
COSTRIAGE: A Cost-Aware Triage Algorithm
for Bug Reporting Systems

Jin-woo Park, Mu-Woong Lee, Jinhan Kim, Seung-won Hwang Sunghun Kim
POSTECH, Korea, Republic of HKUST, Hong Kong

{jwpark85,sigliel,wlsgks08,swhwang}@postech.edu hunkim@cse.ust.hk

Abstract

‘Who can fix this bug?’ is an important question in bug
triage to “accurately” assign developers to bug reports. To
address this question, recent research treats it as a optimiz-
ing recommendation accuracy problem and proposes a solu-
tion that is essentially an instance of content-based recom-
mendation (CBR). However, CBR is well-known to cause
over-specialization, recommending only the types of bugs
that each developer has solved before. This problem is critical
in practice, as some experienced developers could be over-
loaded, and this would slow the bug fixing process. In this
paper, we take two directions to address this problem: First,
we reformulate the problem as an optimization problem of
both accuracy and cost. Second, we adopt a content-boosted
collaborative filtering (CBCF), combining an existing CBR
with a collaborative filtering recommender (CF), which en-
hances the recommendation quality of either approach alone.
However, unlike general recommendation scenarios, bug fix
history is extremely sparse. Due to the nature of bug fixes,
one bug is fixed by only one developer, which makes it chal-
lenging to pursue the above two directions. To address this
challenge, we develop a topic-model to reduce the sparseness
and enhance the quality of CBCF. Our experimental evalu-
ation shows that our solution reduces the cost efficiently by
30% without seriously compromising accuracy.

1 Introduction

Bug reporting (or issue tracking) systems play an important
role in the software development process. Through bug re-
porting systems, many bug reports are posted, discussed, and
assigned to developers. For example, a big software project
like Mozilla receives more than 300 reports per day (Anvik
2007).

Running a bug reporting system thus has many challenges
including, and bug triage is one of the main challenges. Yet
most triage tasks including bug assignment heavily rely on
manual effort, which is labor intensive and potentially error
prone (Jeong, Kim, and Zimmermann 2009). For example,
miss-assignment causes unnecessary bug reassignments and
slows the bug fixing process (Jeong, Kim, and Zimmermann
2009; Guo et al. 2010).

For this challenge, a state-of-the-art approach (Anvik,
Hiew, and Murphy 2006) treats bug triage as a recommen-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dation problem and proposes a solution that can be viewed
as an instance of content-based recommendation (CBR). We
will denote this as PureCBR, which learns from previous
bug assignment patterns and estimates each developer’s suc-
cess possibilities for fixing reported bugs.

However, in a general recommendation problem, CBR
is well-known to suffer from over-specialization. In other
words, it recommends only the types of bugs that each de-
veloper has solved in the past. This problem is more critical
in practice, as bug assignments will be skewed to few ex-
perienced developers, which will significantly delay the fix
time for these bugs, as they will be assigned to overloaded
developers. As an extreme example, consider a system that
always assigns a bug to a single experienced developer who
has fixed many types of bugs. This system would achieve
high accuracy, but fail to delegate this load to other under-
utilized developers and thus slow down the bug fixing pro-
cess.

This observation leads to two new goals: First, we need
to reformulate the bug triage problem to optimize not only
accuracy but also cost. Second, we need to consider a hybrid
approach, more specifically, a content-boosted collaborative
filtering (CBCF) approach (Melville, Mooney, and Nagara-
jan 2002), combining an existing CBR with a collaborative
filtering recommender (CF). CBCF approach has been re-
ported to perform better than either approach alone.

A key challenge in achieve both goals is sparseness. For
the first goal of optimizing cost, we need to estimate the cost
of developer D fixing bug B. However, the past history only
reports this cost for a single developer who solved B, that
is, one bug is fixed by one developer. This makes it chal-
lenging to estimate the cost for the remaining developers.
For the second goal of leveraging a CF, sparseness is also an
obstacle, as CF requires the collection of information from
developers who have worked on the same bug (collaborat-
ing), which cannot be done using past history. As only one
developer was selected to work on each bug, this approach
is essentially infeasible.

