
Spectrum-Based Sequential Diagnosis

Alberto Gonzalez-Sanchez
Department of Software Technology

Delft University of Technology, The Netherlands

Rui Abreu
Department of Informatics Engineering

University of Porto, Portugal

Hans-Gerhard Gross and Arjan J. C. van Gemund
Department of Software Technology

Delft University of Technology, The Netherlands

Abstract

We present a spectrum-based, sequential software debugging
approach coined SEQUOIA, that greedily selects tests out of
a suite of tests to narrow down the set of diagnostic can-
didates with a minimum number of tests. SEQUOIA han-
dles multiple faults, that can be intermittent, at polynomial
time and space complexity, due to a novel, approximate di-
agnostic entropy estimation approach, which considers the
subset of diagnoses that cover almost all Bayesian posterior
probability mass. Synthetic experiments show that SEQUOIA

achieves much better diagnostic uncertainty reduction com-
pared to random test sequencing. Real programs, taken from
the Software Infrastructure Repository, confirm SEQUOIA’s
better performance, with a test reduction up to 80% compared
to random test sequences.

Introduction

Multiple observations (tests) are often required to achieve
acceptable diagnostic certainty. In sequential diagnosis
(SD) one computes the optimal sequence of tests that (on
average) minimizes both testing cost Ct, and diagnostic cost
Cd

1, i.e., the subsequent testing effort by the diagnostician
to find the actual diagnosis within the list of candidates re-
turned after expendingCt of testing. SD approaches are typ-
ically found in the (hardware) systems testing domain where
system knowledge is encoded in terms of predetermined
test matrices (e.g., (Shakeri et al. 2000)), or in the model-
based diagnosis domain where system models are available
(e.g., (Kuhn et al. 2008; Feldman, Provan, and van Gemund
2010)). Due to complexity problems, in the software do-
main, the domain considered in this paper, most model-
based approaches are limited to small programs and/or must
take a single-fault assumption, and statistical debugging ap-
proaches have been typically used instead. To further com-
plicate matters, in (Pattipati and Alexandridis 1988) it was
proven that obtaining an optimal sequence of tests for SD,
even for a single-fault, is an NP-Hard optimization problem
and can only be approximated in practice.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Not necessarily in terms of the algebraic sum as testing cost
and diagnostic cost can have different dimensions, e.g., CPU time,
and human labor, respectively.

Recently, a Bayesian reasoning approach has been de-
scribed that considers the program’s component involve-
ment in tests on the one hand (expressed in terms of so-
called spectra), and the test outcomes (pass/fail) on the other
hand. In (Abreu and van Gemund 2010) it is shown that
this spectrum-based reasoning approach offers high accu-
racy (i.e., low Cd) provided sufficient tests are available.
While the above approaches do involve multiple observa-
tions (e.g., an entire regression test suite) they do not qualify
as SD since the choice of tests is random rather than gen-
erating/selecting the next best test based on the diagnosis
obtained thus far. Hence, the trade-off between Cd and Ct

for random strategies is far from optimal.
In this paper, we present a spectrum-based SD approach

and an associated algorithm, dubbed SEQUOIA (SEQUenc-
ing fOr dIAgnosis), that greedily computes a sequence out
of a large set of given tests that delivers near-optimal diag-
nostic performance in terms of the decay of Cd as function
of the number of tests. Unlike statistical techniques, which
have insufficient diagnostic accuracy to select the next best
test, we use an approximate, Bayesian reasoning approach of
polynomial complexity, which provides the required accu-
racy at acceptable cost. Similar to approaches based on a test
coverage matrix such as (Shakeri et al. 2000), the tests are
selected from a fixed test set. Unlike multiple-fault, matrix-
based approaches, however, our approximate, Baysian ap-
proach can handle very large system sizes and test set sizes.
Furthermore, unlike MBD approaches such as (Kuhn et al.
2008; Feldman, Provan, and van Gemund 2010) no system
information is required, other than component test coverage,
which is typically known from test execution profiling. We
evaluate SEQUOIA for synthetic tests which allow us to as-
sess its performance potential for parameters such as sys-
tem size, test set size, number of faults, component cover-
age probability, component fault intermittency, etc. Further-
more, we evaluate SEQUOIA for real-world programs taken
from the SIR benchmark suite of programs (Do, Elbaum,
and Rothermel 2005). Our results show that especially for
the first (most important) tests the decay of diagnostic cost
Cd per test of SEQUOIA is significantly better than random.

Spectrum-based Fault Diagnosis

Definition A diagnostic system DS is defined as the triple
DS = 〈SDT ,COMPS ,OBS 〉, where SDT is a propo-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

189

sitional theory describing the behavior of the system,
COMPS = {c1, . . . , cm, . . . , cM} is a set of components
in SDT , of which Mf = 0, . . . ,M can be simultaneously
faulty, and OBS is a set of observable variables in SDT .

With each component cm ∈ COMPS we associate a
health variable hm which denotes component health. The
health states of a component are either healthy (hm = true)
or faulty (hm = false).

