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Abstract

Peer reviewing is the key ingredient of evaluating the quality
of scientific work. Based on the review scores assigned by
the individual reviewers to the submissions, program com-
mittees of conferences and journal editors decide which pa-
pers to accept for publication and which to reject. However,
some reviewers may be more rigorous than others, they may
be biased one way or the other, and they often have highly
subjective preferences over the papers they review. More-
over, each reviewer usually has only a very local view, as he
or she evaluates only a small fraction of the submissions. De-
spite all these shortcomings, the review scores obtained need
to be aggregrated in order to globally rank all submissions
and to make the acceptance/rejection decision. A common
method is to simply take the average of each submission’s re-
view scores, possibly weighted by the reviewers’ confidence
levels. Unfortunately, the global ranking thus produced often
suffers from a certain unfairness, as the reviewers’ biases and
limitations are not taken into account.
We propose a method for calibrating the scores of review-
ers that are potentially biased and blindfolded by having only
partial information. Our method uses a maximum likelihood
estimator, which estimates both the bias of each individual
reviewer and the unknown “ideal” score of each submission.
This yields a quadratic program whose solution transforms
the individual review scores into calibrated, globally compa-
rable scores. We argue why our method results in a fairer and
more reasonable global ranking than simply taking the aver-
age of scores. To show its usefulness, we test our method
empirically using real-world data.

Introduction

Have you ever wondered why your paper—the one you’ve
been so proud of—was rejected at some conference? Have
you ever wondered why your other paper—the one that you
thought is OK but not great—was accepted at the same
conference? Many authors have experienced situations like
those, and the reason is simple: The reviewing process for
conferences (and, though perhaps to a lesser extent, also for
scientific journals) is based on the reviewers’ highly subjec-
tive preferences. Some reviewers may be more rigorous than
others in evaluating submissions; some reviewers may like a
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particular field (or topic or approach or technique etc.) more
than others; and so on.

Moreover, every reviewer usually evaluates only a small
number of submissions, so his or her scores are based on
partial information only. This may lead to a certain unfair-
ness when looking from a global perspective at the scores for
all submissions. For example, a reviewer evaluating three
rather good and one excellent submission may tend to down-
grade the good submissions in comparison with the excellent
submission, whereas another reviewer who evaluates three
rather good and one really bad submission may tend to up-
grade the good submissions in comparison with the bad one.
Nonetheless, the program committee members (or chairs)
of the conference eventually have to reach a consensus as to
which paper to accept and which to reject. That is, they need
to aggregrate the scores of all submissions, which are given
depending on the reviewers’ subjective, partial-information
preferences, in a way as equally and fair as possible.

However, this task is in fact not easy, and the outcome is
not always as one might expect. Let us illustrate this using
a concrete example from the (purely fictional) “Third Inter-
national Three Papers Get Accepted Conference.”

Example 1 Consider a scenario with nine submissions, dis-
tributed among five reviewers. Let us assume the submis-
sions are ordered according to their (unknown, objective,
absolute) quality:

Si+1 � Si, i ∈ {1,2, . . . ,8}, (1)

where A � B means A’s quality is no worse than B’s.
Each submission is assigned to exactly three reviewers.

Each reviewer gives a score between 0 and 1 to each as-
signed submission, see Table 1 for their scores in this ex-
ample. Note that every reviewer orders the submissions he
or she evaluates according to (1), by giving a higher score
to a submission with a higher number. It would therefore
be rational to have a final arrangement of the submissions
according to this condition.

However, observe that if we simply compute the arithmetic
mean of the scores for each paper and order them accord-
ingly, we would get:

S9 � S8 � S6 � S7 � S4 � S5 � S2 � S1 � S3.

This arrangement contradicts the order of absolute paper
quality, even though this order is strictly preserved in each
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S1 S2 S3 S4 S5 S6 S7 S8 S9
R1 .40 .44 .67 .81 .89 .95 .99
R2 .15 .19 .32 .45 .49 .62
R3 .21 .39 .61 .79
R4 .20 .20 .60 .70 .80
R5 .10 .20 .30 .40 .50

average .25 .28 .21 .50 .43 .68 .63 .71 .76

Table 1: Review scores for Example 1.

individual reviewer’s scoring. The contradiction is a result
of the reviewers’ biases in assigning review scores, and of
the inappropriateness of using a score average for global
comparison in such a setting.

