
Core-Guided Binary Search Algorithms for Maximum Satisfiability ∗

Federico Heras and Antonio Morgado
University College Dublin, Dublin, Ireland

{fheras,ajrm}@ucd.ie

Joao Marques-Silva
University College Dublin, Dublin, Ireland

IST/INESC-ID, Lisbon, Portugal
jpms@ucd.ie

Abstract

Several MaxSAT algorithms based on iterative SAT solving
have been proposed in recent years. These algorithms are in
general the most efficient for real-world applications. Exist-
ing data indicates that, among MaxSAT algorithms based on
iterative SAT solving, the most efficient ones are core-guided,
i.e. algorithms which guide the search by iteratively com-
puting unsatisfiable subformulas (or cores). For weighted
MaxSAT, core-guided algorithms exhibit a number of im-
portant drawbacks, including a possibly exponential num-
ber of iterations and the use of a large number of auxil-
iary variables. This paper develops two new algorithms
for (weighted) MaxSAT that address these two drawbacks.
The first MaxSAT algorithm implements core-guided itera-
tive SAT solving with binary search. The second algorithm
extends the first one by exploiting disjoint cores. The empir-
ical evaluation shows that core-guided binary search is com-
petitive with current MaxSAT solvers.

Introduction

Maximum Satisfiability (MaxSAT) is the well-known opti-
mization variant of Boolean Satisfiability (SAT). MaxSAT
finds a wide range of practical applications (Biere et al.
2009), it can be used for solving other optimization prob-
lems (Heras, Larrosa, and Oliveras 2008), and it has
been extended to richer domains (e.g. (Biere et al. 2009)).
Early MaxSAT algorithms were based on branch-and-bound
search (Biere et al. 2009). These algorithms perform very
well on random and crafted instances of MaxSAT, but are in
general inefficient for industrial instances. An alternative so-
lution to branch-and-bound search is based on iterative calls
to a SAT solver (or oracle).

Two main approaches can be considered for solving
MaxSAT with iterative calls to a SAT oracle: one based
on linear search and one based on binary search. The
most widely used approach consists of relaxing the soft
clauses and then iteratively refining upper bounds on the
optimum solution (e.g. (Berre and Parrain 2010)). Re-
cent work proposed to guide the search with unsatisfiable
subformulas (or cores) and is most often based on re-
fining lower bounds (e.g. (Fu and Malik 2006; Marques-

∗This work was supported by SFI grant 09/PI/I2618.
Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Silva and Planes 2008; Ansótegui, Bonet, and Levy 2009;
Manquinho, Marques-Silva, and Planes 2009; Ansótegui,
Bonet, and Levy 2010)).

One essential characterization of MaxSAT algorithms
based on iterative SAT solving is the worst-case number of
calls as a function of the problem instance size (usually re-
flected in the sum of weights). Unsurprisingly, non-core-
guided linear search approaches require an exponential num-
ber of calls to a SAT oracle in the worst case. For core-
guided approaches, the worst-case number of calls is un-
known, but it is generally believed to be exponential in the
worst-case (e.g. (Davies, Cho, and Bacchus 2010)).

An alternative approach for MaxSAT algorithms based on
iterative SAT solving is to implement binary search by re-
fining both lower and upper bounds on the optimum solu-
tion (e.g. (Gottlob 1995; Fu and Malik 2006; Biere et al.
2009; Cimatti et al. 2010)). Although binary search is opti-
mal in terms of the number of calls to a SAT oracle, it has
seldom been used in practical MaxSAT solvers; In particu-
lar, given that all clauses are relaxed, cardinality constraints
are fairly complex, and this impacts severely the ability of
SAT solvers for proving unsatisfiability.

This paper has two main contributions. First, the
paper shows that recent core-guided MaxSAT algo-
rithms (Ansótegui, Bonet, and Levy 2010) can require an
exponential number of calls to a SAT oracle. This repre-
sents the first theoretical analysis of the number of calls to a
SAT oracle for most of existing MaxSAT algorithms based
on iterative SAT solving. Second, and more importantly,
the paper develops two new algorithms for MaxSAT. The
first algorithm is core-guided and, in order to guarantee that
the number of calls to the SAT oracle is polynomial in the
worst-case, it implements binary search. Thus, it is referred
to as core-guided binary search for MaxSAT. The second
algorithm improves the first one by taking advantage of dis-
joint cores. Experimental results, obtained on non-random
instances from recent MaxSAT Evaluations (Argelich et al.
), demonstrate that core-guided binary search with disjoint
cores for MaxSAT is one of the most robust approaches in
terms of the number of solved instances.