To overcome this sparseness problem, we propose a cost-
aware triage algorithm, COSTRIAGE. COSTRIAGE models
“developer profiles” to indicate developers’ estimated costs
for fixing different types of bugs. “Types” of bugs are ex-
tracted by applying Latent Dirichlet Allocation (LDA) (Blei,
Ng, and Jordan 2003) to bug report corpora. This addresses

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

139

the sparseness problem and enhances the recommendation
quality of CBCF.

Using developer profiles, whenever a new bug is reported,
we first determine the type of the bug, and obtain each de-
veloper’s estimated cost for the bug. Then by combining the
cost with the possibilities estimated by PureCBR, we rank
the developers and assign the first developer to the bug.

We experimentally evaluate COSTRIAGE using four real-
life bug report corpora1,2,3,4, in comparison with two base-
lines: (1)PureCBR, and (2) CBCF. Our experimental results
show that COSTRIAGE significantly reduces cost, without
seriously significantly sacrificing accuracy.

2 Approach

To pursue the dual goals of accuracy and cost, we use two
historical datasets HF and HC . HF consists of the pairs of
〈F (B),D〉, where F (B) is the feature vector of a given bug
B, and D is the developer who fixed B. HC is an m-by-
n matrix of costs for m developers and n fixed bugs. As a
proof-of-concept, we use bug fix time as cost.

For a reported bug, using HF , we identify who can fix
the bug. Meanwhile, using HC , we find how much it will
cost for each developer to fix the bug. Finally, combining
the both results, we rank the developers and choose one to
be assigned.

2.1 Baseline I: PureCBR

Anvik’s algorithm (Anvik, Hiew, and Murphy 2006),
PureCBR, considers bug triage as a multi-class classifica-
tion problem, and utilizes only HF . For each data record in
HF , F (B) is the set of keywords extracted from the title,
descriptions, and other metadata contained in the bug report
B. The developer D, who actually fixed this bug, is the class
of this data record.

After training a multi-class classifier, when a new bug
is reported, PureCBR estimates each developer’s score for
the new bug by extracting its feature vector and applying
the classifier. PureCBR simply picks the developer with the
highest score to assign the reported bug. It thus neglects the
costs of developers to fix the bug.

2.2 Baseline II: CBCF

Adopting PureCBR is a sufficient solution to utilize HF ,
but it disregards HC . We need to utilize both HF and HC .

For a new reported bug B, to be cost aware, we esti-
mate each developer’s cost for fixing B. Even though this
problem seems to be related to CF problems, pure CF algo-
rithms do not work for bug triage data, because we have no
known cost for fixing B. However, by training one classifier
of cost for each developer, CBR or CBCF can be applied.
We choose to apply CBCF because it outperforms CBR in
general (Melville, Mooney, and Nagarajan 2002).

To combine CBCF-based cost estimation with PureCBR,
we introduce the following four-step hybrid procedure:

1Apache, https://issues.apache.org/bugzilla/
2Eclipse, https://bugs.eclipse.org/bugs/
3Linux kernel, https://bugzilla.kernel.org/
4Mozilla, https://bugzilla.mozilla.org/

1. For each developer, a support vector machine (SVM) clas-
sifier is trained using the bug features from the bugs fixed
by the developers and the time spent to fix that as the class.

2. When a new bugB is reported, developers’ cost vectorLC

is estimated. An empty column for B is inserted to HC ,
and each empty cell of HC is filled with the pseudo cost
estimated by the corresponding classifier trained in the
first step. We then apply column-column CF (developer-
developer CF) to HC , to revise the pseudo costs of B.