Definition An h-literal is hm or ¬hm for cm ∈ COMPS .

Definition An h-clause is a disjunction of h-literals contain-
ing no complementary pair of h-literals.

Definition A conflict of (SDT ,COMPS ,OBS) is an h-
clause of negative h-literals entailed by SDT ∪OBS.

Definition Let IN and IP be two disjoint sets of com-
ponents indices, faulty and healthy, respectively, such that
COMPS = {cm |m ∈ IN ∪ IP } and IN ∩ IP = ∅. We de-

fine d(IN , IP) as the conjunction (
∧

m∈IN

¬hm)∧(
∧

m∈IP

hm)

A diagnosis candidate is a sentence describing one possi-
ble state of the system, where this state is an assignment of
the status healthy or not healthy to each system component.

Definition A diagnosis candidate d(IN , IP) for DS given
an observation obs over variables in OBS is such that

SDT ∧ obs ∧ d(IN , IP) �⊥

In the remainder we refer to d(IN , IP) simply as d, which
we identify with the set IN of indices of the negative literals.

Definition A diagnostic report is an ordered set D =<
d1, . . . , dk, . . . , dK > of K diagnosis candidates, sorted by
posterior probabilityPr(dk), for which SDT ∧obs∧dk �⊥.

Diagnostic performance is expressed in terms of a cost
metric Cd that measures the excess effort incurred in finding
all components at fault (residual diagnostic effort). Cd mea-
sures wasted effort, independent of the number of faults Mf

in the program, to enable an unbiased evaluation of the effect
of Mf on Cd. Thus, regardless of Mf , Cd = 0 represents
an ideal diagnosis technique (all Mf faulty components on
top of the ranking, no effort wasted on testing other com-
ponents to find they are not faulty), while Cd = M − Mf

represents the worst case (testing all M −Mf healthy com-
ponents until arriving at the Mf faulty ones). This model
is inspired by similar ones used in previous work (Abreu
and van Gemund 2010). For example, consider an M = 5
component program with the following diagnostic report
D = 〈{4, 5}, {4, 3}, {1, 2}〉, while c1 and c2 are actually
faulty. The first diagnosis candidate leads the developer to
inspect c4 and c5. As both components are healthy, Cd is
increased by 2. The new information that Pr({4, 5}) = 0
leads to discarding {4, 3} (c4 can no longer be part of a mul-
tiple fault), The next components to be inspected are c1 and
c2. As they are both faulty, no more effort is wasted, and
consequently, Cd = 2.

Spectrum-based Candidate Generation

In the production of the consistent candidates for D, typi-
cal search algorithms are, e.g., GDE (de Kleer and Williams
1987), SAFARI (Feldman, Provan, and van Gemund 2010).
In the case of spectrum-based candidate generation for SD
we use a minimal hitting set algorithm (MHS) (e.g. (Abreu
and van Gemund 2009; de Kleer and Williams 1987)) to
compute a set of minimal diagnoses (candidates that are not
subsumed by another of lower fault cardinality, i.e., number
of negative h-literals Mf = |d|. A minimal diagnosis is a
minimal hitting set over all conflicts).

In software, a test produces a sequence of component ac-
tivity (e.g., statement execution) that results in a particu-
lar return value. The result of a process is either nominal
(“pass”) or an error (“fail”).

Definition Let Sf = {cm|cm involved in a failing process},
and let Sp = {cm|cm involved in a passing process}, denote
the fail set and pass set, respectively.

In software, fail and pass sets are also known as (execu-
tion) spectra (Abreu, Zoeteweij, and van Gemund 2007;
Harrold et al. 1998), and originate from dynamically profil-
ing the software components (e.g., statements or modules)
during each program run, hence the name spectrum-based
diagnosis.

Definition Let N denote the number of passing and failing
processes (tests). Let Nf and Np, Nf + Np = N , denote
the number of fail and pass sets (spectra), respectively. Let A
denote the N ×M activity matrix of the system, where anm
denotes whether component m was involved in process n
(anm = 1) or not (anm = 0). Let e denote the error vector,
where en signifies whether process n has passed (en = 0)
or failed (en = 1).

In spectrum-based diagnosis, each component cm is mod-
eled by the abstract, weak fault model (WFM)

hm =⇒ (okm,inp =⇒ okm,out)

where okm,inp and okm,out denote the (binary) correctness
of the component’s input and output. If the output is not
correct, we can be sure that cm is not healthy. However, the
fact that a the output is correct does not guarantee that cm is
healthy.

In our software setting, we know test inputs are always
correct, but output correctness depends on the presence of
bugs in the program and whether that specific input triggers
the bug or not. Some inputs can be coincidentally correct,
depending on the nature of the program and the test. For ex-
ample, consider the integer division x / 10, where 10 is
a fault that should have been 15. Consider two input values
x = 15, and x = 20, respectively. In the first case, the
component produces a correct output (15/10 = 15/15 = 1),
whereas in the second case the component fails (20/10 =
2 �= 20/15 = 1). Hence, the division component (state-
ment) exhibits intermittent failure behavior.