Preliminaries

This section introduces the necessary definitions and nota-
tion related to the SAT and MaxSAT problems.

36

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

SAT. The standard SAT definitions apply (e.g. (Biere et
al. 2009)), some of which are briefly reviewed below. Let
X = {x1, x2, . . . , xn} be a set of Boolean variables. A
literal is either a variable xi or its negation x̄i. A clause C
is a disjunction of literals. A formula in conjunctive normal
form (CNF) ϕ is a set of clauses. An assignment is a set
of literals A = {l1, l2, . . . , ln}. Given an unsatisfiable SAT
formula ϕ, a subset of clauses ϕC whose conjunction is still
unsatisfiable is called an unsatisfiable core of the original
formula. Modern SAT solvers can be instructed to generate
an unsatisfiable core (Zhang and Malik 2003).

MaxSAT. A weighted clause is a pair (C,w), where C
is a clause and w is the cost of its falsification, also called
its weight. Many real problems contain clauses that must
be satisfied. Such clauses are called mandatory (or hard)
and are associated with a special weight �. Note that any
weight w ≥ � indicates that the associated clause must be
necessarily satisfied. Thus, w can be replaced by � without
changing the problem. Consequently, all weights take values
in {0, . . . ,�}. Non-mandatory clauses are also called soft
clauses. A weighted formula in conjunctive normal form
(WCNF) ϕ is a set of weighted clauses.

A model is a complete assignment A that satisfies all
mandatory clauses. The cost of a model is the sum of
weights of the soft clauses that it falsifies. Given a WCNF
formula, the Weighted Partial MaxSAT is the problem of
finding a model of minimum cost.

Notation for MaxSAT Algorithms. All algorithms con-
sidered in this paper are assumed to handle weighted par-
tial MaxSAT. Hence, weighted formulas ϕ are of the form
ϕ = ϕS ∪ ϕH where ϕS is a set of m soft clauses (ϕS =
{(Ci, wi) |wi < � ∧ 1 ≤ i ≤ m}), and ϕH is a set of hard
clauses (ϕH = {(Ci,�) | m + 1 ≤ i ≤ m′}). The sum
of the weights of the soft clauses (

∑m
i=1

wi) is noted as W .
Also, W = m for unweighted instances.

The function Cls(ϕ) returns a CNF formula, that is, it
returns only the clauses (ignoring weights) for a weighted
formula (Cls(ϕ) = {C | (C,w) ∈ ϕ}). Function
Soft(ϕ) gives the set of soft clauses in ϕ (Soft(ϕ) =
{(C,w) | (C,w) ∈ ϕ ∧ w 	= �}). The input of a MaxSAT
algorithm is a weighted formula ϕ. This formula may
be modified by adding relaxation variables and cardinality
/ pseudo-Boolean constraints (Hansen and Jaumard 1990;
Eén and Sörensson 2006). All these modifications are per-
formed on a working formula ϕW .

Throughout this paper, each soft clause can be associ-
ated with at most one relaxation variable. Relaxation vari-
ables are kept in a set R. Each relaxation variable ri is
always associated to the clause with weight wi. Func-
tion Relax(R,ϕ, ψ) adds relaxation variables to a subset of
clauses ψ in the weighted formula ϕ and adds the relaxation
variables to R.

For each call to a SAT solver, cardinality / pseudo-
Boolean constraints (Fu and Malik 2006) may be added and
translated to hard clauses. Such constraints usually state that
the sum of the weights of the relaxed weighted clauses is
lower or equal (AtMostK with

∑m

i=1
wiri ≤ K) or greater

or equal (AtLeastK with
∑m

i=1
wiri ≥ K) than a specific

value K .

