed types
Balanced Academic Curriculum Problem 512 (Hnich, Kiziltan, and Walsh 2002) 2 functions, 1 relations
Rack Configuration Problem 288 (Kiziltan and Hnich 2001) 7 functions, 1 mapping integers to sets
Maximum Density Still Life 1 (Smith 2006) 1 set of tuples
Word Design for DNA Computing 16 Model from CSPLib 33 1 set of functions
Warehouse Location Problem 16 (Van Hentenryck 1999) 3 functions, 1 mapping tuples to integers
Fixed Length Error Correcting Codes 16 (Frisch, Jefferson, and Miguel 2003) 2 functions, 1 mapping tuples to integers
Steel Mill 4 (Flener et al. 2002a) 3 functions, 1 from sets
N-Fractions Puzzle 16 (Frisch, Jefferson, and Miguel 2004) 1 function
Steiner Triple Systems 9 (Kiziltan and Hnich 2001; Hawkins, Lagoon, and Stuckey 2005) 1 set of sets
N-Queens Problem 4 (Hnich, Smith, and Walsh 2004)×2 1 function
Peaceably Co-existing Armies of Queens 1 (Smith, Petrie, and Gent 2004) 1 set of tuples
Maximum Clique Problem 81 (Regin 2003) 1 set, 1 set of sets
Graph Colouring 4 (Hao and Dorne 1996; Chang, Chen, and King 1997) 1 function
SONET Configuration 27 (Frisch et al. 2005b)1 1 mset of sets, 1 set of sets
Knapsack Problem 36 (Sellmann 2009) 2 functions, 1 set

[1] Some models in this paper have set variables, which CONJURE currently always refines.
[2] Since CONJURE operates at the problem class level, problem parameters need to be refined as well as decision variables.

Acknowledgements

Ozgur Akgun is supported be a Scottish Informatics and
Computer Science Alliance (SICSA) scholarship. This re-
search is supported by UK EPSRC grant no EP/H004092/1.

References

Bessiere, C.; Coletta, R.; Koriche, F.; and Sullivan, B. O.
2006. Acquiring constraint networks using a SAT-based ver-
sion space algorithm. In AAAI 2006, 1565–1568.
Brown, K. N. 1998. Loading supply vessels by forward
checking and unenforced guillotine cuts. In 17th Workshop
of the UK Planning and Scheduling SIG.
Cambazard, H., and O’Sullivan, B. 2010. Propagating the
Bin Packing Constraint Using Linear Programming. In CP
2010. 129–136.
Chang, C.-M.; Chen, C.-M.; and King, C.-T. 1997. Using
integer linear programming for instruction scheduling and
register allocation in multi-issue processors. Computers and
Mathematics with Applications 34(9):1 – 14.
Charnley, J.; Colton, S.; and Miguel, I. 2006. Automatic
generation of implied constraints. In Proc. of ECAI 2006,
73–77. IOS Press.

Cheng, B.; Choi, K. M. F.; Lee, J. H. M.; and Wu, J. C. K.
1999. Increasing constraint propagation by redundant mod-
eling: an experience report. Constraints 4(2):167–192.
Choi, C., and Lee, J. 2002. On the pruning behaviour of
minimal combined models for permutation csps. In CP 2002
Workshop on Reformulation.
Duck, G. J.; Koninck, L. D.; and Stuckey, P. J. 2008. Cad-
mium: An implementation of acd term rewriting. In ICLP,
531–545.
Flener, P.; Frisch, A. M.; Hnich, B.; Kiziltan, Z.; Miguel,
I.; and Walsh, T. 2002a. Matrix modelling: Exploiting
common patterns in constraint programming. In the Inter-
national Workshop on Reformulating CSPs, 27–41.
Flener, P.; Frisch, A. M.; Hnich, B.; Kiziltan, Z.; Miguel, I.;
Pearson, J.; and Walsh, T. 2002b. Breaking row and column
symmetries in matrix models. In CP 2002, 462–476.
Flener, P.; Pearson, J.; and Ågren, M. 2003. Introduc-
ing ESRA, a relational language for modelling combinatorial
problems. In LOPSTR 2003, 214–232.
Frisch, A. M.; Jefferson, C.; Hernandez, B. M.; and Miguel,
I. 2005a. The rules of constraint modelling. In Proc. of the
IJCAI 2005, 109–116.