We compute the candidates by applying the STACCATO

MHS algorithm (Abreu and van Gemund 2009) to the fail
and the pass sets. STACCATO computes MHS solutions in
approximate order of posterior probability, exploiting the

190

pass sets to optimize search order. As a result, all probabil-
ity mass is concentrated in the first λ MHS solutions in D,
where even small λ (O(M)) produces no difference in terms
of Cd compared to a non-truncated diagnosis D (Abreu and
van Gemund 2009).

Candidate Probability Computation

Given the multitude of candidates that are typically gen-
erated, the ranking within D induced by posterior proba-
bility computation is critical to diagnostic accuracy. Let
Pr(m) = pm denote the prior probability that a component
cm is at fault. Assuming components fail independently the
prior probability of a candidate dk is given by

Pr(dk) =
∏

m∈IN

Pr({m}) ·
∏

m∈IP

(1− Pr({m})) (1)

For each observation obsn = (An∗, en) the posterior proba-
bilities are updated according to Bayes’ rule

Pr(dk|obsn) =
Pr(obsn|dk)

Pr(obsn)
· Pr(dk|obsn−1) (2)

The initial value Pr(dk|obs0) (i.e., no observations are avail-
able) corresponds to the prior Pr(dk). The denominator
Pr(obsn) is a normalizing term that is identical for all dk and
thus needs not be computed directly. Pr(obsn|dk) is defined
for intermittent components by

Pr(obsn|dk) =

⎧⎪⎪⎨
⎪⎪⎩

∏
cm∈dk∧anm=1

gm if en = 0

1−
∏

cm∈dk∧anm=1

gm if en = 1
(3)

where gm models the component’s failure intermittency, i.e.,
probability that a faulty component will not cause a failure
when covered in a test (a false negative). This assumes an
or-model: the test will fail when either faulty component
fails (an or-model) (Kuhn et al. 2008; Abreu, Zoeteweij, and
van Gemund 2009). In this paper we will assume the gm
are available, either by definition, or from prior mutation
analysis (Voas 1992).

Example We will illustrate Bayesian diagnosis with one
example. Let us assume the function in Table 1, composed
by 8 source code statements. We have a set of 6 available
test inputs, that cover different statements of the program, as
per matrix A. For simplicity, we will assume that all state-
ments have identical prior probability pm = 0.1 (this prior
is much lower in real programs, but allows the numbers in
the example to be easier to understand), and that there is no
intermittency (gm = 0).

Given the activity matrix A and observations e in Table 1,
the MHS algorithm would produce the candidate set D =
{{1}, {2}, {4}, {8}, {3, 5}, {3, 6}, {5, 6}, {5, 7}}. The ini-
tial probability of the single-fault candidates correspond to
Pr(dk) = pm · (1 − pm)7 = 0.05, whereas for the double-
fault candidates it is Pr(dk) = p2m · (1 − pm)6 = 0.005.
But since by the MHS we assume the candidates in D are
the only ones possible, their prior probabilities are normal-
ized to Pr(dk) = 0.23 and Pr(dk) = 0.02 for single- and

A
Program: Character Counter t1 t2 t3 t4 t5
function count(char * s) {

int let, dig, other, i;

c1 while(c = s[i++]) { 1 1 1 1 1
c2 if (’A’<=c && ’Z’>=c) 1 1 1 1 0
c3 let += 1; 1 1 0 0 0
c4 elsif (’0’<=c && ’9’>=c) 1 1 1 1 0
c5 dig += 2; /* FAULT */ 0 1 0 1 0
c6 elsif (isprint(c)) 1 0 1 1 0
c7 other += 2; /* FAULT */ 1 0 0 0 0
c8 printf("%d %d %d\n", 1 1 1 1 1

let, dig, others);}

Test case outcomes (e) 1 1 0 1 0

Table 1: Example program and activity matrixA (transposed
for readability)

double-fault candidates respectively. During the Bayesian
update, the posterior probabilities of each candidate would
evolve, until only {3, 5} and {5, 7} remain as candidates
with non-null probability Pr({3, 5}) = Pr({5, 7} = 0.5.
The remaining MHS candidates are discarded at some test.
For example, {4} gets discarded in t3 since Pr(0|{4}) = 0.

The final ranking is D = {{5, 7}, {3, 5}}. Since both
candidates have equal probability, there is a 50% chance of
inspecting c3, therefore the residual diagnostic effort value
is Cd = 0.5 · 1 + 0.5 · 0 = 0.5.

SEQUOIA

The diagnostic procedure outlined in the previous section
does not consider how A is composed. A is merely pro-
cessed in terms of MHS candidate generation and the subse-
quent, Bayesian posterior probability computation per can-
didate. From SD perspective, this would correspond to a
random ordering (of rows), i.e., a passive approach.

