
Heuristic Search for Large Problems With Real Costs

Matthew Hatem and Ethan Burns and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

mhatem, eaburns and ruml at cs.unh.edu

Abstract

The memory requirements of basic best-first heuristic search
algorithms like A* make them infeasible for solving large
problems. External disk storage is cheap and plentiful com-
pared to the cost of internal RAM. Unfortunately, state-of-
the-art external memory search algorithms either rely on
brute-force search techniques, such as breadth-first search, or
they rely on all node values falling in a narrow range of in-
tegers, and thus perform poorly on real-world domains with
real-valued costs. We present a new general-purpose algo-
rithm, PEDAL, that uses external memory and parallelism to
perform a best-first heuristic search capable of solving large
problems with real costs. We show theoretically that PEDAL
is I/O efficient and empirically that it is both better on a stan-
dard unit-cost benchmark, surpassing internal IDA* on the
15-puzzle, and gives far superior performance on problems
with real costs.

Introduction

Best-first graph search algorithms such as A* (Hart, Nilsson,
and Raphael 1968) are widely used for solving problems
in artificial intelligence. Graph search algorithms typically
maintain an open list, containing nodes that have been gen-
erated but not yet expanded, and a closed list, containing all
generated states, in order to prevent duplicated search effort
when the same state is generated via multiple paths. As the
size of problems increases, however, the memory required
to maintain the open and closed lists makes algorithms like
A* impractical.

External memory search algorithms take advantage of
cheap secondary storage, such as hard disks, to solve much
larger problems than algorithms that only use main mem-
ory. A naı̈ve implementation of A* with external storage
has poor performance because it relies on random access and
disks have high latency. Instead, great care must be taken to
access memory sequentially to minimize seeks and exploit
caching.

As we explain in detail below, previous approaches
achieve sequential performance in part by dividing the
search into layers. For heuristic search, a layer refers to
nodes with the same lower bound on solution cost f . Many
real-world problems have real-valued costs, giving rise to a

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

large number of f layers with few nodes in each, substan-
tially eroding performance. The main contribution of this
paper is a new strategy for external memory search that per-
forms well on graphs with real-valued edges. Our new ap-
proach, Parallel External search with Dynamic A* Layering
(PEDAL), combines A* with hash-based delayed duplicate
detection (HBDDD, Korf 2008), however we relax the best-
first ordering of the search in order to perform a constant
number of expansions per I/O.

We compare PEDAL to IDA*, IDA*CR (Sarkar et al.
1991), A* with hash-based delayed duplicate detection
(HBDDD-A*) and breadth-first heuristic search (Zhou and
Hansen 2006) with delayed duplicate detection (BFHS-
DDD) using two variants of the sliding tile puzzle and a
more realistic dockyard planning domain. The results show
that PEDAL gives the best performance on the sliding tile
puzzle and is the only practical approach for the real-valued
problems among the algorithms tested in our experiments.
PEDAL advances the state of the art by demonstrating that
heuristic search can be effective for large problems with
real-valued costs.

Previous Work

We begin by reviewing the previous techniques developed
for internal and external memory search that PEDAL builds
upon.

Iterative Deepening A*

Iterative-deepening A* (IDA*, Korf 1985) is an internal
technique that requires memory only linear in the maxi-
mum depth of the search. This reduced memory complexity
comes at the cost of repeated search effort. IDA* performs
iterations of a bounded depth-first search where a path is
pruned if f(n) becomes greater than the bound for the cur-
rent iteration. After each unsuccessful iteration, the bound
is increased to the minimum f value among the nodes that
were generated but not expanded in the previous iteration.

Each iteration of IDA* expands a super-set of the nodes
in the previous iteration. If the size of iterations grows ge-
ometrically, then the number of nodes expanded by IDA*
is O(n), where n is the number of nodes that A* would
expand (Sarkar et al. 1991). In domains with real-valued
edge costs, there can be many unique f values and the stan-
dard minimum-out-of-bound bound schedule of IDA* may

30

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence



lead to only a few new nodes being expanded in each itera-
tion. The number of nodes expanded by IDA* can be O(n2)
(Sarkar et al. 1991) in the worst case when the number of
new nodes expanded in each iteration is constant. To alle-
viate this problem, Sarkar et al. introduce IDA*CR. IDA*CR

tracks the distribution of f values of the pruned nodes dur-
ing an iteration of search and uses it to find a good thresh-
old for the next iteration. This is achieved by selecting the
bound that will cause the desired number of pruned nodes to
be expanded in the next iteration. If the successors of these
pruned nodes are not expanded in the next iteration then this
scheme is able to accurately double the number of nodes be-
tween iterations. If the successors do fall within the bound
on the next iteration then more nodes may be expanded than
desired. Since the threshold is increased liberally, branch-
and-bound must be used on the final iteration of search to
ensure optimality.