Some algorithms maintain a lower bound λ and an upper
bound μ on the optimum (minimum) model cost. When a
satisfying complete assignment A is found, these algorithms
need to know the sum of weights of soft clauses for which
the relaxation variable is assigned to true. This is repre-
sented by

∑m

i=1
wi × A〈ri〉. lastA stores the assignment

of the optimal solution returned by an algorithm, if it exists,
otherwise it is empty.

Let U = {U1, . . . , Uk} be a set of cores and for each
core Ui there is a set of relaxation variables Ri. A core
Ui ∈ U is disjoint when ∀Uj∈U (Ri ∩ Rj = ∅ ∧ i 	= j).
Disjoint cores have been used to improve MaxSAT solver
performance (Ansótegui, Bonet, and Levy 2010).

Iterative MaxSAT Algorithms

This section analyzes MaxSAT algorithms based on iterative
calls to a SAT solver, in terms of the worst-case number of
executed calls. Existing iterative algorithms either perform
linear search or binary search on the sum of the weights of
the soft clauses.

Algorithms based on linear search can be of one of two
main variants: algorithms that refine an upper bound on
the value of the optimum solution, and algorithms that re-
fine a lower bound. Algorithms that iteratively refine upper
bounds will be referred to as linear search Sat-Unsat, denot-
ing that all SAT calls but the last will return true. Algorithms
that iteratively refine lower bounds will be referred to as lin-
ear search Unsat-Sat, denoting that all SAT calls but the last
will return false. Existing implementations of these algo-
rithms, which do not exploit unsatisfiable cores, can take a
number of iterations that grows linearly with W , and so are
exponential on the size of the problem instance. For exam-
ple, cost refinement can take value 1 in each iteration, and so
the number of iterations grows with W , which in the worst-
case is exponential on the instance size.

Proposition 1 MaxSAT algorithms based on linear search
Sat-Unsat or Unsat-Sat execute Θ(W) calls to a SAT oracle
in the worst case.

Recent linear search algorithms for (partial) (weighted)
MaxSAT are core-guided (Fu and Malik 2006; Marques-
Silva and Planes 2008; Ansótegui, Bonet, and Levy 2009;
Manquinho, Marques-Silva, and Planes 2009; Ansótegui,
Bonet, and Levy 2010). For these algorithms, there is no
formal characterization of the worst case number of calls
to a SAT oracle for the weighted MaxSAT case. How-
ever, it is believed that the number will also be exponen-
tial (Davies, Cho, and Bacchus 2010). The remainder of
this section investigates this question, and starts by analyz-
ing WPM2 (Ansótegui, Bonet, and Levy 2010) (see Algo-
rithm 1).

Example 1 Consider an instance ϕ = ϕS ∪ ϕH , where
ϕS = {(x̄1, 1), . . . (x̄m, 2m−1)} and ϕH = {(x1 ∨ x2 ∨
. . . ∨ xm,�), (x2 ∨ . . . ∨ xm ∨ y1 ∨ z1,�), . . . , (xm ∨
y1 ∨ z1,�), (ȳ1 ∨ y2,�), (ȳ1 ∨ y3,�), (ȳ2 ∨ ȳ3,�), (y2 ∨
y3,�), (z̄1∨z2,�), (z̄1∨z3,�), (z̄2∨ z̄3,�), (z2∨z3,�)}.
The optimum solution for this instance is 2m−1.

WPM2 starts by adding a relaxation variable ri to each
soft clause Ci and initializes the set of covers SC =

37

Algorithm 1: WPM2 Algorithm

Input: ϕ
1 function Newbound (AL, B)
2 k ← Bound(AL, B)// Bound()=

∑
{k′ |

∑
i∈B′ wi × ri ≤ k′ ∈ AM ∧ B′ ⊆ B}

3 repeat
4 k ← SubSetSum({wi | i ∈ B}, k)
5 until SAT(CNF(AL ∪ {

∑
i∈B ri = k}))

