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Abstract

Text and images are two major sources of information in sci-
entific literature. Information from these two media typically
reinforce and complement each other, thus simplifying the
process for human to extract and comprehend information.
However, machines cannot create the links or have the se-
mantic understanding between images and text. We propose
to integrate text analysis and image processing techniques to
bridge the gap between the two media, and discover knowl-
edge from the combined information sources, which would
be otherwise lost by traditional single-media based mining
systems. The focus is on the chemical entity extraction task
because images are well known to add value to the textual
content in chemical literature. Annotation of US chemical
patent documents demonstrates the effectiveness of our pro-
posal.

Introduction

Images have always been a major source of information in
scholarly articles, such as journals, proceedings, patents,
technical reports and books. Along with text, images con-
vey key concepts and major contribution of an article. From
the standpoint of automated document understanding and
knowledge extraction, an important but little-studied part of
scholarly articles is the connection between text and images.
Textual content and images within an article are not indepen-
dent, rather the two media reinforce and complement each
other. Individually mining each media can only provide par-
tial information of the entire document.

Existing data analysis and information extraction (IE)
techniques are usually designed to target at a particular
media type and are not applicable to data generated by
a different media type. For example, existing entity ex-
traction techniques focus on textual data. Entities of in-
terest, such as protein and gene names (Krauthammer et
al. 2000), chemical names and formulae (Sun et al. 2007;
Klinger et al. 2008), drug names (Hamon and Grabar 2010)
etc., are automatically extracted from the textual part of a
document. The important information conveyed by images
is discarded and made inaccessible to users. Moreover, sev-
eral image analysis and computer vision techniques are de-
veloped to automatically extract visual components of inter-
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Figure 1: Histogram of number of images per chemical doc-
ument (mode = 137)

est from article images, such as caption extraction and in-
dexing (Cohen, Wang, and Murphy 2003), diagram summa-
rization (Lu et al. 2007; Futrelle 2004), chemical structure
extraction (Park et al. 2009) etc.. These techniques do not
consider the textual context where the images appear, thus
the connection between images and text is neglected.

Simply combining text-based and image-based informa-
tion extraction techniques will not solve the problem, since
the semantic links exist between the two media are not ex-
plored by either technique. In this work, we propose an IE
scheme that explores the structural and language character-
istics of chemical documents to bridge the gap between the
visual content represented by images and the textual content
represented by words. The scheme integrates text analysis
and image processing techniques to jointly mine the two me-
dia and is able to discover the knowledge which is otherwise
lost by traditional single-media based mining systems.

Images are particularly important for chemical literature,
because the 2D depiction of a chemical structure is the pre-
ferred representation of chemicals in the community (Zim-
mermann and Hofmann-Apitius 2007). For this reason, key
entities in chemical articles are all introduced in images.
Figure 1 shows the histogram of the number of images per
document for 100 randomly selected US chemical patents.
Some documents contain more than 2K images each. Of all
the images, 99.01% are depictions of chemical structures.
The mode is 137 structure-depiction images per document.

Recently, there is extensive interest in automatic chemi-
cal entity extraction from documents. Unlike other entity
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types such as people names, addresses, phone numbers etc.,
chemical entities are typically defined both in text and in
images. Independently mining text or images cannot reveal
all the information. Moreover, a recognized yet difficult to
solve problem in chemical document analysis is anaphora
(Banville 2006). A chemical is usually defined with an as-
signed chemical label when first being introduced in a doc-
ument. When the chemical is referenced in the later part of
the document, the label, instead of the actual chemical name
or structure, is used. For example, Figure 2 shows an ex-
traction from a patent document. A chemical structure with
label “27” is introduced in claim [0256] and is referenced
in claim [0260] by using the assigned label to describe an
experimental procedure. Existing chemical entity extraction
solutions do not handle anaphora. Imagine a search service
is built upon extracted chemicals. If a user queries a chem-
ical and expects to get a list of context snippets to under-
stand how the chemical appears and is used in documents, a
large amount of information is inaccessible due to anaphora.
Anaphora also harms other services, such as ranking chem-
icals by importance or relevancy, similarity comparison of
chemical documents, or chemical entity relation identifica-
tion. Our work handles the anaphora problem and makes the
hidden information available to end users.