3. PureCBR is performed to obtain the vector LS of devel-
opers’ success possibilities.

4. LC and LS are merged into one vector LH . Developers
are ranked in descending order of LH , then the first de-
veloper is assigned to B.

The first and the second steps of the procedure exactly
follow Melville’s CBCF algorithm (Melville, Mooney, and
Nagarajan 2002).

In the rest of the paper, we will denote this four-step ap-
proach as CBCF.

Merging LC and LS When we reach the last step, LC and
LS are merged as follows. Formally, LC and LS are:

LC = 〈sC[1], sC[2], · · · , sC[n]〉, LS = 〈sS[1], sS[2], · · · , sS[n]〉,

where sC[i] means the ith developer’s estimated cost to fix

the given bug B, and sS[i] denotes the ith developer’s success
possibility for fixing B, obtained by PureCBR.

To merge the vectors and obtain a hybrid score vectorLH ,

LH = 〈sH[1], sH[2], · · · , sH[n]〉,

a hybrid score sH[i] of a developer is computed as a weighted
arithmetic mean of the normalized sS[i] and sC[i]:

sH[i] = α ·
sS[i]

max(LS)
+ (1− α) ·

1/sC[i]

1/min(LC)
, (1)

where 0 ≤ α ≤ 1. In Equation 1, we take the inverse of
sC[i] because a small sC[i] value means high performance,

i.e., short estimated time to fix B. Both sS[i] and 1/sC[i] are
normalized to have a maximum value of 1. This hybrid com-
putation involves one control parameter, α, to trade-off ac-
curacy with cost.

2.3 Proposed Approach: COSTRIAGE

CBCF tries to utilize both accuracy and cost. However CBCF
has room for improvement, because bug fix history is ex-
tremely sparse. We thus devise developer profiles, which
are compact and unsparse. Our new triage algorithm, COS-
TRIAGE, basically follows the four steps of CBCF, but we
replace the first two steps with a new procedure using the
developer profiles.

Constructing Developer Profiles A developer profile is a
numeric vector, in which each element denotes the devel-
oper’s estimated cost for fixing a certain bug type. The bug
type means that if some bugs belong to the same type, these
bugs share very similar features. More formally, a developer
profilePu is a T -dimensional vector of numeric scores pu[i]:

Pu = 〈pu[1], pu[2], · · · , pu[T]〉, (2)

140

Table 1: An LDA model of bug reports for Mozilla. T = 7. Top-10 representative words with the highest probabilities.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

c 0.058 mozilla 0.047 js 0.028 window 0.023 html 0.026 windows 0.042 bug 0.036
line 0.058 firefox 0.024 error 0.018 page 0.019 text 0.018 mozilla 0.042 bugzilla 0.012

cpp 0.040 add 0.014 mozilla 0.018 click 0.016 table 0.013 gecko 0.029 cgi 0.009
int 0.032 version 0.010 file 0.014 menu 0.014 document 0.011 rv 0.028 code 0.008

mozilla 0.032 update 0.010 test 0.011 button 0.013 image 0.010 results 0.025 id 0.008
src 0.026 thunderbird 0.010 function 0.011 open 0.013 style 0.010 user 0.023 bugs 0.008

const 0.023 file 0.008 ns 0.010 text 0.012 content 0.009 build 0.020 time 0.007
unsigned 0.020 files 0.008 c 0.010 dialog 0.010 page 0.009 message 0.019 patch 0.007

bytes 0.019 added 0.007 chrome 0.009 select 0.009 type 0.009 nt 0.019 set 0.005
builds 0.018 install 0.007 content 0.009 search 0.009 id 0.009 firefox 0.018 fix 0.005

where pu[i] denotes the developer’s cost for ith-type bugs
and T denotes the number of bug types.

To model developer profiles, we need to address two ma-
jor problems: (1) how to categorize bugs to determine bug
types, and (2) how to obtain the profile of each developer.