6 return k

7 end

8 (R,ϕW)← Relax(∅, ϕ,Cls(Soft(ϕ)))
9 SC ← {{i} | Ci ∈ Soft(ϕ)}

10 AL← ∅
11 AM ← {wi × ri ≤ 0 | (Ci ∨ ri, wi) ∈ Soft(ϕW)

and ri ∈ R}
12 while true do
13 (st, ϕC ,A)← SAT(Cls(ϕW)∪CNF(AL ∪ AM))
14 if st = true or ϕC ∩ Cls(Soft(ϕW))= ∅ then
15 return Init(A)
16 end
17 A← {i | (Ci ∨ ri) ∈ ϕC ∩ Cls(Soft(ϕW))}
18 RC ← {B′ ∈ SC | B′ ∩A 	= ∅}
19 B ←

⋃
B′∈RC B′

20 k ← Newbound(AL,B)
21 SC ← SC \RC ∪ {B}
22 AL← AL ∪ {

∑
i∈B

wi × ri ≥ k}

23
AM ← AM\ {

∑
i∈B′ wi × ri ≤ k′|B′ ∈ RC}

∪ {
∑

i∈B wi × ri ≤ k}
24 end

{{1}, . . . , {m}}, the set of AtLeast constraintsAL = ∅ and
the set of AtMost constraintsAM = {r1 ≤ 0, . . . , 2m−1×
rm ≤ 0}. The first call to the SAT solver returns unsatisfi-
able, and the unsatisfiable core contains all the soft clauses,
all the AM constraints and clause (x1 ∨ x2 ∨ . . . ∨ xm).
This core is discovered solely by applying unit propagation.
Any other core requires the SAT solver to perform a decision
assignment due to the y and z variables. WPM2 computes
bound k withNewbound(). A new bound k is first computed
with Bound(), which for the currentAM is 0. Then, the al-
gorithm calls k = SubSetSum({1, 2, . . . , 2m−1}, k) until
{
∑m

i=1
2i−1ri = k}∪AL becomes satisfied. Hence, k = 1.

Sets SC, AL, AM are updated to SC = {{1, . . . ,m}},
AL = {

∑m

i=1
2i−1ri ≥ 1}, and AM = {

∑m

i=1
2i−1ri ≤

1}.
For the following iterations, any core discovered by the

SAT solver will always intersect the set in SC, thus RC =
SC, the Bound() function returns the current k in AM and
SubSetSum() returns k+1. Also the call to the SAT solver
in Newbound() is always true and Newbound() will re-
turn the previous k plus one. In each iteration, SC remains
unchanged, AL is augmented with one new constraint and
AM updates the right hand side of its only constraint. Thus,
the main loop starts with k = 1 and iterates by increasing
k = k + 1 until the optimum solution (2m−1) is reached.
Since both the main loop and Newbound() make one call
to the SAT solver per iteration, then the number of calls to
the SAT solver is 2m.

Theorem 1 WPM2 (Ansótegui, Bonet, and Levy 2010) ex-

ecutes Θ(W) calls to a SAT oracle in the worst-case.

Proof. For Example 1, WPM2 executes a number of calls
to a SAT oracle that grows with the largest weight (so with
the sum of the weights). �

For WPM1 / WMSU1 (Ansótegui, Bonet, and Levy
2009; Manquinho, Marques-Silva, and Planes 2009), the
number of iterations can be related with the quality of com-
puted unsatisfiable subformulas. Consider again Example 1.
Suppose that the SAT solver always returns the complete
CNF formula ϕW as the unsatisfiable core. Then, in each it-
eration, the lower bound is updated by 1. Since the MaxSAT
solution is 2m−1, then there will be an exponential number
of calls to the SAT solver. In practice SAT solvers return
reasonably accurate unsatisfiable cores. A detailed charac-
terization of the worst-case number of iterations in this case
is an open research topic. Another important drawback of
WPM1 / WMSU1 is that clauses can have multiple relax-
ation variables (Fu and Malik 2006). This can reduce the
ability of SAT solvers to exploit unit propagation.

