
Simulated Annealing Based Influence Maximization in Social Networks

Qingye Jiang†, Guojie Song†∗, Gao Cong‡, Yu Wang†, Wenjun Si†, Kunqing Xie†
†Key Laboratory of Machine Perception, Ministry of Education, Peking University, China

‡School of Computer Engineering, Nanyang Technological University, Singapore
{jzjmail@sina.com, gjsong@pku.edu.cn, gaocong@ntu.edu.sg}

Abstract

The problem of influence maximization, i.e., mining
top-k influential nodes from a social network such that
the spread of influence in the network is maximized, is
NP-hard. Most of the existing algorithms for the prob-
lem are based on greedy algorithm. Although greedy
algorithm can achieve a good approximation, it is com-
putational expensive. In this paper, we propose a totally
different approach based on Simulated Annealing(SA)
for the influence maximization problem. This is the
first SA based algorithm for the problem. Additionally,
we propose two heuristic methods to accelerate the con-
vergence process of SA, and a new method of comput-
ing influence to speed up the proposed algorithm. Ex-
perimental results on four real networks show that the
proposed algorithms run faster than the state-of-the-art
greedy algorithm by 2-3 orders of magnitude while be-
ing able to improve the accuracy of greedy algorithm.

Introduction

One important function of a social network is to carry the
spread of information by the “word-of-mouth” communica-
tion (Ma et al. 2008). It is a fundamental issue to find a small
subset of influential individuals in a social network such that
they can influence the largest number of people in the net-
work. Finding a subset of influential individuals has many
applications. For example, consider a social network that
performs as the platform for marketing (Kempe, Kleinberg,
and Tardos 2005). A company plans to target a small number
of ”influential” individuals of the network by giving them
free samples of a product, expecting that the selected users
will recommend the product to their friends, their friends
will influence their friends’ friends and so on, thus many in-
dividuals will ultimately adopt the product through the pow-
erful word-of-mouth effect (or called viral marketing).

Formally, the problem is called as influence maximization,
which is, for a parameter k, to find a k-node set with the
maximum influence, where influence is propagated in the
network according to a stochastic cascade model (Kempe,
Kleinberg, and Tardos 2005).

∗Corresponding author. Email: gjsong@cis.pku.edu.cn
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The existing methods of finding the top-k problem mainly
focus on the greedy algorithm and its enhancements. Kem-
pel et al.(Kempe, Kleinberg, and Tardos 2005) formulate the
top-k influence maximization problem as an combination op-
timization problem and establishes that the problem is NP-
hard. They propose to use the hill-climbing greedy algo-
rithm with a (1 − 1

e
) approximation ratio. New enhance-

ments based on the greedy algorithm are proposed, e.g. the
CELF algorithm (Leskovec et al. 2007), the NewGreedy al-
gorithm (Chen, Wang, and Yang 2009), and the community-
based greedy algorithm(CGA) (Wang et al. 2010). Al-
though these enhancements greatly improve the efficiency of
the hill-climbing Greedy algorithm, using greedy algorithm
for the influence maximization problem in a large network
is still computationally challenging. (as to be shown in our
experiments)

Diverging from previous proposals on mining top-k in-
fluential nodes that use greedy algorithm, in this paper, we
propose a new algorithm based on the Simulated Anneal-
ing(SA) algorithm to find the top-k influential nodes. To the
best of our knowledge, this is the first work utilizing the SA
algorithm for the influence maximization problem. To fur-
ther improve the efficiency of the basic algorithm, we pro-
pose to replace the diffusion simulations of a node set with
its EDV(expected diffusion value) according to the proper-
ties of social networks. We also propose the single-node
spreading heuristic(SH) to generate better solution sets and
accelerate the algorithm’s convergence process. Further, we
combine the single-node spreading heuristic and EDV to in-
tegrate their merits in efficiency and accuracy, respectively.

Extensive experiments are conducted and we report a
summary of results, which show that the proposed algo-
rithms based on the SA are capable of outperforming the
state-of-the-art greedy algorithm in terms of both efficiency
and accuracy.