SEQUOIA is a spectrum-based SD algorithm that greedily
selects the next best test (row) fromA based on the diagnosis
obtained thus far. As our principal optimization target Cd

cannot be computed (since we do not know the actual health
state d∗), we can only reason in terms of the expectation
E[Cd]. Experiments have shown that the entropyH of D is a
very good predictor for E[Cd] as it expresses the uncertainty
in D2. Consequently, we shall use the entropy drop ΔH
(aka information gain (Johnson 1960)) of a diagnosis D as
test selection criterion. The next best test is the one that
yields the highest ΔH averaged over the two possible test
outcomes (pass/fail), according to

ΔH(Dn−1, i) = H(Dn−1) −

Pr(ei = 0) · H(Dn|ei = 0) −

Pr(ei = 1) · H(Dn|ei = 1)

where Dn|ei = 0 represents the updated probabilities of the
current diagnosis D if test i passes, Dn|ei = 1 if it fails.
Both Dn|ei = 0 and Dn|ei = 1 consider only the bayesian
update, without re-calculating the MHS, since otherwise the

2D need not be a minimal diagnosis. H is defined for any D as
long as posteriors are associated with the dk.

191

algorithm would requireN2 MHS calculations instead ofN .
H(Dn) is defined as

H(Dn) = −
∑

dk∈Dn

Pr(dk|obsn) · log2(Pr(dk|obsn)) (4)

Conceptually, when considering all possible test outcome
combinations, a test suite prioritized for diagnosis is a binary
tree with O(2N) nodes. However, if performed on line, only
the O(N) nodes corresponding to the current test path are
expanded. In theory, given our Bayesian approach to mul-
tiple, intermittent fault diagnosis, computing D has O(2M)
cost. Bearing in mind the fact that each step in SD involves
selecting the best test out ofN candidates (i.e., computingN
diagnoses per step), finding a diagnostic technique that pairs
accuracy with sufficiently low complexity is a formidable
challenge in SD.

Example Let us calculate ΔH for test t3. In our ex-
ample system, after t1 and t2 have been executed, the
MHS algorithm and Bayesian update produce D2 =
{{1}, {2}, {3}, {4}, {8}, {5, 6}, {5, 7}}, with Pr(dk) =
0.199 for the single-fault candidates, and Pr(dk) = 0.002
for the double-fault candidates. H(D2) = 2.35

Should t3 fail, candidates {3} and {5, 7} would be
dropped from D since Pr(e = 1|{3}) = Pr(e =
1|{5, 7}) = 0. The probability of a failure is Pr(e =
1) = 4 · 0.199 + 0.002 = 0.798. The updated proba-
bility of {1}, {2}, {4}, and {8}, is Pr(dk) = 0.249 and
Pr({5, 6}) = 0.004. The entropy H(D3|e = 1) = 2.06

On the other hand, should t3 pass, the only remaining can-
didates in D would be precisely {3} and {5, 7}. The prob-
ability of the test passing is Pr(e = 0) = 1 − Pr(e =
1) = 0.202. The updated candidate probabilities would
be Pr({3}) = 0.98, Pr({5, 7}) = 0.02, and the entropy
H(D3|e = 0) = 0.14

Known all these values, we can calculate the information
gain of t3 applied to D2 as

ΔH(D2, 3) = 2.35− 0.798 · 2.06− 0.202 · 0.14 = 0.677

If instead of choosing t3 we chose t4, the information gain
would be 0, since we are sure that t4 will fail (hence no
update of D will happen),

ΔH(D2, 5) = 2.35− 1 · 2.35− 0.0 · 0.00 = 0.00

Approximate Information Gain

From our choice of STACCATO, it would seem that this MHS
algorithm is a good candidate to generate D as, in combina-
tion with the Bayesian posterior update scheme, it pairs good
diagnostic accuracy with low cost. However, while diag-
nostic reports comprising minimal diagnoses generally have
high practical utility in fault localization, they have limited
use in SD. Consider the matrix A in our example system in
Table 1. After the first test observation, the activity matrix
and error vector are composed by only one observation

c1 c2 c3 c4 c5 c6 c7 c8 e
1 1 1 1 0 1 1 1 1

An MHS algorithm will return the diagnosis D =
{{1}, {2}, {3}, {4}, {6}, {7}, {8}}, where all candidates

have probability 0.142. This diagnosis has a number of prob-
lems.

1. c5 is missing in all the candidates, and the actual candi-
date, {5,7}, is not even being considered. This severely
affects diagnostic effort.

2. The entropy of the minimal D is H = 2.8, when in real-
ity, if we considered a full D with all 28 candidates, the
entropy would be H = 4.85.

3. Since information gain is computed without re-
calculating the MHS, if the test fails, many of the
low-cardinality candidates disappear from the MHS.
They should be replaced by higher cardinality candidates,
but the IG calculation does not consider these candidates
and will produce large errors.

In a full D setting, H(D) = 4.85 as we have seen. If t2
passes, H(D|e = 0) = 1.24, with Pr(e = 0) = 0.19. If t2
fails, H(D|e = 1) = 4.83, with Pr(e = 1) = 0.81. The
information gain value is then IGfull = 0.70.