A chemical label, which is the unique identifier of a chem-
ical structure is typically used in chemical documents to link
images to text and associate the textual content of the en-
tire document. For the chemical entity extraction task, the
main challenge is to extract and associate chemical struc-
tures to corresponding labels, as well as associate mentions
of labels. Based on the visual structure of images, we au-
tomatically extract chemical structures and labels, and map
every extracted structure to the corresponding label. The
mapping pairs are stored. We further analyze the textual
part of a document to locate all the mentions of chemical
labels. The difficulty of chemical label extraction from text
is due to the fact that a label can appear in text in differ-
ent scenarios. For example, the label text “5” can appear
in “compound 5”, “Table 5”, “experiment 5” or in chemical
name “bis (4 hydroxy 5 nitrophenyl)methane” 1. We intro-
duce context-aware CRF (caCRF), an efficient information
extraction method to explore the context of the label text,
and define novel features to extract chemical labels only.
The labels extracted from the two media are then used to
link images and text.

In summary, we present an integrated scheme to collabo-
ratively extract and link chemical entity information found
in text and images. Our goal is to provide an automatic doc-
ument analysis solution that incorporates information from
various information sources.

Related Work

Previous work in the area of information extraction has
largely focused on single-media based extraction. For ex-
ample, techniques for named entities extraction or entity

1The chemical name is extracted from real data, and
has OCR errors. Correct name should be “bis(4-hydroxy-5-
nitrophenyl)methane”

 

Figure 2: Example of anaphora and label context

relations extraction are typically designed for textual data.
Recent activities in multimedia document processing, such
as concept extraction from images/video/audio (Yan and
Naphade 2005) also target at a particular media type. Our
work differs from existing work in collaboratively extract
and link information cross media.

Previous work on chemical entity extractions falls into
two categories: 1. those extract entities from text (Sun et
al. 2007; Klinger et al. 2008; Chen et al. 2009), and 2. those
extract entities from images (Filippov and Nicklaus 2009;
Park et al. 2009). Entities from the same document that are
extracted by the above two types of techniques share no se-
mantic links. Our work is motivated by this observation and
aims to link different media sources for more comprehensive
information extraction. Note that, there is existing work that
leverages the connection between text and images to iden-
tify useful information (Deserno, Antani, and Long 2009;
Hua and Tian 2009). For example, text-based image index-
ing and searching techniques rely on image captions or sur-
rounding text to generate image meta-words. These services
use text content to boost the understanding of images, but do
not set up explicit links between text and images to improve
the overall analysis of a document.

System Overview

The overall workflow is outlined in Figure 3. Given an in-
put document (PDF, Doc, HTML etc.) which contains text
and images, a typical preprocessing step is to extract im-
ages and partition the original document into two parts: the
plain text and the images. For example, our data set contains
patent documents in the PDF format. In order to analyze
these data, a PDF file is passed through an Optical Charac-
ter Recognition (OCR) process to extract images and gener-
ate plain text. Advanced OCR solutions are able to preserve
the location of extracted images so that analysis of image
context is possible. We analyze images to extract chemical
structures and labels. The extracted structures are fed into a
professional chemistry software Cambridge Name=Struct�
(Brecher 1999) to generate equivalent string representation
which are called SMILES strings. SMILES are useful for
text-based storage, indexing, and search. We further map
each extracted structure to its corresponding label, and store
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Figure 3: Overall workflow

the (label, structure) pairs. Meanwhile for plain text, we per-
form statistical information extraction techniques to extract
mentions of chemical labels. Given image and text extrac-
tions, labels serve as a connection of the two media. The
anaphora problem is solved since chemical entities as well
as their references are all identified and extracted.

Extract (Label, Structure) Pairs from Image

Compared to the images from other domain, chemical im-
ages have the following specialties: 1. An image typically
does not contain caption or indicating key words such as
“Figure” or “Fig.”. Therefore images cannot be linked to
text by using captions or index numbers. 2. Labels to chem-
ical structures are commonly defined in images. 3. An im-
age usually contains multiple structures and labels. 4. Image
layouts are complex. An image can depict a chemical reac-
tion process which involves multiple steps and chemicals.

We introduce an efficient yet robust solution to analyze
chemical images. Given an input image2, we normalize the
image by converting the RGB representation to grayscale
representation and binarize the image. We further segment
the image, and categorize the segments into two groups:
those containing structures and those containing labels. A
graph-matching algorithm is then applied to map structures

2Our images are of 300 dpi. All the parameter settings reported
in this work are based on this resolution.

to labels. The extracted (structure, label) pairs are stored for
downstream processing.