While IDA*CR can perform well on domains with real-
valued edge costs, its estimation technique may fail to prop-
erly grow the iterations in some domains. IDA*CR also suf-
fers on search spaces that form highly connected graphs.
Because it uses depth-first search, it cannot detect dupli-
cate search states except those that form cycles in the current
search path. Even with cycle checking, the search will per-
form extremely poorly if there are many paths to each node
in the search space. This motivates the use of a closed list in
classic algorithms like A*.

Delayed Duplicate Detection

One simple way to make use of external storage for graph
search is to place newly generated nodes in external memory
and then process them at a later time. Korf (2008) presents
an efficient form of this technique called Hash-Based De-
layed Duplicate Detection (HBDDD). HBDDD uses a hash
function to assign nodes to files. Because duplicate nodes
will hash to the same value, they will always be assigned to
the same file. When removing duplicate nodes, only those
nodes in the same file need to be considered.

Korf (2008) describes how HBDDD can be used with A*
search (HBDDD-A*). The search proceeds in two phases:
an expansion phase and a merge phase. In the expansion
phase all nodes that have the current minimum solution cost
estimate, fmin, are expanded then these nodes and their suc-
cessors are stored in their respective files. If a generated
node has an f less than or equal to fmin then it is expanded
immediately instead of being stored to disk. This is called a
recursive expansion. As we will see below, these are an im-
portant performance enhancement. Once all nodes with fmin

are expanded, the merge phase begins: each file is read into
a hash-table in main memory and duplicates are removed in
linear time.

HBDDD may also be used as a framework to parallelize
search (Korf 2008). Because duplicate states will be located
in the same file, the merging of delayed duplicates can be
done in parallel, with each file assigned to a different thread.
Expansion may also be done in parallel. As nodes are gen-
erated they are stored in the file specified by the hash func-
tion. If two threads need to write nodes in to the same file,
Korf (2008) states that this does not require an explicit lock

at the user level as the operating system provides locking
for file operations. While we could not find documenta-
tion specifying this behavior, the source code for the glibc
standard library 2.12.90 does contain such a lock.

As far as we are aware, we are the first to present results
for HBDDD using A* search, other than the anecdotal re-
sults mentioned briefly by Korf (2004). While, as we will
see below, HBDDD-A* performs well on unit-cost domains,
it suffers from excessive I/O overhead when there are many
unique f values. HBDDD-A* reads all open nodes from
files on disk and expands only the nodes within the current f
bound. If there are a small number of nodes in each f layer,
the algorithm pays the cost of reading the entire frontier only
to expand a few nodes. Then in the merging phase, the entire
closed list is read only to merge the same few nodes. Addi-
tionally, when there are many distinct f values, the succes-
sors of each node tend to exceed the current f bound. This
means that the number of I/O-efficient recursive expansions
will be greatly reduced.

Korf (2004) speculated that the problem of many distinct
f values could be remedied by somehow expanding more
nodes than just those with the minimum f value. This is
exactly what PEDAL does.

Parallel External Dynamic A* Layering
The main contribution of this paper is a new heuristic search
algorithm that exploits external memory and parallelism and
can handle arbitrary f cost distributions. It can be seen as
a combination of HBDDD-A* and the estimation technique
inspired by IDA*CR to dynamically layer the search space.
We call the algorithm Parallel External search with Dynamic
A* Layering (PEDAL).