� Categorizing Bugs: One naive way to define types of bugs
is to assume that each reported bug belongs to its own spe-
cific type. This means that if N distinct bugs have been re-
ported, N types of bugs exist, i.e., T = N . Clearly this
approach is not desirable for our problem, because the di-
mensionality of the profiles would be both too large and un-
bounded. Therefore, we devise a method to define a small
and limited number of bug types, adopting LDA.

The basic idea of LDA is that a document is a mixture of
latent topics, and that each topic is characterized by a dis-
tribution of words. For a given number of topics T and a
corpus of documents, where each document is a sequence
of words, LDA extracts T topics from the corpus. After the
topics are extracted, the LDA model of these topics can be
used to determine the distribution of topics for each docu-
ment.

To apply LDA, one main question is “what is the natural
number of topics in a corpus?” Although it may be explic-
itly answered, obtaining such information is often difficult.
To address this challenge, we adopt Arun’s divergence mea-
sure (Arun et al. 2010), because it has more robust behaviors
than others (Cao et al. 2009; Zavitsanos et al. 2008).

In the context of bug reports, for using LDA, each bug
report can be considered as a document, which consists of
words that are explicitly stated in bug reports. Table 1 illus-
trates an LDA model of 48,424 Mozilla bug reports.

Each topic in an LDA model is represented as proba-
bilities that words will occur. For instance, Topic 1 of the
Mozilla project consists of 5.8% c, 5.8% line, 4.0% cpp,
3.2% int, and 3.2% mozilla. Then, to determine the type of a
given bug report (document), we compute probabilities that
words will occur in the report, and choose the topic with the
most similar probability distribution. That is, for a given bug
report, the bug is an ith-type bug if its most related topic is
Topic i in the LDA model.

� Obtaining Profiles: After determining bug types, for each
developer Du, we quantify each value pu[i] of the devel-

oper’s profile Pu as the average time to fix ith type bugs.
We only consider the bugs which were fixed by Du.

Table 2 shows example profiles constructed from Mozilla
bug reports. On average, developerD1 took 14.28 days to fix
4th-type bugs, and 5.44 days to fix 6th-type bugs. In clear
contrast, D2 took 1.75 days to fix 4th-type bugs, and 12.90
days to fix 6th-type bugs. This suggests that these developer
profiles clearly reveal the differences between developers.

Table 2: Sparseness of developer profiles obtained from bug
reports for Mozilla project. There are many blanks in the
profiles, and this may incur some overspecialization prob-
lems. The 2th-type bugs will always be assigned to Devel-
oper D1. Likewise, to D4, only 6th or 7th-type bugs are as-
signed.

Bug types

Dev 1 2 3 4 5 6 7

D1 7.73 1.71 8.59 14.28 7.54 5.44 8.45

D2 8.18 - 3.50 1.75 4.00 12.90 13.18

D3 11.56 - 60.50 23.50 - 2.67 19.20

D4 - - - - - 22.40 20.75

A key challenge in developer profile modeling is sparse-
ness. LDA partially addresses sparseness by condensing the
data. For the Mozilla corpus, we now know the cost of each
bug type for 406 different developers (from 1165 develop-
ers in total) rather than just one cost per bug. However, the
challenge still remains. Some values in Pu cannot be deter-
mined, if the developer Du did not fix some types of bugs.
The profiles in Table 2 thus have some blanks with unde-
termined costs. We thus discuss how to further address this
sparseness problem by filling blanks.

Predicting Missing Values in Profiles To fill in the blanks
in developers’ profiles, we use CF. For a missing value pu[i]
in a profile Pu, we predict its value as an aggregation of the
corresponding values in the profiles of other developers:

pu[i] = F (Pu)×

∑
∀Pv∈Nu

S(Pu,Pv) ·
(

pv[i]

F (Pv)

)
∑

∀Pv∈Nu
S(Pu,Pv)

, (3)

where Nu is a set of neighborhood developers’ profiles, and
S() denotes the similarity between two profiles. F (Pu) is a
scaling factor, which is computed as the maximum known
value in Pu, to normalize each profile. In this aggregation
process, we only consider the profiles Pv ∈ Nu which have
pv[i], i.e., we ignore the profiles with missing pv[i].