Related Work

The influence maximization problem is first proposed by
Domingos and Richardson (Domingos and Richardson
2001). Kempe et al. (Kempe, Kleinberg, and Tardos
2003) investigate this problem on two representative diffu-
sion models, the independent cascade (IC) model and the
linear threshold (LT) model. In this work and their sub-
sequent work, (Kempe, Kleinberg, and Tardos 2005), they

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

127

generalize the two models and prove the influence maxi-
mization problem is a NP-hard problem.

Kempe et al. (Kempe, Kleinberg, and Tardos 2003) pro-
pose to use the hill-climbing Greedy algorithm to solve the
top-k problem for the first time. They empirically compare
hill-climbing Greedy algorithm with the degree heuristic and
centrality heuristic algorithm, and find that hill-climbing has
a much better accuracy although it runs much slower than
the two simple heuristic algorithms. However, the greedy
algorithm is very expensive. Most of the subsequent propos-
als on mining top-k influential nodes are based on the greedy
algorithm and improve the greedy algorithm to achieve bet-
ter efficiency. Leskovec et al. (Leskovec et al. 2007) pro-
pose the CELF algorithm that ameliorates the greedy algo-
rithm by utilizing the submodular property in influence dif-
fusion. Chen et al. (Chen, Wang, and Yang 2009) advance
a new Greedy algorithm called NewGreedy algorithm. The
reported experimental results show that NewGreedy signif-
icantly outperforms CELF algorithm. Wang et al. (Wang et
al. 2010) propose CGA algorithm that invokes greedy algo-
rithm with respect to community. Although the greedy al-
gorithm based proposals are able to achieve good accuracy,
they are very slow on large social network.

In addition, Chen et al. (Chen, Wang, and Yang 2009)
also presents a degree discount heuristic algorithm called
DegreeDiscount, which assumes that the influence spread
increases with the degree of nodes. The heuristic algorithm
is very efficient. However, its accuracy can be much lower
than that of greedy algorithm. Chen et al. (Chen, Wang,
and Wang 2010) target at general IC model with nonuni-
form propagation probabilities, which is different from the
IC models used in the other proposals.

A salient feature of the proposed SA based algorithms in
this paper is that they are capable of outperforming the best
greedy algorithm in terms of both efficiency and accuracy.

Proposed Method

Table 1: Notations
Notations Descriptions

G = (V, E) A network with vertex set V and edge set E
−→uv the edge from node u to v
M number of edges in G
N number of nodes in G
k size of nodes to be mined
p propagation probability of IC model
σ(A) the number of nodes that node set A can influ-

ence in a network

Problem Statement

Table 1 gives the important notations used in this paper. In-
fluence maximization problem targets to find a set of k nodes
A = {v1, v2, . . . , vk} such that σ(A) is maximized accord-
ing to a diffusion model. We adopt Independent Cascade(IC)
model widely used in previous work (Kempe, Kleinberg,
and Tardos 2003). In the model, the state of a node in a
social network is either active or inactive. Active nodes are
able to influence their inactive neighbors. The state of a node
can be switched from being inactive to being active, but not
vice versa. The model has a parameter called propagation

probability p , which models the tendency of individuals to
be affected by its neighbors.

The diffusion mechanism of IC can be described as fol-
lows. The diffusion process begins with an initial set of ac-
tive nodes A at round t=0. Let S0 = A. At each round t,
an active node vi from the last round St−1 will be given a
single chance to influence each of its inactive neighbors vj ,
with a propagation probability p. If vj is influenced, it is ac-
tivated and is added to set St. The process terminates when
St is empty. The set of nodes influenced by A is the union of
St generated at each round. We denote the number of nodes
influenced by A as σ(A).