In an MHS setting, H(D) = 2.8. If t2 passes, H(D|e =
0) = 1.00, with Pr(e = 0) = 0.28. If t2 fails, H(D|e =
1) = 2.32, with Pr(e = 1) = 0.72. The information gain
value is then IGMHS = 0.84. It can be seen how this test is
assigned an IG value with 20% error.

It is clear that both the quality of the diagnosis andH com-
putation are compromised due to the fact that essential, non-
minimal candidates in D are missing. While MHS is appro-
priate in a passive diagnosis setting where many observa-
tions are already available, in an active diagnosis setting, es-
pecially at the beginning, non-minimal diagnosis candidates,
which still contain a large probability mass, are crucial.

As computing all non-minimal hitting sets in D is expo-
nentially complex, we present an approximation, based on
extending the MHS solutions returned by STACCATO with a
limited set of candidates that are subsumed by the MHS can-
didates. The candidates that are added are the MHS candi-
dates extended with one additional component (high posteri-
ors). Because of this limitation, we refer to this extension as
first-order approximation of the entire non-minimal hitting
set in D.

In the above example, after the first test the initial MHS
would be extended to contain also additional double-faults,
and the value of entropy would be corrected to H(D) =
4.31. If t2 passes, H(D|e = 0) = 1.24, with Pr(e = 0) =
0.21. If t2 fails, H(D|e = 1) = 4.19, with Pr(e = 1) =
0.79. The information gain value is then IGHS1 = 0.74,
which, while still not totally precise, has only 5% error.

Optimality Figure 1 shows the evolution of H versus i
for a randomly generated A with N = 150, M = 10,
Mf = 3, gm = U(0, 1). Three plots are shown, i.e., op-
timal H for the complete D with all non-minimal candi-
dates (“OPT”), the first-order approximation (“HS1”), and
the original MHS-based D (“MHS”), respectively. The re-
sults clearly show that a first-order approximation already
delivers good accuracy, nearly as good as the optimal. This
is significant since the cost of generating first-order sub-
sumptions is non-negligible (in this example approximately
100 additional candidates are generated per MHS).

192

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

E
nt

ro
py

 (
H

)
Random Sequence (M=10, N=150, Mf = 3)

OPT
HS1
MHS

Figure 1: Evolution of H

Algorithm

Algorithm 1 describes the SEQUOIA algorithm. The algo-
rithm takes as arguments the set of components cm and the
associated priors pj and failure intermittencies gm, the test
matrix A, and test costs, Cn, and two entropy estimation pa-
rameters: the maximum number of minimal diagnosis candi-
dates λ as generated by STACCATO, and the maximum num-
ber of non-minimal candidates γ subsequently generated by
the 1st-order hitting set extension.

Algorithm 1 SEQUOIA

procedure SEQUOIA(COMPS, A, C, λ, γ)
T ← {1, . . . , N}
A′ ← ∅
e ← ∅
D,PrD ← INITIALD(COMPS, γ)
while T �= ∅ do

i ← argmax
i∈SAMPLE(T)

ΔH(D, i)

Ci

ei ← RUNTEST(i)
A′ ← A′||Ai∗

e ← e||ei
D ← STACCATO(A′, e, λ)
D ← EXPANDSUBSUMED(D, COMPS, γ)
for all dk ∈ D do

PrD[dk] ← BAYESUPDATE(dk, A′, e)

T ← T \ {i}

T represents the index set of the available tests. A′ (ini-
tially empty) represents the version of A whose rows are
sorted by the sequencing algorithm, and e stores the pass/fail
outcomes of the tests. The INITIALD function initializes
D to the first γ candidates in descending order of posterior
probability, each dk probability is stored in the array PrD.

The main loop performs the test sequencing. First, a test
is selected from a subset of σ tests (SAMPLE) that yields
the highest information gain per unit of cost (Ci represents
the cost of each test). Merely considering a subset (e.g.,
σ = 100) instead of all available tests (O(N)) yields a
substantial gain, while the sacrifice in optimality is small3.
Next, the test is executed based on the current D and Pr.

3The information gain selected by the argmax is the highest or-
der statistic from the information gain distribution in the test set. Its
mean value grows less than logarithmic with the sample size (David
1970).

The selected test and its outcome are appended to A′ and e
(the || operators denote appending a matrix row, and vec-
tor element, respectively). Second, D is updated by the
STACCATO algorithm, and subsequently extended to con-
tain the first order subsumed (non-minimal) candidates by
EXPANDSUBSUMED. In order to keep complexity under
control, only the first λ minimal candidates are generated.
Likewise, only the first γ first-order subsumed candidates
are generated. Third, the probabilities of the newly obtained
candidates are calculated by the BAYESUPDATE function.
Finally, the selected test (index) i is removed from the set of
available tests T .

Time Complexity To minimize computational cost SE-
QUOIA only stores a limited number of candidates in D.
As a general guideline from our experiments, λ = M and
γ = 10 ·M provide good performance.