141

The similarity between two profiles is computed as their
cosine similarity:

S(Pu,Pv) =
Pu · Pv

‖Pu‖‖Pv‖
× ω(Pu,Pv), (4)

where ‖ · ‖ denotes its L2 norm (Euclidean length). To com-
pute the dot product, Pu · Pv, and the L2 norms, ‖Pu‖ and
‖Pv‖, we only consider dimensions in which the values exist
in both profiles.

In Equation 4, ω(Pu,Pv) is a significance weighting fac-
tor, which is a simple but very effective way to prevent over
estimation of the similarities (Herlocker, Konstan, and Riedl
2002; Ma, King, and Lyu 2007). The significance weighting
factor is computed as:

ω(Pu,Pv) = min

(
|Pu ∩ Pv|

Θ
, 1

)
, (5)

where Θ is a given threshold, and |Pu ∩ Pv| denotes the
number of dimensions in which both profiles have known
values. If only a small number of dimensions have values
in both profiles, considering only those dimensions would
devalue the similarity between two profiles.

Based on this similarity notion, to determine the set Nu

of neighborhood profiles, we pick the top-k most similar
profiles to Pu. Then by aggregating Nu, we can fill up the
blanks in Pu. To illustrate, Table 3 shows the example pro-
files introduced in Table 2, after we fill up the blanks using
CF.

Table 3: Developer profile examples introduced in Table 2.
Missing values were filled up using CF.

Bug types

Dev 1 2 3 4 5 6 7

D1 7.73 1.71 8.59 14.28 7.54 5.44 8.45

D2 8.18 6.40 3.50 1.75 4.00 12.90 13.18

D3 11.56 27.22 60.50 23.50 40.52 2.67 19.20

D4 13.18 12.99 10.97 11.41 15.14 22.40 20.75

After we fill up all blanks in the profiles, for a given
bug report, we can find out all developers’ estimated costs,
LC , by determining the most relevant topic using the LDA
model. Then PureCBR is also performed to obtain LS , and
we merge LC and LS into LH , in the same way of CBCF.

3 Experimental Results

In this section, we discuss our experimental setup and
present our results. We design our experiments to address
two research questions:

Q1 How much can our approach improve cost (bug fix time)
without sacrificing bug assignment accuracy?

Q2 What are the trade-offs between accuracy and cost (bug
fix time)?

3.1 Setup

We evaluate our approach using bug reports from four open
source projects: Apache, Eclipse, Linux kernel, and Mozilla.

To model developer profiles, we compute the time spent
to fix a given bug, which is explicitly observable. We use a
common equation (Kim and Whitehead 2006) to compute
bug fix time for a fixed bug b in reports:

bug fix time of b (in days) =

fixed time of b− assigned time of b+ 1 day, (6)

where ‘fixed time’ is the time when fixing is complete, and
‘assigned time’ is the time of the first assignment to the fixer.
These fix and assignment time data are recorded in bug re-
port history.

However, we are not able to compute the fix time for the
non-fixed bugs and bugs with no explicit assignment infor-
mation. We consider them invalid bug reports, and only use
valid bugs with assignment information in our experiments.

Like PureCBR, we consider only active developers.
Mozilla has 1,165 developers, but about 637 developers have
fixed less than 10 bug reports in 12 years. We do not consider
these inactive developers, since they do not have sufficient
information to build their profiles.

To filter out inactive developers, we use the interquartile
range (IQR) of bug fix numbers of each developer (Han and
Kamber 2006), i.e.,

IQR = (the third quartile)− (the first quartile).

Higher distributions than IQR can be considered as active
because IQR is essentially the measure of central distribu-
tions. We thus considered developers whose bug fix number
is higher than IQR as active developers.