Introduction to Simulated Annealing (SA)

Simulated Annealing is an Intelligent Algorithm proposed
by Metropolis et al.(Metropolis et al. 1953). It simulates
the process of metal annealing and optimizes the solutions
of a number of NP-hard problems, e.g., Traveling Salesman
Problem. SA algorithm works as follows:

1) It creates an initial solution i and an initial system tem-
perature T = T0, and calculates the fitness of the solution,
denoted by f(i), which stands for the initial energy of the
system;

2) Next, it searches the neighbor solutions of the cur-
rent solution and a new solution j is created. If Δf =
f(j) − f(i) is negative, then the new solution is a bet-
ter one and will replace the current one i; otherwise, the
new solution will replace the current one with a possibil-

ity pi,j = exp(−Δf
T

)(Metropolis criterion), where T is the
current system temperature. The replacement mechanism is
to minimize the energy state of the system. The initial tem-
perature T0 must be set large enough. After a number of it-
erations of searching for the neighbor solutions, we will cut
down the system temperature T = T −ΔT as the solution
is mended. When the temperature reaches the termination
temperature Tf , the algorithm stops.

SA based Algorithm for Influence Maximization

The SA algorithm is outlined in Algorithm 1. We define
the fitness function of a solution set A ⊂ V as σ(A), the
number of nodes that A will influence using the IC model.
The fitness function σ(A) characterizes the diffusion quality
of set A. The algorithm has two levels of iterations: the outer
level is controlled by Tf and ΔT , and the inner level is con-
trolled by q. We create an initial set A = {v1, v2, . . . , vk}
randomly (line 2). In each iteration, we get A’s neighbor
solution A’ by replacing one node in solution set A with
a node in V − A (line 5). If Δ(f) = σ(A′) − σ(A) is
positive, i.e., the new solution is better, the new solution
A′ is accepted (line 9). Otherwise, the new solution is ac-
cepted if min{1, exp(Δ(f)/t)} > random[0, 1] (lines 11-
13). When the number of inner iterations q is reached (line
15), the algorithm updates the outer loop parameter Tt.

It is critical to make sure that the SA-based algorithm for
top-k mining problem converges.

LEMMA 1 The proposed SA based algorithm for influ-
ence maximization problem will converge towards the opti-
mum as the iteration number t becomes larger.

128

Algorithm 1 SA: SA based Top-k mining algorithm

Input: graph G = (V, E), size k, initial temperature T0, termina-
tion temperature Tf , the number of inner loop q, the amount to cut
down the current temperature in the outer loop ΔT
Output: the set of top-k influential nodes A;

1: t ← 0,Tt ← T0, count ← 0;
2: Select an initial seed set A ⊂ V , |A| = k, randomly ;
3: while Tt < Tf do
4: calculate σ(A)
5: A′ ← F (A,G); {create a neighbor solution set }
6: count ← count + 1;
7: calculate the change of the fitness Δf ← σ(A′)− σ(A);
8: if Δf > 0 then
9: A ← A′;

10: else
11: create a random number ξ ∈ U(0, 1).

12: if exp(Δf

Tt
) > ξ then

13: A ← A′ ;
14: if count > q then
15: Tt ← Tt −ΔT , t ← t+ 1, count ← 0
16: return A

PROOF. We first observe the Markov Chain correspond-
ing to the top-k influence maximization problem: we de-
fine a state i as a result set Ai containing k nodes in net-
work G. The union of A′

is neighbor sets are represented by
N(i). For a state j ∈ N(i), the probability of generating
j is gi,j = 1

k∗(N−k) , and the probability of accepting j is

ai,j = min{1, exp[−(σ(j)− σ(i))/T (t)]}. Thus, the tran-
sition probability from state i to state j is

∀i, j, pi,j(t) =

⎧⎨
⎩

gi,jai,j(t), j ∈ Ni and j �= i
0, j /∈ Ni and j �= i
1−

∑
k∈Ni

pi,k(t) , j = i

The finite state Markov Chain corresponding to SA top-k
algorithm fulfills the following conditions:
(1) ∀i, j ∈ Ω(states union),gi,j(t) is not related to t, and
gi,j = gj,i, while ∃n ≥ 1, s0, s1, ...sn ∈ Ω, s0 = i, sn = j,
to make gsk,sk+1

(t) > 0, k = 0, 1, ..., n− 1;
(2) ∀i, j, k ∈ Ω, if σ(i) ≤ σ(j) ≤ σ(k), then
ai,k(t) = ai,j(t)aj,k(t);
(3) ∀i, j ∈ Ω, t > 0, if σ(i) ≥ σ(j), then ai,j(t) = 1; if
σ(i) < σ(j), then 0 < ai,j(t) < 1.