Tasks like this—aggregating individual preferences in a
partial-information model—may occur in other contexts as
well. In a more general setting, we are given a set of agents
who each will give a score to some (but in general not all) of
the given alternatives. Our goal then is to achieve “globally
comparable” scores for all alternatives, based on the “local”
(i.e., partial) scores of the agents that may be biased one way
or the other. That is, assuming we have m agents and n al-
ternatives, we are looking for a function g mapping the set
of all m×n matrices with entries (i, j) (representing either
agent i’s score for alternative j—a rational number—or in-
dicating that agent i does not evaluate alternative j) to Qn,
where Qn denotes the set of n-tuples of rational numbers.
Given such a matrix M, g(M) =�z is the global score vector
we wish to compute. This mapping g should be as “fair”
as possible from a global perspective, which means that bet-
ter alternatives should receive higher scores. Of course, it
is difficult to say what “better” actually means here or how
one could formally define it. Intuitively stated, our goal is,
for each alternative to, on the one hand, minimize the devi-
ation of the desired global score from a presumed (objec-
tively) “ideal” score for this alternative and, on the other
hand, let the global score reflect the preferences of the in-
dividual agents who have evaluated this alternative.

For the sake of concreteness, however, and since this is
the main application example motivating our study, we will
henceforth focus on the particular task of aggregating the
scores that the reviewers in a reviewing process assign to the
submissions (i.e., we will not speak of agents and alterna-
tives henceforth).

Our approach pursued here is to formulate a maximum
likelihood estimator, which estimates both the “ideal” score
of each submission and the bias of each individual reviewer.
This estimator leads to a quadratic program, the solution
of which essentially transforms the individual reviewers’
scores into global scores. By fixing an acceptance threshold
the program committee can then partition the submissions
into those to be accepted and those to be rejected. Alter-
natively, by arranging the submissions according to their
global scores, one could also simply rank them (in case one
is even interested in a ranking).

Related Work

Preference aggregation is a wide field that has been in-
tensely studied by various scientific communities, ranging
from multiagent systems to computational social choice.
The topic of this paper—aggregating the scores in peer re-
viewing—has also been investigated, although from dif-
ferent angles and using different methods. For example,
Douceur (2009) encoded this aggregation problem into a
corresponding problem on directed multigraphs and fo-
cuses on rankings (i.e., ordinal preferences) rather than rat-
ings (i.e., cardinal preferences obtained by assigning review
scores). By contrast, Haenni (2008) presents an algebraic
framework to study the problem of aggregating individual
scores. Our approach of using maximum likelihood estima-
tors to formulate a quadratic program for solving this prob-
lem efficiently is, to the best of our knowledge, novel.

Our model is inspired by the offline time synchronization
problem in broadcast networks, as discussed by Scheuer-
mann et al. (2009). In that work, the problem of synchro-
nizing timestamps in a set of event log files is addressed,
where each log file has been generated with a different, po-
tentially deviating local clock. However, our setting and our
assumptions here differ in some central aspects. For exam-
ple, while the time delays when an event is recorded in a log
file in (Scheuermann et al. 2009) are (certainly reasonably)
assumed to be always positive, the review score assigned
by a reviewer may deviate in both directions. More specif-
ically, the time delay when an event is recorded is assumed
to be exponentially distributed, whereas we assume a Gaus-
sian distribution. The resulting model is thus quite different:
While Scheuermann et al. (2009) had to solve a specific lin-
ear program, we obtain a (semi-definite) quadratic program
here.

Maximum likelihood estimators have been used in other
contexts of preference aggregation as well. For exam-
ple, Conitzer and Sandholm (2005), Conitzer, Rognlie, and
Xia (2009), Xia, Conitzer, and Lang (2010), and Xia and
Conitzer (2011) applied maximum likelihood estimation to
model the “noise” in voting. Relatedly, Pini et al. (2009)
study the issue of aggregating partially ordered preferences
with respect to Arrovian impossibility theorems. Their
framework differs from ours, however, as they consider ordi-
nal preferences, whereas peer-reviewing is commonly based
on scores, i.e., on cardinal preferences. Note that cardinal
preferences are more expressive than ordinal preferences, as
they also provide some notion of distance.

Model and Basic Assumptions

As mentioned above, we focus on a reviewing process as
a special kind of preference aggregation with partial infor-
mation. Our approach may also apply to other preference
aggregation scenarios with the same or a similar structure.

In a common reviewing process, the reviewers not only
comment on the weaknesses and strengths of the submis-
sion under review but also give an overall score. Although
usually more information is requested from the reviewers
(such as additional scores for criteria like “originality,” “sig-
nificance,” “technical correctness,” etc., plus a level of their
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own confidence in their expertise regarding this submission),
we want to keep our model simple and thus focus on only
the overall score a reviewer assigns to a submission. Fur-
thermore, although scores are usually integer-valued (rarely,
half points may be allowed), we do allow rational numbers
as scores, thus obtaining a finer grained evaluation.