Like HBDDD-A*, PEDAL proceeds in two phases: an
expansion phase and a merge phase. PEDAL maps nodes to
buckets using a hash function. Each bucket is backed by a set
of four files on disk: 1) a file of frontier nodes that have yet
to be expanded, 2) a file of newly generated nodes that have
yet to be checked against the closed list, 3) a file of closed
nodes that have already been expanded and 4) a file of nodes
that were recursively expanded and must be merged with the
closed file during the next merge phase. During the expan-
sion phase, PEDAL expands the set of frontier nodes that
fall within the current f bound. During the following merge
phase, it tracks the distribution of the f values of the fron-
tier nodes that were determined not to be duplicates. This
distribution is used to select the f bound for the next expan-
sion phase that will give a constant number of expansions
per node I/O.

To save external storage with HBDDD, Korf (2008) sug-
gests that instead of proceeding in two phases, merges may
be interleaved with expansions. With this optimization, a
bucket may be merged if all of the buckets that contain its
predecessor nodes have been expanded. An undocumented
ramification of this optimization, however, is that it does
not permit recursive expansions. Because of recursive ex-
pansions, one cannot determine the predecessor buckets and
therefore all buckets must be expanded before merges can
begin. PEDAL uses recursive expansions and therefore it
does not interleave expansion and merges.

31



SEARCH(initial )
1. bound ← f (initial )
2. bucket ← hash(initial )
3. OpenFile(bucket)← OpenFile(bucket) ∪ {initial}
4. while ∃bucket ∈ Buckets : min f (bucket) ≤ bound
5. for each bucket ∈ Buckets : min f (bucket) ≤ bound
6. JobPool ← JobPool ∪ {ThreadExpand(bucket)}
7. ProcessJobs(JobPool )
8. if incumbent break
9. for each bucket ∈ Buckets : NeedsMerge(bucket )

10. JobPool ← JobPool ∪ {ThreadMerge(bucket)}
11. ProcessJobs(JobPool )
12. bound ← NextBound(f dist )

THREADEXPAND(bucket )
13. for each state ∈ OpenFile(bucket)
14. if f (state) ≤ bound
15. RecurExpand(state)
16. ClosedFile ← ClosedFile(bucket) ∪ {state}
17. else NextFile ← NextFile(bucket) ∪ {state}

RECUREXPAND(state )
18. f distribution remove(f dist , state)
19. children ← expand(state)
20. for each child ∈ children
21. f distribution add(f dist , child)
22. if is goal (child) and f (incumbent) > f (child)
23. incumbent ← child
24. else if f (child) ≤ bound
25. RecurExpand(child)
26. RecurClosedFile(hash(child)) ←

RecurClosedFile(hash(child)) ∪ {state}
27. else NextFile ← NextFile(hash(child)) ∪ {state}

THREADMERGE(bucket )
28. Closed ← read(ClosedFile(bucket))
29. for each state ∈ RecurClosedFile(bucket)
30. if state /∈ Closed
31. Closed ← Closed ∪ {state}
32. ClosedFile(bucket) ←

ClosedFile(bucket) ∪ {state}
33. OpenFile(bucket)← ∅
34. for each state ∈ NextFile(bucket)
35. if state /∈ Closed or g(state) < g(Closed [State])
36. OpenFile(bucket)←

OpenFile(bucket) ∪ {state}
37. else if f (state) ≤ f (Closed [state])

38. Closed ← Closed − Closed [state] ∪ {state}
39. f distribution remove(f dist , state)

Figure 1: Pseudocode for the PEDAL algorithm.

The pseudo code for PEDAL is given in Figure 1. PEDAL
begins by placing the initial node in its respective bucket
based on the supplied hash function (lines 2–3). The min-
imum bound is set to the f of the initial state (line 1). All
buckets that contain a state with f less than or equal to the
minimum bound are divided among a pool of threads to be

expanded (lines 5–7).
Recall that each bucket is backed by four files: OpenFile ,

NextFile, RecurClosedFile and ClosedFile . When pro-
cessing an expansion job for a given bucket, a thread pro-
ceeds by expanding all of the frontier nodes with f val-
ues that are within the current bound from the OpenFile of
the bucket (lines 13–27). Nodes that are chosen for expan-
sion are appended to the ClosedFile for the current bucket
(line 16). The set of ClosedFiles among all buckets col-
lectively represent the closed list for the search. Successor
nodes that exceed the bound are appended to the NextFile
for the current bucket (lines 17 & 27). The set of NextFiles
collectively represent the search frontier and require dupli-
cate detection in the following merge phase. Finally, if a suc-
cessor is generated with an f value that is within the current
bound then it is expanded immediately as a recursive expan-
sion (lines 15 & 25). Nodes that are recursively expanded
are appended to a separate file called the RecurClosedFile
(line 26) to be merged with the closed list in the next expan-
sion phase.