Thus, following the work (Mitra, Romeo, and Vincentelli
1985), for the stationary distribution of the Markov Chain
v = {v1, v2, ..., vN}

lim
t→0

vi(t) =

{
1

|Ωopt|
, i ∈ Ωopt

0, i /∈ Ωopt

Ωopt is the union of optimal solutions. This means our
algorithm will tend to converge to optimum�.

Remark: The proposed SA algorithm can escape the local
optimum and is able to learn to improve the influence spread
of solution set automatically. It allows to replace a solution
with a worse one, which is different from methods in greedy
algorithm. Compared with greedy algorithm, SA can effec-
tively cut down the number of simulations.

Optimization

The computation cost of the SA algorithm is O(TRM),
where T is the number of iterations, R is the number of sim-
ulations to compute σ(A), and M is the number of edges.
We will optimize the algorithm’s efficiency in two aspects:
First we propose SAEDV algorithm to improve the simula-
tion cost O(RM); Second we propose SASH algorithm to
cut down the iteration T . We combine SAEDV and SASH
to get another algorithm MSA.

Simulation Cost Reduction (SAEDV)

To compute σ(A) for a solution set A, the existing influ-
ence maximization algorithms need R times simulations to
compute the average influence of a solution set. This is com-
putationally expensive.

We propose Expected Diffusion Value(EDV) to replace
the diffusion simulations when computing σ(A) for a solu-
tion set A to cut down the computation cost. We estimate
the influence spread of a target set A containing k nodes in
the Simulated Annealing, instead of using spreading simu-
lations for R times.

Let NB(A) = {w|w ∈ A} ∪ {v|∃w ∈ A,−→wv ∈ E},
NB(A) represents the one-hop area of the node set A. Let
r(v) = |{w|w ∈ A, −→wv ∈ E}|. We extract NB(A) and
the edges between the nodes in NB(A) to make a subgraph.
Then we have the following lemma.

LEMMA 2 Given a small propagation probability p in the
IC model, the expected number of nodes influenced by node
set A is estimated by

k +
∑

v∈NB(A)−A

(1− (1 − p)r(v))

PROOF. For each node v ∈ NB(A) − A, the probability

that v will not be affected by the target set is (1 − p)r(v), so
we can see that v will finally be affected directly by A with a

probability 1− (1− p)r(v). The k nodes in A are sure to be
activated. So the final expected activated nodes’ number in

the one-hop area is k +
∑

v∈NB(A)−A (1− (1 − p)r(v)).�

In the Simulated Annealing algorithm, we can adopt

EDV (A) =
∑

v∈N(A)−A (1− (1− p)r(v)) as the fitness

function σ(A) instead of the average influence spread of A
that is computed by R times of simulations. The algorithm
for calculating EDV is outlined in Algorithm 2. We first
detect NB(A). ∀v ∈ V , we initialize r(v)(This only needs
to be done once when it is combined with SA). When we re-
place node w1 with node w2 to create a new solution set, we
search all the edges starting from w1, and for each end node
v we cut down r(v) by 1 (line 10). For each edge starting
formw2, we find its end node v having an edge starting from
w2 and increase r(v) by 1 (line 15). During the process, we
will also change NB(A)(lines 9 and 14). The new EDV is
finally calculated (line 16).

The SA algorithm using the function in Algorithm 2 is

called SAEDV. The complexity of this algorithm is O(Tkd),
where d is the average degree of the network.

129

Algorithm 2 SAEDV: function σ(A′, A, w1, w2) to compute
the Expected Diffusion Value (EDV) of a node set A′

Input: network G = (V, E), a node set A, a neighbor solution set
A′ of A, the discarded node w1 (i.e.A \ A′) in A to generate A′

and the new node w2 (i.e.A′ \ A);
Output: EDV of a neighbor solution set A′ derived from A;

1: NB(A) = {w|w ∈ A} ∪ {v|∃w ∈ A,−→wv ∈ E};
2: for each v ∈ V do
3: if v ∈ NB(A)− A then
4: r(v) = |{w|w ∈ A, −→wv ∈ E}|;
5: else
6: r(v) = 0
7: for each −−→w1v ∈ E do
8: if r(v) = 1 then
9: NB(A) ← NB(A)− v