For every iteration of the main loop, ΔH has to be cal-
culated for the σ test cases in the sample, with a cost of
O(γM). The STACCATO algorithm has a complexity of
O(Mf ·M · (N + logM)) (Abreu and van Gemund 2009)
although in practical situations, its complexity can be con-
sidered O(M ·N) since Mf is small and N � logM . The
Bayesian update of a candidate accounts O(γ ·M ·N).

The combined complexity of each of the steps in the inner
loop is, in light of these results, O(M · N), albeit with a
significant factor. Our timing experiments show that 1000×
1000 matrices require 11s per test choice on average.

Theoretical Evaluation

In order to assess the performance potential of our SD ap-
proach we generate synthetic observations based on sample
(A, e) generated for various values of N , M , and number of
injected faults Mf to study the effect of the various parame-
ters in a controlled setting.

Component activity anm is sampled from a Bernoulli dis-
tribution with parameter ρ, i.e., the probability a component
is involved in a row of A equals ρ. All test costs are equal.
For the M components we also set gm = g. Thus the prob-
ability of a component being involved and generating a fail-
ure equals ρ · (1 − g). A row n in A generates an error
(en = 1) if at least 1 of the Mf components generates a
failure (or-model). Measurements for a specific scenario are
averaged over 1, 000 sample matrices, yielding a coefficient
of variance of approximately 0.02.

Figure 2 shows the evolution of relative diagnostic cost
Cd/(M −Mf) of SEQUOIA (SEQ) and random sequencing
(RND) versus the number of tests, for M = 100 compo-
nents with Mf = 3, 5, respectively. The matrix comprises
N = 500 tests, although we prioritize only the first 100.
SEQUOIA’s parameters are set to λ = M and γ = 10 ·M .

The plots clearly show the advantage of SD compared to
random selection (i.e., just selecting the next row in the ma-
trix without applying any knowledge on the current diagno-
sis and information gain per test). In particular, the reduc-
tion of tests required for acceptable diagnostic accuracy is
dramatically less.

193

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

 -
 M

f)

M=100, N=500, Mf = 3, ρ=0.01

RND
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

 -
 M

f)

M=100, N=500, Mf = 3, ρ=0.2

RND
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

 -
 M

f)

M=100, N=500, Mf = 3, ρ=0.6

RND
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

 -
 M

f)

M=100, N=500, Mf = 5, ρ=0.01

RND
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

 -
 M

f)

M=100, N=500, Mf = 5, ρ=0.2

RND
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

 -
 M

f)

M=100, N=500, Mf = 5, ρ=0.6

RND
SEQ

Figure 2: Cd evolution for synthetic A

Empirical Evaluation

In this section, we evaluate SEQUOIA for the Siemens
benchmark set (Hutchins et al. 1994) and three Unix pro-
grams from the SIR (Do, Elbaum, and Rothermel 2005)
repository. Table 2 lists some information about the pro-
grams, where M corresponds to the number of lines of code
(components in this context).

Experimental Setup

For our experiments, we inject arbitrary combinations of
multiple faults. For this purpose, we generate random faults
in the code by applying mutation operators used in mutation
testing. We will restrict our experiments to systems with
either 1 or 3 faults to avoid raising the fault density to un-
realistic levels in software (above 10 faults per KLOC). We
compare random ordering (RND), SEQUOIA with minimal
diagnoses (MHS), and SEQUOIA with first-order subsump-
tion (SEQ).

The coverage matrices A are obtained by recording test
coverage, and the output of a reference implementation used
as test oracle to determine the test outcome. The test costs
Cn correspond to the execution time of tests. The prior
fault probability of statements in our experiments is set to
pm = 0.01, corresponding to the aforementioned 10 faults
per KLOC fault density. The intermittency gm values (per
program the average g value over the various seeded faults
is shown in Table 2) were calculated using a mutation study
similar to (Rothermel et al. 2001). To discard the effect of
errors in the mutation study we performed a second exper-
iment with simulated error vectors (described later on). As
with our theoretical evaluation, SEQUOIA’s parameters are
set to λ = M and γ = 10 ·M . Each point is averaged over
100 different runs.

Performance Results

Figure 3 shows the evolution of the relative diagnostic cost
for schedule2 for Mf = 1 and Mf = 3. It is clear
that the decay of Cd for SEQUOIA is much better than for
random test selection. MHS is slightly better than SEQ for

Mf = 1 since single faults are better diagnosed without
D expansion. However, the moment Mf increases, it can
be seen that MHS performs even worse than RND. Due to
space limitations, we do not show the plots for all programs.
Rather, we summarize the performance results in terms of
the area under the SEQUOIA and RND curve for Cd above
the asymptote for large N (which is determined by the pro-
gram and fault seeding, rather than a diagnostic algorithm),
according to

S =
N∑

n=1

(
Cd(n− 1)− Cd(N)

M −Mf

· Ci

)

Table 2 shows the results for Mf = 1, and Mf = 3, for (1)
simulated test outcomes, and (2) actual outcomes (according
to the test suite’s test oracle). In the simulated case, the test
outcome is computed (drawn) according to the gm estimates
used in SEQUOIA in conjunction with the or-model (Eq. 3),
in order to elliminate the effects of imperfect intermittency
estimation.