Image Segmentation

Morphology-based image segmentation techniques are used
to segment a chemical image into disconnected components.
Given a chemical image, we first detect edges in the image,
then dilate 3 the image in two steps.

Because chemical structures are basically made of lines,
two flat and line shaped structuring elements are defined
with 0◦ and 90◦ respectively. The horizontal element fills
gaps in textual part of the image since horizontal writing is
typically used in chemical images. The vertical element is
useful to connect atoms to bonds. The image is further di-
lated with a disk-shape structuring element. The second step
dilation fills tiny gaps that are missed by the vertical and
horizontal elements. We also fill the holes in the image to
ensure that no embedded segment is generated. An original
chemical image and its dilation and filling result are shown
in Figure 4 (a) and Figure 4 (b) respectively.

The dilated image contains several disconnected compo-
nents. We enclose each component with a minimum rectan-
gle. To do this, a background image (every pixel is of digit
value 0) with the same size of the image is created. For each
component, we copy the component to the background im-
age at the same location as it appears in the original image.
The background image can be treated as a matrix contain-
ing 0s (background) and 1s( foreground). To find the verti-
cal boundaries of the component, we scan each column of
the matrix from left to right. The first and last encountered
columns with 1s are the left and right boundaries respec-
tively. Similar scanning scheme is used to find the top and
bottom boundaries. The minimum rectangles should not in-
tersect with each other, otherwise, the two rectangles will be
merged and a larger rectangle is generated to contain compo-
nents from both intersecting rectangles. Figure 4 (b) shows
an example of minimum rectangles.

The rectangle enclosed component is then deleted from
the original image and saved as an individual image, which
we call it a segment. At this point, we generated a set of
segments from the image. For example, 5 segments will be
generated from the dilated image shown in Figure4 (b), and
each segment if contains chemical structures, will contain
one and only one structure.

Segments Categorization

To enable text-based storage, indexing and search, we lever-
age a professional chemistry software OSRA (Filippov and
Nicklaus 2009) to convert 2D depiction of chemical struc-
tures to equivalent string representations. The conversion
is computationally expensive. Our goal is then to efficiently
identify chemical segments, which are segments that contain
structures, and only feed the selected segments to OSRA for
more complicated image processing. To this end, we pro-

3Dilation is a fundamental morphology operation that causes
an object to grow in size in a controlled manner as defined by the
structuring elements.
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(a) Original chemical image

(b) Dilated chemical image with minimum rectangles

Figure 4: Morphology-based image segmentation

pose to use the following features that are cheap to generate
and measure:

Segment Density: Compared to non-chemical segments,
a large portion of a chemical segment is white space. Visu-
ally, a non-chemical segment is more “dense” than a chem-
ical segment. We define segment density (SD) as the per-
centage of foreground pixels (e.g.: pixels with digit value 1)
in the segment. Let l and w be the length and width of the
minimum rectangle of a segment respectively, with w < l,
segment density is:

SD =
sum[pixel = 1]

l × w

We consider segments with SD > α as non-chemical seg-
ments, where α is a picked threshold.

Segment Size: The 2D depiction of a chemical struc-
ture takes certain space. A too small segment is unlikely
to contain structure depictions. Therefore the size of a seg-
ment (SS) is a good indicator. We consider segments with
SS = w < β as non-chemical segments, where β is a
picked threshold.

Aspect Ratio: The aspect ratio of a chemical segment
should be within a range. For example, a segment with the
shape of a narrow strip is unlikely to contain chemical struc-
tures. Therefore we define aspect ratio (AR) of a segment
as AR = w/l and consider anything with AR < γ as non-
chemical, where γ is a picked threshold.

Thresholds α, β, γ are tuned using training data.

Label Segment Identification

As Figure 4 shows, a non-chemical segment does not neces-
sarily contain a label, but can contain formulae, description
of reactions etc.. In order to identify labels, we feed every