10: r(v) ← r(v)− 1;
11: r(w2) ← 0
12: for each −−→w2v ∈ E do
13: if r(v) = 0 then
14: NB(A) ← NB(A) ∪ v
15: r(v) ← r(v) + 1;

16: σ(A′) ← k +Σv∈NB(A)−A′(1− (1− p)r(v));
17: return σ(A′);

Speeding up Convergence (SASH)

SAEDV improves the efficiency of SA by using EDV to esti-
mate the real spreading ability of a node set. However it may
reduce the accuracy of SA. Algorithm 1 randomly replaces
an element in current solution set to create a new solution
set. This motivates us to develop heuristic methods to speed
up the convergence of SA algorithm. We proceed to present
Algorithm SASH using two heuristic methods.

Distant Node Heuristic We observe that in the top-k nodes
returned by SA algorithm, the probability that two nodes
have very short distance is very small. Hence, when choos-
ing a new element to construct a new solution set A′, we
disregard the nodes whose shortest path from nodes in the
current solution set A are smaller than a threshold d (we set
d as 2 in our experiments). Let dis(w, v) be the length of
the shortest path from w to v. Let M(A, d) = {w|w ∈
N − A, ∀v ∈ A, dis(w, v) ≤ d}. We do not consider the
nodes in M(A, d) when we create a new solution set.

Single Node Spreading Heuristic For each node vi, we
compute its influence spread σ({vi}). When choosing a new
node to construct neighbor solution set A′, we take into ac-
count the influence spread of single node so that the algo-
rithm will find a better solution more quickly.

The function of constructing a neighbor set A′ of A using
the two heuristics is outlined in Algorithm 3. Given a node
set A, Algorithm 3 first calculates the individual influence
spread of all the nodes in G (which is needed the first time
when the algorithm is invoked). Then we randomly select a
node in A and replace it with another node in V − A based
on the roulette of influence spread of single node(lines 6-9).
The SA algorithm using the function in Algorithm 3 is called
SASH.

Algorithm 3 SASH: function A′ = F (A,G) to create a
neighbor solution

Input: network G = (V, E), the node set A;
Output: a neighbor solution set A′ derived from A;

1: calculate σ(w) for all node w ∈ V;
2: sum←

∑
w∈V

(σ(w)), p(0) ← 0, flag ← true;
3: for i from 1 to n do
4: p(i)← p(i− 1) + σ(vi)/sum;
5: while flag do
6: create a random number r ∈ [1, n], and a random probabil-

ity p ∈ [0, 1],
7: for i from 1 to n do
8: if p(i− 1) < p < p(i), vi /∈ M(A, 2) and vi is not the

rth element of A then
9: select vi to replace rth element of A to generate A′,

flag ← false;
10: return A′;

Combination (MSA)

SAEDV can effectively cut down the time cost of computing
the influence spread of a solution set. However, it just counts
the influence spread in the neighborhood area of current so-
lution set, so it may damage the accuracy of the algorithm.
SASH can also speed up SA since it can effectively reduce
the number of iterations by finding better solution quickly,
although the improvement in terms of efficiency is not as ob-
vious as SAEDV. Additionally, SASH can enhance the ac-
curacy of SA. The two optimizations, SAEDV and SASH,
optimize two different aspects of the SA algorithm; the two
optimizations are orthogonal and can be combined.

The combined algorithm is called Mixed-SA(MSA).
MSA replaces the fitness function σ(A) with the fitness
function given in Algorithm 2 (SAEDV), and replaces the
creation function F () with the function given in Algorithm 3
(SASH). As to be shown in Experiment, MSA is able to
achieve more accurate solution than SAEDV while keeping
its advantage of efficiency.

Experiments

The purposes of the experimental study are twofold:

• Evaluate the efficiency and effectiveness of the proposed
Simulated Annealing(SA) algorithm by comparing with
the state-of-the-art greedy algorithm—NewGreedy algo-
rithm (Chen, Wang, and Yang 2009) and CGA (Wang et
al. 2010) algorithm, as well as two heuristic algorithms—
Degree-Discount (Chen, Wang, and Yang 2009) and
Random(randomly select k nodes from the graph as the
solution set) (Kempe, Kleinberg, and Tardos 2003).