States are not written to disk immediately upon genera-
tion. Instead each bucket has an internal buffer to hold states.
When the buffer becomes full, the states are flushed to disk.

If an expansion thread generates a goal state, its f value is
compared with an incumbent solution, if one exists (line 22).
If the goal has a better f than the incumbent, then the in-
cumbent is replaced (line 23). If a solution has been found
and there are no frontier nodes with f values less than the
incumbent solution then PEDAL can terminate (line 8). If
a solution has not been found, then all buckets that require
merging are divided among a pool of threads to be merged
in the next phase (lines 9–11).

In order to process a merge job, each thread begins by
reading the ClosedFile for the bucket into a hash-table
called Closed (line 28). Like HBDDD, PEDAL requires
enough memory to store all closed nodes in all buckets be-
ing merged. The size of a bucket can be easily tuned by
varying the granularity of the hash function. Next, all of
the recursively expanded nodes from the RecurClosedFile ,
which were saved on disk in the previous expansion phase,
are streamed into memory and merged with the closed list
(lines 29–32). Then all frontier nodes in the NextFile are
streamed in and checked for duplicates against the closed
list (lines 33–39). The nodes that are not duplicates or that
have been reached via a better path are written back out to
NextFile so that they remain on the frontier for latter phases
of search (lines 35–36). All other duplicate nodes are ig-
nored.

Overhead

PEDAL uses a technique inspired by IDA*CR to maintain a
bound schedule such that the number of nodes expanded is
at least a constant fraction of the amount of I/O at each it-
eration. We keep a histogram of f values for all nodes on
the open list and a count of the total number of nodes on the
closed list. The next bound is selected to be a constant frac-
tion of the sum of nodes on the open and closed lists. Unlike
IDA*CR which only provides a heuristic for the desired dou-
bling behavior, the technique used by PEDAL is guaranteed

32



to give only bounded I/O overhead.
We now confirm that this simple scheme ensures constant

I/O overhead, that is, the number of nodes expanded is at
least a constant fraction of the number of nodes read from
and written to disk. We assume a constant branching fac-
tor b and that the number of frontier nodes remaining after
duplicate detection is always large enough to expand the de-
sired number of nodes. We begin with a few useful lemmata.

Lemma 1 If e nodes are expanded and r extra nodes are re-
cursively expanded then the number of I/O operations dur-
ing the expand phase is 2o+ eb+ rb + r.

Proof: During the expand phase we read o open nodes from
disk. We write at most eb nodes plus the remaining o − e
nodes, that were not expanded, to disk. We also write at most
rb recursively generated nodes and e+ r expanded nodes to
disk. �

Lemma 2 If e nodes are expanded and r extra nodes are re-
cursively expanded during the expand phase, then the num-
ber of I/O operations during the merge phase is at most
c+ e + 2(r + eb+ rb).

Proof: During the merge phase we read at most c+ e closed
nodes from disk. We also read r recursively expanded nodes
and eb + rb generated nodes from disk. We write at most
r recursively expanded nodes to the closed list and eb + rb
new nodes to the open list. �

Lemma 3 If e nodes are expanded during the expansion
phase and r nodes are recursively expanded, then the to-
tal number of I/O operations is at most 2o+ c+ e(3b+1)+
r(3b + 3).

Proof: From Lemma 1, Lemma 2 and algebra. �

Theorem 1 If the number of nodes expanded e is chosen to
be k(o + c) for some constant 0 < k ≤ 1, and there is a
sufficient number of frontier nodes, o ≥ e, then the number
of nodes expanded is bounded by a constant fraction of the
total number of I/O operations for some constant q.