In total, we extracted 656 reports and 10 active developers
from Apache, 47,862 reports and 100 active developers from
Eclipse, 968 reports and 28 active developers from Linux
kernel, and 48,424 reports and 117 active developers from
Mozilla as shown in Table 4.

Bug Feature Extraction We extract features from bug re-
ports in a similar way to PureCBR. First we extract features
from bug report metadata such as version, platform, and tar-
get milestone. We also extract features (i.e., words) from the
bug report text description. We preprocess the text descrip-
tion to remove unnecessary words such as stop words, nu-
merics, symbols and words whose length is more than 20
characters.

To train an SVM model for these reports for PureCBR,
we convert these bug reports into the pairs of 〈F (B),D〉 as
mentioned in Section 2.1. Each report has a feature vec-
tor which consists of extracted words and their occurrence
counters. We obtained 6,915, 61,515, 11,252 and 71,878 fea-
tures from Apache, Eclipse, Linux kernel and Mozilla cor-
pora respectively.

We adopt a widely used SVM implementation SVM-light5

with a linear kernel. We empirically tuned parameter c to
1000 with the best performance. We set other parameters to
default values.

Developer Profiles Modeling To model developer pro-
files, we first perform LDA on valid bug reports in each
project. Since the LDA results vary based on the T value,

5http://svmlight.joachims.org/

142

Table 4: Subject systems

Projects # Fixed
bug reports

Valid
bug reports

Total
developers

Active
developers

Bug types # Words Period

Apache 13,778 656 187 10 19 6,915 2001-01-22 - 2009-02-09
Eclipse 152,535 47,862 1,116 100 17 61,515 2001-10-11 - 2010-01-22

Linux kernel 5,082 968 270 28 7 11,252 2002-11-14 - 2010-01-16
Mozilla 162,839 48,424 1,165 117 7 71,878 1998-04-07 - 2010-01-26

it is important to select the “optimal” value. To choose T ,
we adopt the divergence measure proposed in (Arun et al.
2010), as we discussed in Section 2.3. The optimal T min-
imizes the divergence between the document-word matrix
and the topic-word matrix. Formally:

T = argmin
t

KL Divergence(t) (7)

Such T corresponds to the lowest KL Divergence
value. In our experiments, the optimal T are 19, 17, 7, and
7 for Apache, Eclipse, Linux kernel, and Mozilla projects’
bug report corpora respectively.

After determining the optimal number of topics, T , of
each bug report corpus, we identify the bug type of each
valid bug report. We evaluate the scores of each topic in a
report, and then determine the report’s bug type as the topic
which has the highest score. Scores are the sum of extracted
word distributions related to each topic respectively, from
the title and the description in the bug report. For bug re-
ports which have no topic words, we assign the reports’ bug
types randomly.

We then model the developer profiles of active developers.
We first evaluate each developer profile (Table 2). However,
we could not compute all values, because some developers
had never been assigned certain types of bugs as mentioned
in Section 2.3. In this case, we predict missing values using
CF and complete modeling profiles of active developers (as
illustrated in Table 3).

To evaluate the effectiveness of our profile modeling, we
compute the relative error of expected bug fix time, using
the four corpora. COSTRIAGE generally outperformsCBCF,
especially for the case of the Apache corpus (Table 5).

Table 5: The relative error of expected bug fix time. We use
the first 80% of bug reports in the four corpora as a training
set and the rest as a test set to compute the error.

Apache Eclipse Linux Mozilla

CBCF 51.23 10.62 25.31 10.67

COSTRIAGE 19.18 16.66 9.25 8.76

Evaluation To evaluate the algorithms, we use two mea-

sures: Accuracy = |W |
|N | , and

Average bug fix time =

∑
∀wi∈W {bug fix time of wi}

|W |
,

where W is the set of bug reports predicted correctly, and
N is the number of bug reports in the test set. Because the
“real” fix time for mismatched bugs is unknown, we only
use the fix time for correctly matched bugs to compute the
average fix time for a given set of bugs.