• Evaluate the efficiency and effectiveness of the proposed
optimized algorithms—SAEDV, SASH, and MSA.

Network Dataset

We use four real-life large-scale networks, namely Mobile
social network, Who-trust-whom network of Epinions.com,
Amazon Product Co-purchasing Network, and Web Net-
work, which exhibit different features of real social net-
works. Some of them are used in recent influence maxi-

130

mization research (Wang et al. 2010; Chen, Wang, and Yang
2009) Table 2 gives the properties of the networks. The mo-
bile network is extracted from the mobile call logs, where
each mobile user corresponds to a node and the communica-
tion between two users corresponds to an edge. In Epin-
ion network, nodes are members of Epinion and an edge
between two nodes means one trust the other. In Amazon
network, nodes are products and an edge between two prod-
ucts means the two products are often purchased together.
In Web network, the nodes correspond to web pages and the
edges correspond to links between pages.

Table 2: Statistics of four real-life networks
Dataset Mobile Epinions Web Amazon

Node 95.7K 75.9K 345K 262K

Edge 1.33M 508.8K 421.6K 1.23M

Average Degree 13.9 6.7 1.22 4.711

Experimental Setting

To compare the accuracy of different algorithms, we use the
spread simulation method (Kempe, Kleinberg, and Tardos
2003) to compute the influence spread of the final solution
set (top-k result) of each algorithm. Given a solution set,
the spread simulation method does the spread simulations
for R times and compute the average number of activated
nodes as the estimation of σ(A). Following the previous
work, we set R as 10,000. The proposed algorithms, SA and
SASH, also use the simulation method as the fitness func-
tion. For SAEDV and MSA, we count σ(A) as the EDV
of A (Algorithm 3). For SA and SA derived algorithms,
we set T0 = 10, 000, 000, q = 1, 000, ΔT = 2, 000, and
Tf = 1, 000, 000.

All experiments are performed on an Intel Xeon E5504
2G*2 (4 cores for every CPU), 36G memory. All the codes
are written in C++.

Experimental Result

Accuracy when varying k. This experiment is to compare
the accuracy of algorithms by varying k from 10 to 60 when
the propagation probability is set at 0.05. Table 3 shows
the influence spreading ability of the top-k nodes returned
by the 8 different algorithms, including random algorithm
(RDM), Degree-Discount (D-D), CGA, Newgreedy(N-G),
SA, SAEDV, SASH, and MSA.

We observe 1) Random is much worse than the other
methods in terms of accuracy on all data. This is consistent
with the results reported in previous work. 2) NewGreedy
(N-G) and CGA outperform Degree-Discount (D-D) and the
performance disparity is more significant on data Web and
Amazon. 3) SA consistently outperforms Newgreedy and
CGA by about 33% on Amazon, and about 2%−9% on other
data. 4) The three optimization algorithms, SAEDV, MSA,
and SASH, have better influence spread than greedy algo-
rithms. SASH is better than SA in term of influence spread.
However, as expected, the adoption of EDV in SAEDV and
MSA reduce the accuracy of SA by 1.64% − 4.48% and
3.23%− 6.87%, respectively, on data Mobile.

To have a better understanding of SA and SASH, we study
the number of iterations on the Amazon data set using SA

Table 3: Influence spread of different algorithms as k is var-
ied

Data k
Algorithms

RDM D-D CGA N-G SAEDV MSA SA SASH

Mobile

10 107 634 675 677 685 697 721 749
20 186 866 886 899 921 926 962 982
30 249 1023 1063 1081 1095 1112 1141 1184
40 296 1174 1194 1205 1221 1245 1281 1335
50 320 1279 1311 1323 1344 1362 1402 1453
60 353 1400 1420 1453 1470 1491 1519 1587

Epinion

10 59 502 504 508 511 515 522 532
20 91 511 577 580 593 597 605 621
30 108 586 616 622 631 634 637 677
40 122 621 654 662 673 678 682 720
50 135 663 681 692 702 707 715 758
60 147 692 714 732 745 753 769 796