For the simulations, SEQUOIA clearly improves over ran-
dom ordering. However, this is not always true when the real
test case outcomes are used. For Mf = 3 we see how the
improvements achieved by SEQUOIA is consistently lower
than in the simulations, and how in the real cases of tcas
and tot info SEQUOIA performs worse. In these cases
the estimation of gm is poor and causes SEQUOIA to make
wrong decisions. Since RND is able to attain a good final
Cd, these two cases highlight the fact that sequencing per-
formance (the IG heuristic) is affected much more by inter-
mittency estimation errors than the Bayesian update itself.

For tcas the performance is even worse because D con-
tains too large a quantity of equal minimal diagnoses (so-
called ambiguity groups) that have relatively high posterior
probability. Even the 1st-order expansion of D cannot avoid
a substantial loss of information that causes frequent under-
estimation of the failure probabilities. As a result, SEQUOIA

will erroneously compensate by selecting tests that include
too many components, causing loss of diagnostic power.
Note, however, that this situation can be easily detected, and

194

Simulated Mf = 1 Real Mf = 1 Simulated Mf = 3 Real Mf = 3

Program M N g RND MHS SEQ RND MHS SEQ RND MHS SEQ RND MHS SEQ

print tokens 539 4130 0.20 2.80 1.08 -61% 1.35 -52% 4.63 1.82 -61% 2.44 -47% 8.86 17.08 +93% 2.33 -74% 5.16 17.49 +239% 4.94 -4%

print tokens2 489 4115 0.32 2.21 1.58 -28% 1.45 -34% 4.56 2.51 -45% 2.84 -38% 9.57 21.08 +120% 5.37 -44% 6.37 12.90 +102% 3.55 -44%

replace 507 5542 0.35 2.07 1.09 -48% 1.24 -40% 4.43 1.64 -63% 4.61 +4% 14.51 32.51 +124% 6.30 -57% 10.32 30.18 +193% 4.49 -56%

schedule 397 2650 0.28 2.79 1.07 -62% 1.35 -52% 7.89 1.35 -83% 8.01 +1% 22.40 27.45 +23% 6.84 -69% 11.55 25.72 +123% 4.29 -63%

schedule2 299 2710 0.32 4.01 1.43 -64% 1.54 -62% 9.03 1.70 -81% 7.64 -15% 24.56 28.79 +17% 6.49 -74% 11.78 22.03 +87% 2.70 -77%

tcas 174 1608 0.77 4.33 3.27 -25% 3.45 -20% 2.51 6.66 +165% 9.53 +279% 6.63 24.35 +267% 4.37 -34% 4.44 14.80 +233% 12.53 +182%

tot info 398 1052 0.27 2.76 1.36 -51% 1.61 -42% 2.40 2.20 -8% 6.71 +179% 11.81 27.04 +129% 4.67 -60% 2.46 7.63 +210% 3.89 +58%

space 9126 500 0.17 4.89 13.29 +171% 1.91 -61% 7.13 13.70 +92% 3.06 -57% 7.05 28.28 +301% 2.85 -59% 7.40 40.51 +447% 5.26 -29%

gzip 6708 211 0.11 6.29 24.70 +293% 1.16 -82% 7.26 21.45 +196% 1.42 -80% 12.27 34.74 +183% 2.52 -79% 16.00 23.32 +46% 3.67 -77%

sed 9014 184 0.20 3.98 5.30 +33% 1.60 -60% 4.78 5.32 +11% 0.99 -79% 7.30 30.50 +318% 2.40 -67% 10.77 35.40 +229% 3.38 -69%

Table 2: Aggregate diagnostic cost (S) for RND, MHS, and SEQ (statistical winners in bold)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

-M
f)

Tests

schedule2 (Mf=1)

RND
MHS
SEQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
d

/ (
M

-M
f)

Tests

schedule2 (Mf=3)

RND
MHS
SEQ

Figure 3: Cd/(M −Mf) evolution for schedule2

switching at this point from IG to RND mode completely
solves this performance problem. In fact, a hybrid solution
where IG is used for the first tests (where Cd decay is large),
eventually switching to random mode, offers the best of both
worlds.

Related Work

An early example related to SD is found in (de Kleer and
Williams 1987) which presents a sequential probing strat-
egy to reduce diagnostic entropy. Apart from the fact that
our entropy computation is less complex, we consider tests
rather than probes, typical of SD, which assumes that ap-
plying test vectors to a closed system are the only way of
accessing system information (a test can be seen as a probe,
but computing a test that will manifest a certain internal vari-
able is not the same problem).

Classical examples of SD are found in (Shakeri et al.
2000; Raghavan, Shakeri, and Pattipati 1999; Tu and Pat-

tipati 2003; Kundakcioglu and Ünlüyurt 2007). Similar to
spectrum-based approaches, a fault matrix is used that en-
codes per test which components may be at fault when the
test fails (essentially A, extended with a cost per test). While
the work includes non-unit test cost, it focuses on single-
fault diagnosis, which is highly unrealistic considering the
large systems we are targeting. Some extensions to multiple-
faults are known, but no solutions to either intermittent be-
havior and the associated, exponential explosion have been
published so far.