Table 1: Chemical Label Features
feature example

consecutive Roman digits II, XIV, iv
capital letters B, IIA

pure digits 9
combination of digits and letters D2, J3

letters connected by a dash II-iia
digits connected by as dash 12-3

above features contains prime IV’
above features enclosed by parenthesis (XIV), (12-3), (D2)

keywords
compound, formula, structure, preparation, example

non-chemical segment to an OCR engine4 to extract text.
We handle two cases: 1. If the segment contains a single
token, we check if the token matches at least one of the fea-
tures listed in Table 1. The segment is considered to contain
a label if at least one match is found; 2. When the segment
contains multiple tokens, if a label is defined, the label is de-
fined within a context. In such cases, an indicating keyword,
such as “compound”, “formula” etc. is often used prior the
label. We extract such keywords that are used in chemical
documents and list them in Table 1. To identify the occur-
rence of a keyword, due to possible OCR errors, strict string
matching does not perform well. For each token, we mea-
sure the Levenshtein distance (Wagner and Fischer 1974) to
every keyword. If the distance is within an allowed range,
the token is considered as an indicating keyword, and the
following token is checked using the step 1. measure.

After labels are extracted, we also define OCR correction
rules based on the error statistics on the training set, e.g.
“VH” to “VII”, “(D” to ”(I)”, “21” to “a” etc.

Link Label to Structure with Graph Matching

At this step, we have a list of a chemical segments denoted
as S = {s1, . . . , sa}, and a list of b label segments denoted
as L = {l1, . . . , lb}. a and b do not necessarily equal. For
example, some structures are drawn for one time illustration
and do not come with labels for later references in the text.
We define the label-structure-mapping task as a minimum-
weight graph matching problem. In particular, we define a
bipartite graph G = (S∪L,E), |S| = a, |L| = b, where S is
the vertex set of structures, L is the vertex set of labels, and
E is the set of edges between S and L. We measure all the
pairwise distances between the two sets of segments so G is
complete. To evaluate edge weights, we treat the left bottom
of an image as the origin, and measure the centroid location
for each segment accordingly. The edge weight ω(ei,j) be-
tween a structure segment si and a label segment lj is then
defined as the Euclidean distance between the centroids of
the two segments:

ω(ei,j) = dist(li, sj) = dist(Z(li), Z(sj))

where Z(li) = (xi, yi) represents the x and y coordinates of
the centroid of label segment li, and similar for Z(sj). Our
goal is then to find a matching M , where M ∈ E and no

4We use tesseract-ocr, an open source OCR tool
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two edges in M share an endpoint, such that the total weight
of M is minimized:

minω(M) = min
∑

e∈M

ω(e)

For a bipartite graph, the Dijkstra algorithm can be used to
solve the problem in O(n(n log n+m)) time, with n vertices
and m edges.

Extract Labels from Text

So far, we have a list of chemical labels extracted from im-
ages. In order to extract chemical labels from text, an in-
tuitive solution is to perform string matching and extract all
the occurrences of a label. As we explained before, a label
can appear in text in several different scenarios so this solu-
tion will generate too many false positives. Another solution
is to perform rule-based extraction as we did for extracting
labels from images. Text in images is simple so rule-based
extraction works well. However, in the document body, due
to the complexity of text, it is difficult to define precise and
comprehensive set of rules to extract all the chemical labels.

Context-Aware CRF (caCRF)

Based on the above observation, we introduce a context-
aware Conditional Random Field (caCRF) method to extract
chemical labels from text. CRF (Lafferty, McCallum, and
Pereira 2001) is the state-of-the-art sequence labeling and
information extraction technique. Traditional CRF meth-
ods scan the entire document token by token and label each
token to predefined categories. The computational cost is
large for long documents. We propose to efficiently iden-
tify a small subset of a document and only apply CRF to the
subset.

First of all, we define a sequence T = {ti, . . . , tn} as an
ordered list on tokens ti, . . . , tn where the order is as they
appear in a document. For the label extraction task, we de-
fine simple rules to quickly extract a list of “label candi-
dates” LC = {g1, . . . , gr} from text. The rules are general
enough to cover all the labels but with false positives. Then
for each candidate gi, a “context” C(gi) = {T b

i , gi, T
a
i }

is extracted, where T b
i and T a

i are sequences before and
after the label candidate. Therefore, a “context” is a se-
quence too. Given two contexts C(gi) and C(gj), if T a

i

and T b
j overlap, we merge the two context to generate a

new context that includes both candidate labels C(gi, gj) =
{T b

i , gi, Tij , gj , T
a
j }. We fix the length of sequence T b

i and
T a
i to be 5 tokens unless a sentence boundary is met.