Proof:

total I /O
= e(3b+ 1) + r(3b + 3) + 2o+ c by Lemma 3
< e(3b+ 3) + r(3b + 3) + 2o+ c
= ze+ zr + 2o+ c for z = (3b+ 3)
= zko+ zkc+ zr + 2o+ c for e = ko+ kc
= o(zk + 2) + c(zk + 1) + zr
< o(zk + 2) + c(zk + 2) + zr
< qko+ qkc+ qr for q ≥ (zk + 2)/k
= q(ko+ kc+ r)
= q(e+ r) because e = k(o+ c)
= q · total expanded

Because q ≥ (zk + 2)/k = (3b + 3) + 2/k is constant, the
theorem holds. �

Experiments

We evaluated the performance of PEDAL on three domains:
the sliding tiles puzzle with two different cost functions and
a dock robot planning domain. All experiments were run on

a dual quad-core machine with Xeon X5550 2.66Ghz pro-
cessors, 8Gb of RAM and seven 1Tb WD RE3 drives. The
files for DDD-based algorithms were distributed uniformly
among the 7 drives to enable parallel I/O.

We compared PEDAL to HBDDD-A*, BFHS-DDD,
IDA*, IDA*CR, and an additional algorithm, breadth-first
heuristic search (BFHS, Zhou and Hansen 2006). BFHS is
a reduced memory search algorithm that attempts to reduce
the memory requirement of search, in part by removing the
need for a closed list. BFHS proceeds in a breadth-first or-
dering by expanding all nodes within a given f bound at one
depth before proceeding to the next depth. To prevent dupli-
cate search effort Zhou and Hansen (2006) prove that, in an
undirected graph, checking for duplicates against the previ-
ous depth layer and the frontier is sufficient to prevent the
search from leaking back into previously visited portions of
the space.

BFHS uses an upper bound on f values to prune nodes. If
a bound is not available in advance, iterative deepening can
be used, however, as discussed earlier, this technique fails
on domains with many distinct f values. In the following
experiments, we implemented a novel variant of BFHS us-
ing DDD and the IDA*CR technique for the bound schedule.
Also, since BFHS does not store a closed list, the full path to
each node from the root is not maintained in memory and it
must use divide-and-conquer solution reconstruction (Korf
et al. 2005) to rebuild the solution path. Our implementa-
tion of BFHS-DDD does not perform solution reconstruc-
tion and therefore the results presented give a lower bound
on its actual solution times.

While BFHS is able to do away with the closed list, for
many problems it will still require a significant amount of
memory to store the exponentially growing search frontier.

Sliding Tile Puzzle

The 15-puzzle is a standard search benchmark. We used the
100 instances from Korf (1985) and the Manhattan distance
heuristic. For the algorithms using DDD, we used a thread
pool with 16 threads and selected a hash function that maps
states to buckets by ignoring all except the position of the
blank, one and two tiles. This hash function results in 3,360
buckets.

In the unit cost sliding tile problem, we use the mini-
mum f value out-of-bound schedule for both PEDAL and
BFHS-DDD. The number of nodes with a given cost grows
geometrically for this domain. Therefore this schedule will
result in the same schedule as the one derived by dynamic
layering for PEDAL. Without this optimization BFHS-DDD
would require branch-and-bound in the final iteration. For
all other domains, PEDAL explicitly uses dynamic layers
and BFHS-DDD uses the technique from IDA*CR. PEDAL
with a minimum f value out-of-bound schedule is the same
as HBDDD-A*.

The first plot in Figure 2 shows a comparison between
PEDAL and IDA*. The x axis show CPU time in sec-
onds: points below the diagonal y = x line represent in-
stances that PEDAL solved faster than the respective algo-
rithm. Data points represented by the ‘×’ glyph at the edge
of the plot represent instances where the corresponding algo-

33



Sliding tiles Square root tiles Dock robot

IDA*

1600800

P
E
D
A
L

1200

600

BFHS-DDD

1600800
P
E
D
A
L

1200

600

PEDAL-nre

1600800

P
E
D
A
L

1200

600

IDA*-CR

120006000

P
E
D
A
L

1600

800

BFHS-DDD-CR

1600800

P
E
D
A
L

1600

800

BFHS-DDD-CR

400030002000

P
E
D
A
L

4000

2000

Figure 2: Comparison between PEDAL, IDA*, IDA*CR, BFHS-DDD and PEDAL without recursive expansions.

rithm reached the time limit of thirty minutes without finding
a solution. We can see from this plot that many of the data
points reside below the y = x line and therefore PEDAL
outperformed IDA* on these instances. The distribution of
the data points indicates that PEDAL had a larger advantage
over IDA* as instances became more difficult. Finally, there
are two points that reside on the extreme end of the x axis.
These two points represent instances 82 and 88, which IDA*
was unable to solve within the time limit. The main reason
that PEDAL outperformed IDA* is because it is able to de-
tect duplicate states and it benefits from parallelism.