Recently, two model-based approaches to SD have been
published, referred to as Active Diagnosis (Kuhn et al.
2008), and Active Testing (Feldman, Provan, and van
Gemund 2009). Both approaches differ from ours that sys-
tem information needs to be coded in terms of a model in-
stead of just a matrix that represents a projection in terms of
test coverage information. As a result, the tests that can be
computed are not restricted to the N tests possible in matrix
approaches. Another advantage is that the observations gen-
erated by the tests offer more information than the binary
pass/fail outcomes, offering potentially higher decay rates.
Being full-fledged, model-based approaches, however, for
the very large (software) systems we consider, the computa-
tional costs would be prohibitive.

Conclusion

In this paper we have presented a spectrum-based sequential
diagnosis approach coined SEQUOIA, that greedily selects
tests out of a suite of tests to narrow down the set of di-
agnostic candidates with a minimum number of tests. To
achieve polynomial complexity SEQUOIA uses an approx-
imate information gain computation approach. Synthetic
data shows, that the dynamic selection of the next best test
based on the observations made so far, allows SEQUOIA to
achieve much better decay of diagnostic uncertainty com-
pared to random test sequencing. Real programs also show
that SEQUOIA has better performance, except when the in-
put intermittency parameters are erroneous or the diagnosis
involves ambiguity sets that are too large for the entropy es-
timation to handle. Future work therefore includes solving
this problem by expanding the MHS in order of posterior
probability (which is currently ignored in our approach).

195

Supported by the Poseidon project of the Embedded Sys-
tems Institute (ESI), The Netherlands and the Dutch Min-
istry of Economic Affairs (BSIK03021).

References

Abreu, R., and van Gemund, A. J. C. 2009. A low-cost ap-
proximate minimal hitting set algorithm and its application
to model-based diagnosis. In Proc. SARA’09.

Abreu, R., and van Gemund, A. J. C. 2010. Diagnosing
multiple intermittent failures using maximum likelihood es-
timation. Artif. Intell.

Abreu, R.; Zoeteweij, P.; and van Gemund, A. 2007. On
the accuracy of spectrum-based fault localization. In Proc.
TAIC PART’07.

Abreu, R.; Zoeteweij, P.; and van Gemund, A. 2009. A new
Bayesian approach to multiple intermittent fault diagnosis.
In Proc. IJCAI’09.

David, H. A. 1970. Order Statistics. John Wiley & Sons.

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artif. Intell.

Do, H.; Elbaum, S. G.; and Rothermel, G. 2005. Support-
ing controlled experimentation with testing techniques: An
infrastructure and its potential impact. Emp. Soft. Eng. J.

Feldman, A.; Provan, G. M.; and van Gemund, A. J. C.
2009. Fractal: Efficient fault isolation using active testing.
In Proc. IJCAI’09.

Feldman, A.; Provan, G. M.; and van Gemund, A. J. C.
2010. Approximate model-based diagnosis using greedy
stochastic search. Journal of Artificial Intelligence Re-
search.

Harrold, M.; Rothermel, G.; Wu, R.; and Yi, L. 1998. An

empirical investigation of program spectra. ACM SIGPLAN
Notices.

Hutchins, M.; Foster, H.; Goradia, T.; and Ostrand, T.
1994. Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. ICSE ’94.

Johnson, R. 1960. An information theory approach to diag-
nosis. In Symposium on Reliability and Quality Control.

Kuhn, L.; Price, B.; de Kleer, J.; Do, M.; and Zhou, R. 2008.
Pervasive diagnosis: Integration of active diagnosis into pro-
duction plans. In Proc. AAAI’08.

Kundakcioglu, O. E., and Ünlüyurt, T. 2007. Bottom-up
construction of minimum-cost and/or trees for sequential
fault diagnosis. IEEE TSMC.

Pattipati, K., and Alexandridis, M. 1988. Application of
heuristic search and information theory to sequential fault
diagnosis. In Proceedings IEEE International Symposium
on Intelligent Control.

Raghavan, V.; Shakeri, M.; and Pattipati, K. R. 1999. Opti-
mal and near-optimal test sequencing algorithms with real-
istic test models. IEEE TSMC.

Rothermel, G.; Untch, R. H.; Chu, C.; and Harrold, M. J.
2001. Prioritizing test cases for regression testing. IEEE
TSE.

Shakeri, M.; Raghavan, V.; Pattipati, K. R.; and Patterson-
Hine, A. 2000. Sequential testing algorithms for multiple
fault diagnosis. IEEE TSMC.

Tu, F., and Pattipati, K. R. 2003. Rollout strategies for
sequential fault diagnosis. IEEE TSMC.

Voas, J. M. 1992. Pie: A dynamic failure-based technique.
IEEE TSE.

196