Web

10 197 443 452 459 463 468 474 486
20 340 732 754 761 766 769 773 789
30 450 946 963 978 982 988 999 1023
40 550 1049 1088 1098 1132 1143 1159 1180
50 634 1167 1206 1245 1267 1288 1308 1355
60 711 1286 1335 1378 1411 1432 1454 1490

Amazon

10 208 1288 1366 1646 1998 2032 2183 2434
20 367 2261 2310 2890 3012 3189 3349 3655
30 519 3125 3334 3723 4023 4078 4114 4645
40 660 4121 4222 4576 4857 4923 5071 5496
50 785 4572 4925 5231 5411 5499 5571 6099
60 912 5308 5635 5822 6020 6152 6206 6814

and SASH. Table 4 shows the number of iterations that SA
and SASH need to converge to their best solution when we
vary k. SASH gets a better final solution set while its conver-
gence needs fewer iterations than does SA. The result shows
that SASH can obviously cut down the number of iterations.
The results on the other three data sets are qualitatively sim-
ilar.

Table 4: The number of required iterations as k is varied

k 10 20 30 40 50 60

SA 88K 376K 217K 498K 980K 777K

SASH 8.3K 20K 41K 69K 114K 168K

Accuracy when varying p. This experiment is to study the
performance of the proposed SA algorithms when varying
the propagation probability p. We set the size of solution set
(k) as 30 and vary the propagation probability from 0.01 to
0.09 by following previous work. Table 5 shows the results
on two representative networks: Web Network and Epinion
network. The results on the other two data are qualitatively
similar, and are ignored due to space limitation.

We observe: 1) SA and SA’s derived algorithms always
outperform D-D, N-G and CGA. For example, when the
propagation probability is 0.05 on Epinion, the top-30 so-
lution set of SA influences 636 nodes, while Newgreedy
influences 603 nodes, CGA 593 and Degree-Discount 584.
2) SASH consistently improves the accuracy of SA. For in-
stance, it outperforms SA by 1% − 3.5% on Epinion and
Web data. As expected, the accuracy of SAEDV and MSA
is lower than that of SA; however, they still perform better
than greedy algorithms.

131

Table 5: Influence spread of different algorithms as p is var-
ied

Data p
Algorithms

RDM D-D CGA N-G SAEDV MSA SA SASH

Epinion

0.01 89 218 321 324 348 348 351 351
0.02 95 373 379 383 409 411 418 422
0.03 99 441 448 453 486 489 492 494
0.04 103 513 521 525 554 558 562 571
0.05 107 584 593 603 631 633 636 656
0.06 113 681 687 689 721 724 728 736
0.07 117 763 769 793 807 810 814 831
0.08 124 847 851 857 873 879 885 921
0.09 130 969 976 980 1003 1008 1017 1028

Web

0.01 415 661 667 673 684 684 688 693
0.02 423 746 750 760 776 782 789 824
0.03 434 827 831 839 860 862 871 901
0.04 446 895 902 911 934 937 944 967
0.05 450 955 963 978 982 987 999 1023
0.06 462 1027 1034 1045 1066 1072 1077 1092
0.07 491 1115 1125 1134 1156 1163 1178 1184
0.08 489 1190 1198 1204 1212 1221 1234 1254
0.09 499 1278 1287 1294 1319 1326 1340 1352

Table 6: Runtime(seconds) of Different Algorithms to solve
top-30 and top-50 problems on different networks

Data
Algorithms

D-D N-G CGA SAEDVMSA SA SASH

Mobile(k = 30) 13 16.7h 2.96h 8 8 270 80
Web 8 7.5h 5.1h 2 2 70 20
Epinion 15 7.7h 2.2h 2 2 630 28
Amazon 35 7.7h 0.7h 25 23 990 130

Mobile(k = 50) 17 23.3h 4.2h 14 14 421 142
Web 10 8.7h 6.7h 4 5 303 62
Epinion 18 9.4h 3.1h 4 4 970 71
Amazon 40 10.7h 1.1h 31 33 2903 231

Efficiency. We compare the runtime of D-D, NewGreedy,
CGA, SA, SAEDV, MSA, and SASH when k = 30 and k =
50, the propagation probability p = 0.05 on four networks.
Table 6 show the results.