10

Frisch, A. M.; Hnich, B.; Miguel, I.; Smith, B. M.; and
Walsh, T. 2005b. Transforming and refining abstract con-
straint specifications. In 6th Symposium on Abstraction, Re-
formulation and Approximation, 76–91. Springer.
Frisch, A. M.; Harvey, W.; Jefferson, C.; Martı́nez-
Hernández, B.; and Miguel, I. 2008. Essence: A constraint
language for specifying combinatorial problems. Con-
straints 13(3) 268–306.
Frisch, A. M.; Jefferson, C.; and Miguel, I. 2003. Con-
straints for breaking more row and column symmetries. In
CP 2003, 318–332.
Frisch, A. M.; Jefferson, C.; and Miguel, I. 2004. Symmetry
breaking as a prelude to implied constraints: A constraint
modelling pattern. In ECAI 2004, 171–175.
Gent, I. P., and Smith, B. 1999. Symmetry breaking during
search in constraint programming. In ECAI’2000, 599–603.
Gravel, M.; Gagné, C.; and Price, W. L. 2005. Review and
Comparison of Three Methods for the Solution of the Car
Sequencing Problem. Journal of the Operational Research
Society 56(11):1287–1295.
Hao, J.-K., and Dorne, R. 1996. Empirical studies of heuris-
tic local search for constraint solving. In CP ’96. 194–208.
Harvey, W. 2001. Symmetry breaking and the social golfer
problem. In Proceedings SymCon-01: Symmetry in Con-
straints, co-located with CP 2001, 9–16.
Hawkins, P.; Lagoon, V.; and Stuckey, P. J. 2005. Solving
set constraint satisfaction problems using ROBDDs. J. Artif.
Intell. Res. (JAIR) 24:109–156.
Hnich, B.; Kiziltan, Z.; and Walsh, T. 2002. Modelling a
balanced academic curriculum problem. In CP-AI-OR-2002,
121–131.
Hnich, B.; Smith, B. M.; and Walsh, T. 2004. Dual mod-
elling of permutation and injection problems. J. Artif. Int.
Res. (JAIR) 21:357–391.
Hnich, B. 2003. Thesis: Function variables for constraint
programming. AI Commun 16(2):131–132.
Hower, W. 1998. Revisiting global constraint satisfaction.
Information Processing Letters 66(1):41–48.
Jefferson, C. 2007. Thesis: Representations in Constraint
Programming. Ph.D. Dissertation, University of York.
Kiziltan, Z., and Hnich, B. 2001. Symmetry breaking in a
rack configuration problem. In the IJCAI-2001 Workshop on
Modelling and Solving Problems with Constraints.
Koninck, L. D.; Brand, S.; and Stuckey, P. J. 2010. Data
independent type reduction for zinc. In ModRef10.
Little, J.; Gebruers, C.; Bridge, D. G.; and Freuder, E. C.
2003. Using case-based reasoning to write constraint pro-
grams. In CP, 983.
Marriott, K.; Nethercote, N.; Rafeh, R.; Stuckey, P. J.; de la
Banda, M. G.; and Wallace, M. 2008. The design of the zinc
modelling language. Constraints 13(3).
Martı́nez-Hernández, B., and Frisch, A. M. 2007. The au-
tomatic generation of redundant representations and chan-
nelling constraints. In Trends in Constraint Programming.
ISTE. chapter 8, 163–182.

Martı́nez-Hernández, B. 2008. Thesis: The Systematic Gen-
eration of Channelled Models in Constraint Satisfaction.
Ph.D. Dissertation, University of York.
Mills, P.; Tsang, E.; Williams, R.; Ford, J.; and Borrett, J.
1999. EaCL 1.5: An easy abstract constraint optimisation
programming language. Technical report, University of Es-
sex, Colchester, UK.
Muller, T. 1998. Solving set partitioning problems with
constraint programming. In PAPPACT98.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack., G. 2007. Minizinc: Towards a standard CP
modelling language. In Proc. of CP 2007, 529–543.
Petrie, K. 2005. Constraint Programming, Search and Sym-
metry. Ph.D. Dissertation, University of Huddersfield.
Prestwich, S. 2003. Negative effects of modeling tech-
niques on search performance. Annals of Operations Re-
search 118:137–150. 10.1023/A:1021809724362.
Proll, L., and Smith, B. 1998. Integer linear programming
and constraint programming approaches to a template design
problem. INFORMS J. on Computing 10:265–275.
Puget, J.-F. 2004. Constraint programming next challenge:
Simplicity of use. In Principles and Practice of Constraint
Programming - CP 2004, 5–8.
Refalo, P. 2004. Impact-based search strategies for con-
straint programming. In CP 2004, volume 3258. 557–571.
Regin, J.-C. 2003. Using constraint programming to solve
the maximum clique problem. In CP 2003, 634–648.
Rendl, A. 2010. Thesis: Effective Compilation of Constraint
Models. Ph.D. Dissertation, University of St. Andrews.
Sellmann, M. 2009. Approximated consistency for the au-
tomatic recording constraint. Comput. Oper. Res. 36:2341–
2347.
Smith, B. M.; Brailsford, S. C.; Hubbard, P. M.; and
Williams, H. P. 1995. The progressive party problem: In-
teger linear programming and constraint programming com-
pared. In CP ’95, 36–52.
Smith, B. M.; Petrie, K. E.; and Gent, I. P. 2004. Models
and symmetry breaking for peaceable armies of queens. In
Integration of AI and OR Techniques in CP for COP. 271–
286.
Smith, B. M.; Stergiou, K.; and Walsh, T. 2000. Using aux-
iliary variables and implied constraints to model non-binary
problems. In 17th National Conference on AI, 182–187.
AAAI Press.
Smith, B. 2006. A dual graph translation of a problem in
life. In CP 2002, volume 2470. Springer Berlin / Heidelberg.
89–94.
Van Hentenryck, P. 1999. The OPL Optimization Program-
ming Language. Cambridge, MA, USA: MIT Press.

11