Another class of iterative MaxSAT algorithms uses bi-
nary search (Fu and Malik 2006; Cimatti et al. 2010) Bi-
nary search maintains a lower bound λ and upper bound μ.
Initially, all soft clauses are relaxed, and the lower and up-
per bounds are initialized, respectively, to -1 and to one plus
the sum of the weights of the soft clauses. At each itera-
tion, the middle value ν is computed, an AtMost constraint
is added to the working formula, requiring that the sum of
the weights of soft clauses should be no greater that ν, and
the SAT solver is called on the resulting CNF formula. If
the formula is satisfiable, then the optimum solution must be
less than ν, and the upper bound is updated. If the formula is
unsatisfiable, then the optimum solution must be larger than
ν and the lower bound is updated. The algorithm terminates
when λ+ 1 = μ.

Proposition 2 Binary search for MaxSAT executes
Θ(log(W)) calls to a SAT oracle in the worst case.

Core-Guided Binary Search Algorithms

This section develops core-guided binary search for
MaxSAT (see Algorithm 2), a variant of binary search that
guides the search with unsatisfiable cores. Similar to binary
search, the new algorithm maintains two bounds, an upper
bound μ and a lower bound λ. Unlike binary search, core-
guided binary search does not add relaxation variables to
the soft clauses before starting the main loop. The algorithm
proceeds by iteratively calling a SAT solver with the current
formula and with an AtMost constraint considering only the
relaxation variables added so far (initially none). If the for-
mula is unsatisfiable, it checks whether all soft clauses in the
core have been relaxed. If it is the case, λ is updated, other-
wise non-relaxed clauses in the core are relaxed. If the SAT
solver returns satisfiable, μ is updated.

Lemma 1 Let opt be of the optimum solution of a MaxSAT
instance. During the execution of Algorithm 2, the invariant
λ < opt ≤ μ holds.

Proof. Both bounds are initialized with values that are guar-
anteed to satisfy the conditions of the Lemma.

38

Algorithm 2: Core-Guided Binary Search (BIN-C)

Input: ϕ
1 (R,ϕW , ϕS)← (∅, ϕ, Cls(Soft(ϕ)))
2 (λ, μ, lastA)← (−1,

∑m

i=1
wi + 1, ∅)

3 while λ+ 1 < μ do

4 ν ← �μ+λ

2
�

5 ϕcnf ← CNF(
∑

ri∈R
wi × ri ≤ ν)

6 (st, ϕC ,A)← SAT(Cls(ϕW) ∪ ϕcnf)
7 if st = true then
8 (lastA, μ)← (A,

∑m

i=1
wi ×A〈ri〉))

9 else
10 if ϕC ∩ ϕS = ∅ then
11 λ← ν
12 else
13 (R,ϕW)← Relax(R, ϕW , ϕC ∩ ϕS)
14 end

15 end

16 end
17 return Init(lastA)

The lower bound λ is only updated on iterations for which
the SAT solver returns false. Consider one such iteration, for
which the core returned only contains already relaxed soft
clauses (otherwise λ is not updated). If opt > ν, then λ is
updated value to ν < opt. The case of opt ≤ ν is impossi-
ble, because the assignment corresponding to opt must sat-
isfy all the hard clauses, all the soft clauses in the computed
core (since all have been relaxed) and the pseudo-Boolean
constraint in line 5. Thus, the assignment for the optimal
solution is able to satisfy all the clauses in the core. So the
core would not be an unsatisfiable core; a contradiction.

Consider now a satisfiable iteration. Assume for the
sake of contradiction that μ is updated such that μ < opt.
Then we could consider the assignment returned by the SAT
solver and extend it with assignments to new relaxation vari-
ables (one for each clause not yet relaxed). In particular,
these variables can be assigned value false. Then, the sum
of the weights of the relaxation variables assigned value true
is less than opt. This is a contradiction since, by definition,
the sum of weights of relaxed clauses is an upper bound on
the MaxSAT solution. �

Theorem 2 Algorithm 2 terminates inΘ(m+log(W)) calls
to a SAT oracle and returns the optimum.

Proof. We prove that the algorithm always stops and that
when it stops, λ + 1 ≥ μ. Then, by Lemma 1, when the
algorithm stops, λ+1 = μ and μ has the optimum solution.