The second plot for sliding tiles shows a comparison be-
tween PEDAL and BFHS-DDD. BFHS-DDD is unable to
solve three instances within the time limit and the remain-
ing instances are solved much faster by PEDAL. This can
be explained by the performance on the last iteration of the
search. In a unit cost domain with an admissible heuristic
both PEDAL and BFHS can stop once a goal node is gen-
erated. However, because the h value of the goal is zero,
BFHS will only generate goals at its deepest and last depth
layer. Many nodes may have f(n) = f∗ that are shallower
than the shallowest optimal solution. BFHS-DDD will ex-
pand all these nodes before it arrives at the depth layer of the
shallowest goal. PEDAL has an equal chance of generating
the goal as it expands any of its files in the last layer. PEDAL
also benefits from recursive expansions, which require less
I/O.

The third plot for sliding tiles shows a comparison
between PEDAL with and without recursive expansions
(PEDAL-nre). It is clear from this plot that recursive ex-
pansions are critical to PEDAL’s performance.

The sliding tile puzzle is one of the most famous heuristic
search domains because it is simple to encode and the ac-
tual physical puzzle has fascinated people for many years.
This domain, however, lacks an important feature that many
real-world applications of heuristic search have: real-valued
costs. In order to evaluate PEDAL on a domain with real-
value costs that is simple, reproducible and has well under-
stood connectivity, we created a new variant in which each
move costs the square root of the number on the tile being
moved. This gives rise to many distinct f values.

The center two plots in Figure 2 show results for a com-
parison with IDA*CR and BFHS-DDD using the technique
from IDA*CR to schedule its bound on the square root ver-
sion of the same 100 tiles instances.

The first square root tiles plot shows a comparison be-
tween PEDAL and IDA*CR. This experiment did not include

a time limit. IDA*CR actually solved the easier instances
faster than PEDAL because it does not have to go to disk,
however PEDAL greatly outperformed IDA*CR on the more
difficult problems. The advantage of PEDAL over IDA*CR

grew quickly as the problems required more time.
The second square root tiles plot compares PEDAL to

BFHS-DDD. PEDAL clearly gave superior performance and
increasing benefit as problem difficulty increased. As be-
fore, because BFHS-DDD tends to generate the goal in the
deepest layer it may expand many nodes with f values equal
to the optimal solution cost whose expansion is not strictly
necessary for optimal search.

Dock Robot Planning

The sliding tiles puzzle does not have many duplicate states
and it is, for some, perhaps not a practically compelling do-
main. We implemented a planning domain inspired by the
dock worker robot example used throughout the textbook by
Ghallab, Nau, and Traverso (2004). In the dock robot do-
main, containers must be moved from their initial locations
to their desired destinations via a robot that can carry only
a single container at a time. The containers at each loca-
tion form a stack from which the robot can only access the
top container by using a crane that resides at the given loca-
tion. Accessing a container that is not at the top of a stack
therefore requires moving the upper container to a stack at
a different location. The available actions are: load a con-
tainer from a crane into the robot, unload a container from
the robot into a crane, take the top container from the pile
using a crane, put the container in the crane onto the top of
a pile and move the robot between adjacent locations.

The load and unload actions have a constant cost of 0.01,
accessing a pile with a crane costs 0.05 times the height of
the pile plus 1 (to ensure non-zero-cost actions) and move-
ment between locations costs the distance between loca-
tions. For these experiments, the location graph was cre-
ated by placing random points on a unit square. The length
of each edge was the Euclidean distance between the end
points. The heuristic lower bound sums the distance of each
container’s current location from its goal location.

We conducted these experiments on a configuration with 5
locations, cranes, piles and 8 containers. A* is unable solve
these problems within 8Gb of RAM. We used a total of 12
instances and a time limit of 70 minutes.