We use the first 80% of bug reports as a training set and
the remaining 20% as a test set to conduct our experiments.

3.2 Results

This section presents our experimental results and addresses
the research questions raised at the beginning of this section.

Improving Bug Fix Time We apply COSTRIAGE, CBCF,
and PureCBR to our subjects, and compare accuracy and
bug fix time of the three approaches.

Table 6 shows the comparison results. Using PureCBR,
the accuracy is 69.7% for Apache. On average, a developer
takes 32.3 days to fix one bug for Apache. By controlling
the parameter α for each of CBCF and COSTRIAGE, we
match the accuracy of both CBCF and COSTRIAGE, to fairly
compare their cost savings. For the Apache corpus, in one
setting, both CBCF and COSTRIAGE sacrifice about 5.5%
of accuracy, i.e., the both methods show 65.9% accuracy,
but COSTRIAGE significantly outperforms CBCF in terms
of cost. While CBCF only reduces the cost by 2.2%, COS-
TRIAGE reduces it by more than 30%.

Table 6: Average bug fix time and accuracy using PureCBR,
and reducing ratio of time and accuracy using CBCF and
COSTRIAGE.

Reducing ratio
PureCBR CBCF COSTRIAGE

Project Time Acc Time Acc Time Acc

Apache 32.3 69.7 -2.2% -5.5% -31.0% -5.5%

Eclipse 17.9 40.4 -5.6% -5.0% -10.6% -5.0%

Linux 55.3 30.9 -24.9% -4.9% -28.9% -4.9%

Mozilla 11.3 64.3 -4.4% -5.0% -7.1% -5.0%

Trade-off between Accuracy and Bug Fix Time In this
section, we observe the trade-offs between bug assignment
accuracy and bug fix time using COSTRIAGE compared to
CBCF.

We apply COSTRIAGE and CBCF to the four subjects with
varying α to observe the trade-offs between accuracy and
average bug fix time. Figure 1 shows the relation graphs

143

0 5 10 15 20 25 32.3
0

15

30

45

60

75
69.7

Average time to fix a bug [day]

A
cc

ur
ac

y
[%

]

CosTriage
CBCF

0 5 10 15 2017.9
0

15

30

45
40.4

Average time to fix a bug [day]

A
cc

u
ra

cy
 [

%
] CosTriage

CBCF

(a) Apache (b) Eclipse

0 10 20 30 40 55.3
0

5

10

15

20

25

35

30.9

Average time to fix a bug [day]

A
cc

ur
ac

y
[%

]

CosTriage
CBCF

2 4 6 8 10 11.3
0

10

20

30

40

50

70
64.3

Average time to fix a bug [day]

A
cc

ur
ac

y
[%

] CosTriage
CBCF

(c) Linux kernel (d) Mozilla

Figure 1: The trade-offs between accuracy and bug fix time

between time and accuracy. The x-axis represents the av-
erage time to fix one bug, and the y-axis represents bug-
assignment accuracy.

The range of the fix time is 1.3 to 32.3 days, while the
accuracy is 4.5 to 69.7% for Apache. Eclipse has a fix time
of 3.1 to 17.9 days, when the accuracy is 0.3 to 40.4%. The
fix time is 1.0 to 55.3 days at an accuracy of 3.6 to 30.9%
for Linux kernel. Mozilla has a fix time of 3.3 to 64.3 days,
while the accuracy is 2.7 to 64.3%.

These relation graphs in Figure 1 show clear trade-offs
between accuracy and average bug fix time for bug triage.
As accuracy decreases, average bug fix time decreases. It
is possible to sacrifice the accuracy to reduce the average
bug fix time. However, we observe that the average bug fix
time drops much more quickly than the accuracy as shown
in these graphs. That is, COSTRIAGE significantly reduces
cost without sacrificing much accuracy. Meanwhile, in com-
parison with COSTRIAGE, CBCF sacrifices accuracy much
more to reduce cost in most cases.