We observe when k = 30 (the result at k = 50 is similar):
1) SASH is at least 70% faster than SA. The reason would
be that SASH can locate the real influential nodes more effi-
ciently, and the heuristic selection of new nodes in creating
neighbor solution set helps to cut down the runtime. 2) MSA
and SAEDV outperform all other algorithms in terms of run-
time. MSA and SAEDV use only 8 seconds on Mobile,
which is three order of magnitude faster than CGA, while
their accuracy is better than CGA. 3) NewGreedy and CGA
are slow, and need 16.7 hours and 2.96 hours, respectively,
on Mobile. SA outperforms greedy algorithms by two or-
ders of magnitude. 4) Degree-Discount is fast. However,
its accuracy is worse than the 2 greedy algorithms and 4 SA
algorithms. Also it is slower than SAEDV and MSA. Note
that random needs less than 1 Second, but its accuracy is
much worse than other methods, and is ignored here.

Summary. The proposed SA algorithm and its optimized
versions, SAEDV, SASH, and MSA, outperform the state-
of-the-art greedy algorithms up to 3 orders of magnitude in

terms of runtime for influence maximization problem. They

usually outperform the greedy algorithms by around 5% in
terms of accuracy. Among the four proposed algorithms,
MSA and SAEDV has the best performance in term of effi-
ciency while MSA performs better than SAEDV in term of
accuracy. SASH performs the best in terms of accuracy.

Conclusions

Unlike previous proposals on influential maximization that
are mostly based on greedy algorithm, we take a totally dif-
ferent approach by using SA to mine top-k influential nodes.
To our best knowledge, this is the first work to use SA to
mine top-k influential nodes. Our experimental study shows
that SA outperforms the state-of-the-art greedy algorithms,
NewGreedy and CGA, in terms of both accuracy and effi-
ciency, and the proposed optimizations are able to further
improve SA.

This work opens up several promising directions for fu-
ture work. First, it will be interesting to investigate the Par-
allel Computing advantage of SA for finding top-k influen-
tial nodes in very large social networks. Second, it will be
interesting to investigate other optimizations on the SA al-
gorithm to further improve performance.

Acknowledgments

This work is supported in part by the National Natural Science
Foundation of China (60703066, 60874082), and Beijing munic-
ipal natural science foundation (4102026).

References

Chen, W.; Wang, C.; and Wang, Y. 2010. Scalable influence max-
imization for prevalent viral marketing in large-scale social net-
works. In KDD, 1029–1038.

Chen, W.; Wang, Y.; and Yang, S. 2009. Efficient influence maxi-
mization in social network. In KDD, 199–208.

Domingos, P., and Richardson, M. 2001. Mining the network value
of customers. In KDD, 57–66.

Kempe, D.; Kleinberg, J.; and Tardos, E. 2003. Maximizing the
spread of inffluence through a social network. In ACM SIGKDD,
137–146.

Kempe, D.; Kleinberg, J.; and Tardos, E. 2005. Influential nodes in
a diffusion model for social networks. In International colloquium
on automata, languages and programming No32, 1127–1138.

Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; VanBriesen,
J.; and Glance, N. S. 2007. Cost-effective outbreak detection in
networks. In KDD, 420–429.

Ma, H.; Yang, H.; Lyu, M. R.; and King, I. 2008. Mining social
networks using heat diffusion processes for marketing candidates
selection. In CIKM, 233–242.

Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; and
Teller, E. 1953. Equation of state calculations by fast computing
machines. In Journal of Chemical Physics, 1087–1092.

Mitra, D.; Romeo, F.; and Vincentelli, A. S. 1985. Convergence
and finite-time behavior of simulated annealing. In Proc. of 24th
Conference on Decision and Control, 761 – 767.

Wang, Y.; Cong, G.; Song, G.; and Xie, K. 2010. Community-
based greedy algorithm for mining top-k influential nodes in mo-
bile social networks. In KDD, 1039–1048.

132