Textual Feature Set

Besides the common features used in CRF methods, such as
all the tokens, we extract two types of features. Structural
features, such as token length and the features listed in Table
1, capture the composition of a token. Content features are
generated based on the observation that chemical labels are
often (not always) referenced by using indicating keywords
(as listed in Table 1) and key phrases, such as “hereinafter re-
ferred to as (IV)”, “a solution of 27” (Figure 2). One content

Table 2: Parameter Setting
parameter value

horizontal structuring element size 9 pixels
vertical structuring element size 5 pixels

disc structuring element size 1 pixel
Segment Density α 0.09

Segment Size β 25 pixels
Aspect Ratio γ 0.2

feature is defined to indicate whether a token is an indicating
keyword or a part of a key phrase. Other content features in-
clude whether the focus token is before or after the nearest
keyword/key phrase, and the distance from the focus token
to the nearest keyword/key phrase in terms of the number of
tokens in between.

Experiment

We evaluate our proposal using 100 chemical related US
patent documents published in year 2010. To identify if
a document is chemical-related, we apply IBM SIMPLE
chemical annotator (Chen et al. 2009) to each 2010 US
patent and select those that contain at least 200 unique chem-
ical names to compose our dataset. The 100 documents con-
tain 18,766 images, where 18,581 images contain chemical
structures, and 2,882 images contain both structures and la-
bels (many images contain structures only), which is about
15%. We perform 5-fold cross validation, and report the
average result. The best parameter settings are reported in
Table 2. Classic evaluation metrics Accuracy, Precision, Re-
call and F score are adopted.

The performance of image analysis and (label, structure)
pair extraction is listed in Table 3. The image segmentation
method has high accuracy with a few errors of missing atoms
from the main structure. The segmentation accuracy can
be improved by using advanced visual features and chem-
ical domain knowledge. We achieve perfect segment cate-
gorization accuracy. For the label identification task, since
we are using rule-based method, the identification accuracy
can be improved by refining rules. For the pair extraction
task, because many images contain more than one chemical
structure, we consider an extraction method performs a cor-
rect extraction on an image if all the (label, structure) pairs
from that image are correctly extracted and no extra noise
is extracted. We evaluated three cases. The “overall” case
measures extraction precision and recall for all the chemical
structure images. For the “easy” case, we measure extraction
performance on images that contain a single structure only.
Since the layout of such images are relatively simple, we call
such case “easy”. The “difficult” case measures extraction
performance on images that contain more than 5 chemical
structures, which leads to more complicated layouts. As Ta-
ble 3 indicates, the overall extraction performance is promis-
ing. We achieve around 90% of extraction accuracy and re-
call. When the image layouts become more complicated, the
extraction accuracy drops as can be expected.

The text analysis and extraction performance is reported
in Table 4. In the “exact” method, given a list of chemical
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Table 3: Image Analysis Performance
operation accuracy

image segmentation 98.12%
segment categorization 100%

label identification 96.97%
(label, structure) pair extraction

method precision recall F score
overall 89.04% 93.88% 91.40%
easy 97.69% 100% 98.83%

difficult 77.55% 93.65% 84.84%

Table 4: Text Analysis Performance
method precision recall F score
exact 47.56% 41.55% 44.35%

rule-based 28.66% 94.12% 43.95%
caCRF 90.91% 82.19% 86.33 %
CRF 90.91% 82.19% 86.33 %

labels extracted from images, we do strict string matching to
extract all the label appearances from text. The low preci-
sion is because the label text can appear in many scenarios
other than indicating a chemical entity. Extracting irrelevant
appearance harms precision. Moreover, a label can be men-
tioned in text with a slightly different format as introduced
in images. For example, the label “(IIX)” can be referred to
as “IIX”, “(IIX);”, “IIX,” etc. For this reason, strict string
matching will miss many label appearances and has low re-
call. In the rule-based method, we specify rules about the
composition of a label, similar to what we did in image anal-
ysis. As can be expected, this method has high recall, but
generates many false positive and has low precision. The
caCRF method achieves reasonable extraction performance.
Moreover, the scheme of pre context selection significantly
reduces the amount of data to be processed by CRF without
influencing extraction accuracy. The amount of reduction is
measured in terms of the number of tokens to be labeled by
CRF, and we achieve 66.81% of reduction.

Conclusion

In this work, we propose an IE scheme that explores the
structural and language characteristics of chemical docu-
ments to bridge the gap between the visual content rep-
resented by images and the textual content represented by
words. The scheme jointly mines the two media and is able
to discover the knowledge which is otherwise lost by tradi-
tional single-media based mining systems.
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