These trade-offs of COSTRIAGE can be used in various
scenarios in practice. For example, if a manager wants to fix
bugs relatively quickly, she can tune COSTRIAGE to reduce
average bug fix time. These clear trade-offs of COSTRIAGE

provide flexibility for triagers who want to assign bug re-
ports to developers accurately or efficiently.

4 Conclusions

We proposed a new bug triaging technique, COSTRIAGE,
by (1) treating the bug triage problem as a recommendation
problem optimizing both accuracy and cost and (2) adopting
CBCF combining two recommender systems. A key chal-
lenge to both techniques is the extreme sparseness of the past
bug fix data. We addressed the challenge by using a topic-
model to reduce the sparseness and enhanced the quality of
CBCF. Our experiments showed that our approach signifi-
cantly reduces the cost without significantly sacrificing ac-
curacy. Though we used a proof-of-concept implementation

by using bug fix time as cost, our developer profile model is
general enough to support other code indicators such as in-
terests, efforts, and expertise to optimize for both accuracy
and cost for automatic bug triage.

Our algorithm is not restricted to only bug triage prob-
lems. Any recommendation techniques involving two objec-
tives can potentially adopt our algorithm. For example, iden-
tifying experts for a question in QA (Question & Answer)
systems is a problem of matching a question to an expert,
and our algorithm can utilize both side needs of questioner
and answerer.

Acknowledgement

This research was supported by National IT Industry Pro-
motion Agency (NIPA) under the program of Software En-
gineering Technologies Development, the Engineering Re-
search Center of Excellence Program of Korea Ministry of
Education, Science and Technology (MEST) / National Re-
search Foundation of Korea (NRF) (Grant 2011-0000979),
and the 2010 Microsoft Software Engineering Innovation
Foundation Awards.

References
Anvik, J.; Hiew, L.; and Murphy, G. C. 2006. Who should fix this
bug? In ICSE ’06.

Anvik, J. 2007. Assisting Bug Report Triage through Recommen-
dation. Ph.D. Dissertation, University of British Columbia.

Arun, R.; Suresh, V.; Madhavan, C. E. V.; and Murthy, M. N. N.
2010. On finding the natural number of topics with latent dirichlet
allocation: Some observations. In PAKDD ’10.

Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet
allocation. In The Journal of Machine Learning Research ’03.

Cao, J.; Xia, T.; Li, J.; Zhang, Y.; and Tang, S. 2009. A density-
based method for adaptive lda model selection. In Neurocomput-
ing.

Guo, P. J.; Zimmermann, T.; Nagappan, N.; and Murphy, B. 2010.
Characterizing and predicting which bugs get fixed: an empirical
study of microsoft windows. In ICSE ’10.

Han, J., and Kamber, M. 2006. Data Mining: Concepts and Tech-
niques.

Herlocker, J.; Konstan, J. A.; and Riedl, J. 2002. An empirical
analysis of design choices in neighborhood-based collaborative fil-
tering algorithms. In Information Retrieval ’02.

Jeong, G.; Kim, S.; and Zimmermann, T. 2009. Improving bug
triage with bug tossing graphs. In ESEC/FSE ’09.

Kim, S., and Whitehead, Jr., E. J. 2006. How long did it take to fix
bugs? In MSR ’06.

Ma, H.; King, I.; and Lyu, M. R. 2007. Effective missing data
prediction for collaborative filtering. In SIGIR ’07.

Melville, P.; Mooney, R. J.; and Nagarajan, R. 2002. Content-
boosted collaborative filtering for improved recommendations. In
AAAI ’02.

Zavitsanos, E.; Petridis, S.; Paliouras, G.; and Vouros, G. A. 2008.
Determining automatically the size of learned ontologies. In ECAI
’08.

144