Because of the large number of duplicate states IDA*CR

failed to solve all instances within the time limit so we do
not show results for it. PEDAL was able to solve all but one

34



instance in the time limit and BFHS-DDD solved all except
for five. The instances that timed out are, again, represented
using the ‘×’ glyph. The right-most plot in Figure 2 shows
a comparison between PEDAL, and BFHS-DDD. Again,
points below the diagonal represent instances where PEDAL
had the faster solution time. We can see from the plot that all
of the points lie below the y = x line and therefore PEDAL
outperformed BFHS-DDD on every instance.

Overall, we have seen that PEDAL was able to solve the
unit cost sliding tiles problems more quickly than both alter-
native approaches and it far surpasses existing methods on
practically motivated domains with real costs.

Related Work

We briefly review some of the other approaches that have
been taken to scaling heuristic search to handle large prob-
lems.
Recursive Best-first Search: RBFS (Korf 1993) is an alter-
native to IDA* that also uses an amount of memory that is
linear in the maximum depth of the search space. For this
reason, it also cannot handle domains with many duplicate
states.
Frontier Search: Like breadth-first heuristic search, the
frontier search algorithm (Korf et al. 2005) is a search
framework that eliminates the need for storing a closed list
while still preventing leak-back. Also, like BFHS, frontier
search uses divide-and-conquer solution reconstruction and
may require a substantial amount of memory to store the
search frontier.

Frontier search can also be combined with f layers and
DDD, however, Korf (2008) points out a problem where
recursive expansions prevent this combination from cor-
rectly eliminating duplicates. Niewiadomski, Amaral, and
Holte (2006) solve this issue in a distributed DDD imple-
mentation by simply omitting recursive expansions. How-
ever, our results clearly show that recursive expansions are
critical when using external storage.
External A*: External A* (Edelkamp, Jabbar, and Schrdl
2004) combines A* with sorting-based DDD. Nodes of the
same g and h values are grouped together in a bucket which
maps to a file on external storage. It is not obvious how to
dynamically inflate each bucket to handle real-valued costs.
Structured Duplicate Detection: Instead of delaying du-
plicate detection to a separate merge phase, structured du-
plicate detection (SDD, Zhou and Hansen 2004) performs
duplicate detection as nodes are generated. SDD uses an ab-
straction function to determine the portion of the state space
that is necessary to have in RAM for duplicate detection.
PEDAL may also be implemented using SDD.

Conclusion

We have presented a general-purpose parallel external-
memory search with dynamic A* layering (PEDAL) that
combines ideas from HBDDD-A* and IDA*CR. We proved
that a simple layering scheme allows PEDAL to guarantee a
constant I/O overhead. In addition, we showed empirically
that PEDAL gives very good performance in practice. It sur-
passed IDA* on unit-cost sliding tiles. In our experiments

PEDAL was the only practical algorithm for square root slid-
ing tiles and the dockyard robot domain. PEDAL demon-
strates that best-first heuristic search can scale to large prob-
lems that have duplicate states and real costs.

Acknowledgments

We gratefully acknowledge support from NSF (grant
IIS-0812141) and the DARPA CSSG program (grant
N10AP20029). We thank Gene Cooperman and Rich Korf
for helpful discussions.

References

Edelkamp, S.; Jabbar, S.; and Schrdl, S. 2004. External
A*. In Advances in Artificial Intelligence, volume 3238.
Springer Berlin / Heidelberg. 226–240.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2):100–107.

Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM 52(5):715–748.

Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.

Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.

Korf, R. E. 2004. Best-first frontier search with delayed du-
plicate detection. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI-04), 650–657.

Korf, R. E. 2008. Linear-time disk-based implicit graph
search. Journal of the ACM 55(6).

Niewiadomski, R.; Amaral, J. N.; and Holte, R. C. 2006. Se-
quential and parallel algorithms for frontier A* with delayed
duplicate detection. In Proceedings of the 21st national
conference on Artificial intelligence (AAAI-06), 1039–1044.
AAAI Press.

Sarkar, U.; Chakrabarti, P.; Ghose, S.; and Sarkar, S. D.
1991. Reducing reexpansions in iterative-deepening search
by controlling cutoff bounds. Artificial Intelligence 50:207–
221.

Zhou, R., and Hansen, E. A. 2004. Structured duplicate
detection in external-memory graph search. In Proceedings
of the Nineteenth National Conference on Artificial Intelli-
gence (AAAI-04).

Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170(4–5):385–408.

35