The algorithm performs binary search on the range of val-
ues {λ + 1, . . . , μ}, except for unsatisfiable iterations in
which the core contains soft clauses not yet relaxed. The
number of soft clauses is limited to m, therefore the max-
imum number of iterations adding new relaxation variables
is at most m. Since by the previous lemma, the bounds are
guaranteed never to go over or under the optimum (depend-
ing on the bound), then binary search guarantees that the
number of iterations is at most log(W). Hence the algo-
rithm terminates in Θ(m + log(W)) iterations, and due to
the termination condition of line 3, λ+ 1 ≥ μ. �

Algorithm 3: Core-Guided Binary Search with
Disjoint Cores (BIN-C-D)

Input: ϕ
1 (ϕW , ϕS , C, lastA)← (ϕ, Cls(Soft(ϕ)), ∅, ∅)
2 repeat

3 ∀Ci∈C, νi ← (λi + 1 = μi)? μi : �μi+λi

2
�

4 ϕcnf ←
⋃

Ci∈C
CNF(

∑
rj∈Ri

wj × rj ≤ νi)

5 (st, ϕC ,A)← SAT(Cls(ϕW) ∪ ϕcnf)
6 if st = SAT then
7 lastA← A
8 ∀Ci∈C, μi ←

∑
rj∈Ri

wj ×A〈rj〉

9 else
10 subC ← IntersectingCores(ϕC , C)
11 if ϕC ∩ ϕS = ∅ and |subC| = 1 then
12 λ← ν // subC = {< R,λ, ν, μ >}
13 else
14 (R,ϕW)← Relax(∅, ϕW , ϕC ∩ ϕS)
15 (λ, μ)← (0,

∑
rj∈R

wj + 1)

16 ∀Ci∈subC, R← R ∪Ri

17 ∀Ci∈subC, (λ, μ)← (λ+ λi, μ+ μi)
18 C ← C \ subC ∪ {< R,λ, 0, μ >}
19 end

20 end

21 until ∀Ci∈C λi + 1 ≥ μi

22 return Init(lastA)

Following (Ansótegui, Bonet, and Levy 2010), it is pos-
sible to exploit disjoint cores. This observation motivates
a new algorithm, referred to as core-guided binary search
with disjoint cores (See Algorithm 3). The goal is to main-
tain smaller lower and upper bounds for each disjoint core
rather than just one global lower bound and one global up-
per bound. As a result, the algorithm will add several smaller
AtMost constraints rather than just one global AtMost con-
straint. The algorithm maintains information about the pre-
vious cores in a set C (initially empty). Whenever a new
core i is found a new entry in C is created, that contains the
set of relaxation variables Ri in the core (after relaxing re-
quired soft clauses), a lower bound λi, an upper bound μi,
and the current middle value νi, i.e. Ci =< Ri, λi, νi, μi >.
The algorithm iterates while there exists a Ci for which
λi + 1 < μi. Before calling the SAT solver, for each
Ci ∈ C, the middle value νi is computed with the current
bounds and an AtMost constraint is added to the working
formula. If the SAT solver returns false, then subC is com-
puted with IntersectingCores(), and contains every Ci

in C that intersects the current core (i.e. subC ⊆ C). If
no soft clause needs to be relaxed and |subC| = 1, then
subC = {< R, λ, ν, μ >} and λ is updated to ν. Other-
wise, all the required soft clauses are relaxed and an entry
for the new core is added to C, which aggregates the infor-
mation of the previous cores in subC. Also, each Ci ∈ subC
is removed from C. If the SAT solver returns true, the al-
gorithm iterates over each Ci ∈ C and its upper bound μi is
updated according to the satisfying assignmentA. The proof
of correctness of Algorithm 3 is omitted due to space limita-
tions. Core-guided binary search algorithms implement two
heuristics to improve the initial λ and μ.

39

Improving the upper bound μ. All soft clauses are re-
laxed and the resulting formula is given to a SAT solver
which gives a satisfying assignment A. Then, μ can be
updated to

∑m

i=1
wi × A〈ri〉. Afterwards, all relaxation

variables are removed. This technique is adapted from
(Giunchiglia and Maratea 2006).

Improving the lower bound λ. In a preprocessing step,
a SAT solver is iteratively called while the formula is un-
satisfiable. For each computed unsatisfiable core, the soft
clauses in the core are relaxed, the minimum weight among
the clauses is recorded, and the soft clauses are temporary
removed from the formula. Upon termination, λ is assigned
the sum of the recorded weights, and the removed clauses
are added back to the formula. Also, already relaxed soft
clauses are kept.

Experimental Evaluation

This section evaluates the algorithms developed in the pre-
vious section. Three weighted (partial) MaxSAT solvers
have been implemented in C++: BIN denotes the origi-
nal binary search algorithm (Fu and Malik 2006), BIN-C

denotes core-guided binary search, and BIN-C-D denotes
core-guided binary search with disjoint cores. These algo-
rithms use PICOSAT (Biere 2008) as the underlying SAT
solver. Cardinality networks (Ası́n et al. 2011) are used
for encoding cardinality constraints, and BDDs (Eén and
Sörensson 2006) are used for encoding pseudo-Boolean con-
straints. All unweighted MaxSAT industrial and unweighted
partial MaxSAT industrial instances from the 2009 MaxSAT
Evaluation were considered. Also, all unweighted and
weighted partial MaxSAT crafted instances and weighted
partial MaxSAT industrial instances from the 2010 MaxSAT
Evaluation were considered. Experiments were conducted
on a HPC cluster with 50 nodes, each node is a CPU Xeon
E5450 3GHz, 32GB RAM and Linux. For each run, the time
limit was 1200 seconds and the memory limit was 4GB.

The performance of the new algorithms is compared
with a representative set of state-of-the-art MaxSAT solvers.
With one exception, all these solvers are based on iterative
SAT solving including WMSU1 (Manquinho, Marques-
Silva, and Planes 2009), WPM1 (Ansótegui, Bonet, and
Levy 2009), PM2 (Ansótegui, Bonet, and Levy 2009),
WPM2 (Ansótegui, Bonet, and Levy 2010), and SAT4J
(Berre and Parrain 2010). The exception is MINIM (Heras,
Larrosa, and Oliveras 2008) which is an efficient branch and
bound solver.

Figure 1 (Top) shows a cactus plot of the unweighted
MaxSAT instances solved by each solver within the time
limit. BIN-C-D outperforms all other solvers, whereas PM2
and BIN-C perform similarly. Figure 1 (Bottom) shows a
cactus plot of the weighted MaxSAT instances solved by
each solver within the time limit. Again, BIN-C-D solves
the largest number of instances, followed by MINIM and
SAT4J. Moreover, plain binary search performs slightly
worse than WPM1 and better than WPM2, but all are
clearly outperformed by the best performing solvers. SAT4J
and MINIM perform reasonably well on the weighted in-
stances. MINIM is especially good on 3 of 7 crafted sets

Sets #Ins.WMSU1 WPM1 BIN MINIM SAT4J (W)PM2 QMAXS BIN-C BIN-C-D

ms-ind 121 104 102 7 0 34 98 - 82 81

pms-ind 965 568 602 780 666 749 797 836 832 864

pms-cft 385 62 72 202 304 243 235 287 243 250

wpms-cft 357 57 77 130 236 180 55 - 131 138

wpms-ind 132 112 62 6 0 31 63 - 43 110

Total 1960 903 915 1125 1206 1237 1248 1123 1331 1443

Table 1: Number of solved instances

 0

 200

 400

 600

 800

 1000

 1200

 500 600 700 800 900 1000 1100 1200

C
PU

 ti
m

e

instances

Unweighted MaxSAT

bin-c-d
bin-c
PM2
Sat4J

bin
MiniM
WPM1
wmsu1

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250

C
PU

 ti
m

e

instances

Weighted MaxSAT

bin-c-d
MiniM

Sat4J
bin-c

wmsu1
WPM1

bin
WPM2

Figure 1: Run time distributions

considered, but it is unable to solve any instance of the 2
industrial sets considered.

Table 1 shows the total number of instances solved by
each solver, and includes a breakdown for unweighted and
weighted, as well as for crafted and industrial benchmarks.
The first column indicates the set of benchmarks, where ms
denotes MaxSAT, w denotes weighted and p denotes partial,
and the category can either be crafted (cft) or industrial (ind).
The second column shows the total number of instances for
each set. The remaining columns show the number of in-
stances solved by each solver within the time and memory
limits. Observe that QMAXSAT (QMAXS) (Koshimura and
Zhang) has also been added to this comparison. QMAXSAT

was the best solver in the 2010 MaxSAT Evaluation in the
unweighted partial industrial track.

BIN-C-D solves the largest number of instances, and is
followed by BIN-C and by SAT4J and PM2 + WPM2
(noted (W)PM2). For unweighted partial industrial in-
stances, BIN-C-D solves again the largest number of in-
stances. For weighted partial industrial instances, BIN-C-D

ranks second in terms of solved instances. For the crafted
categories, the branch and bound solver MINIM solves
the largest number of instances whereas BIN-C-D ranks
third. For unweighted plain industrial instances WPM1 and
WMSU1 solve the largest number of instances, whereas
BIN-C-D performs quite well compared to the other solvers.
The results confirm that BIN-C-D is one of the most robust
MaxSAT solvers based on iterative SAT calls, and it is com-
petitive with branch and bound solvers on crafted instances.

40

Conclusions

This paper introduces core-guided binary search algorithms
for MaxSAT, that extend the standard binary search algo-
rithm (Fu and Malik 2006; Cimatti et al. 2010) by guiding
the search process with information provided by unsatisfi-
able cores. An optimization to the basic core-guided binary
search algorithm is also proposed, which exploits disjoint
cores. The experimental results show that core-guided bi-
nary search (with disjoint cores) is one of the most robust
MaxSAT algorithms.

References
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. Solving (weighted)
partial MaxSAT through satisfiability testing. In SAT, 427–440.

Ansótegui, C.; Bonet, M. L.; and Levy, J. 2010. A new algorithm
for weighted partial MaxSAT. In AAAI.

Argelich, J.; Li, C. M.; Manyà, F.; and Planes, J. MaxSAT evalua-
tions. http://www.maxsat.udl.cat/.

Ası́n, R.; Nieuwenhuis, R.; Oliveras, A.; and R.-Carbonell, E.
2011. Cardinality networks: a theoretical and empirical study.
Constraints 16(2):195–221.

Berre, D. L., and Parrain, A. 2010. The Sat4j library, release 2.2.
JSAT 7:59–64.

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds. 2009.
Handbook of Satisfiability.

Biere, A. 2008. Picosat essentials. JSAT 4(2-4):75–97.

Cimatti, A.; Franzén, A.; Griggio, A.; Sebastiani, R.; and Stenico,
C. 2010. Satisfiability modulo the theory of costs: Foundations
and applications. In TACAS, 99–113.

Davies, J.; Cho, J.; and Bacchus, F. 2010. Using learnt clauses in
MAXSAT. In CP, 176–190.

Eén, N., and Sörensson, N. 2006. Translating pseudo-boolean
constraints into sat. JSAT 2:1–26.

Fu, Z., and Malik, S. 2006. On solving the partial MAX-SAT
problem. In SAT, 252–265.

Giunchiglia, E., and Maratea, M. 2006. OPTSAT: A tool for solv-
ing SAT related optimization problems. In JELIA, 485–489.

Gottlob, G. 1995. NP trees and Carnap’s modal logic. J. ACM
42(2):421–457.

Hansen, P., and Jaumard, B. 1990. Algorithms for the maximum
satisfiability problem. Computing 44(4):279–303.

Heras, F.; Larrosa, J.; and Oliveras, A. 2008. MiniMaxSat: An
efficient weighted Max-SAT solver. JAIR 31:1–32.

Koshimura, M., and Zhang, T. QMaxSat solver description
http://www.maxsat.udl.cat/10/solvers/QMaxSat.pdf.

Manquinho, V.; Marques-Silva, J.; and Planes, J. 2009. Algorithms
for weighted Boolean optimization. In SAT, 495–508.

Marques-Silva, J., and Planes, J. 2008. Algorithms for maximum
satisfiability using unsatisfiable cores. In DATE, 408–413.

Zhang, L., and Malik, S. 2003. Validating sat solvers using an
independent resolution-based checker: Practical implementations
and other applications. In DATE, 10880–10885.

41