Let R be a set of m reviewers and S be a set of n submis-
sions. Typically the submissions are distributed among the
reviewers and each reviewer has to give a score to each sub-
mission assigned to him or her (usually just a small subset
of S). Let E ⊆ R×S represent the set of review assignments,
i.e., (r,s) ∈ E if and only if reviewer r has evaluated sub-
mission s. Let this score be denoted by er,s. In order to nor-
malize, we assume the scores to be rational numbers in the
range [0,1], where a higher score indicates a better quality.

Since different reviewers may assign different scores to
the same submission, we need to find a way for how to make
the decision as to whether this submission is accepted or re-
jected, based on the scores er,s with (r,s) ∈ E.

We now proceed with introducing our model. Suppose
a reviewer assigns a review score to a submission s, given
that this submission has “absolute” or “ideal” quality zs. Of
course, zs will be unknown in practice—our aim and ap-
proach later on will be to estimate zs based on the assigned
review scores.

Our stochastic model consists of two central compo-
nents: a “random” deviation from the ideal, absolute score—
essentially a form of “noise” disturbing the reviewer’s “mea-
surement” of the paper quality—and a systematic bias. We
assume that the “noise” component is independent for indi-
vidual paper assessments; it includes, e.g., misperceptions
in either direction, but potentially also effects like strategic
considerations of the reviewer with respect to the submission
being evaluated. The systematic bias, by contrast, models
the general rigor of the reviewer across all his or her reviews.
It characterizes, for instance, whether the reviewer is lenient
and assigns good scores even to very poor submissions, or
whether this reviewer hardly ever gives a grade on the upper
end of the scale.

Following these general lines, there is a random compo-
nent for each review assignment, which we model by pair-
wise independent1 Gaussian random variables Δr,s for re-
viewer r’s assessment of submission s, with common vari-
ance σ2 > 0 and mean μ = 0.2 Basically, the reviewer will
then not assign a score based on the submission’s objective
quality zs, but one based on his or her own noisy view of the
quality, which is zs +Δr,s. This perceived quality will then
be mapped to a review score, according to the respective re-
viewer’s individual rigor and systematic bias. We model this
by a linear function fr, which means that the review score er,s

1This assumption in particular requires our method to be only
applied prior to reviewer discussions.

2Our approach would still be computationally tractable if we
allowed for arbitrary, unknown means μr for each reviewer. How-
ever, we may assume, without loss of generality, that μr = 0 for
each r ∈ R because any situation where μr �= 0 is equivalent to
a case where μr = 0 and an accordingly adjusted systematic bias
component of the respective reviewer.

that reviewer r assigns to submission s is given by
er,s = fr (zs +Δr,s) = pr · (zs +Δr,s)+qr. (2)

fr is characterized by two reviewer-specific, unknown pa-
rameters pr and qr. Since it is reasonable to expect that each
reviewer will generally tend to assign better grades to better
submissions, we may assume that pr > 0.

Even though this linear model is relatively simple, it al-
lows to capture a wide range of reviewer characteristics—
from very lenient up to very rigorous reviewers. The sim-
plicity of our model is a feature we have chosen to put up
with deliberately. One might of course add more model pa-
rameters to make the model more expressive; however, the
number of parameters should be kept low to facilitate com-
putational feasibility.

The Quadratic Programming Method
Our approach to aggregating preferences (that is, review
scores) with partial knowledge is based on estimating the
parameters zs, pr, and qr for all submissions s ∈ S and all
reviewers r ∈ R so as to maximize the likelihood of the as-
signed review scores. The first step to this end is to solve (2)
for Δr,s. Along with the substitutions pr = 1/pr and qr = qr/pr

this leads to
Δr,s = er,s · pr −qr − zs. (3)

In the following, we will consider pr and qr instead of pr
and qr. These two representations are obviously equivalent
and easily interchangeable, but the substituted variants are
mathematically much more easily tractable. The Gaussian
distribution with mean μ and variance σ2 has probability
density

Dμ,σ2 (Δr,s) =
1

σ
√

2π
· exp

(
− (Δr,s −μ)2

2σ2

)
.

Since we assume the Δr,s to be independent and μ = 0, the
overall probability density for all Δr,s for all review assign-
ments in E is given by

∏
(r,s)∈E

1
σ
√

2π
· exp

(
− (Δr,s)

2

2σ2

)

=

(
1

σ
√

2π

)|E|
· exp

(
−∑(r,s)∈E (Δr,s)

2

2σ2

)
.

We may now substitute according to (3) and obtain(
1

σ
√

2π

)|E|
· exp

(
−∑(r,s)∈E (er,s · pr −qr − zs)

2

2σ2

)
.

The maximum likelihood estimate for the parameters zs, pr,
and qr is the assignment of values ẑs, p̂r, and q̂r that maxi-
mizes this expression.

As usual, in order to find this maximum, we take the log-
arithms (because this will not affect the maximum). We
thereby arrive at the problem of maximizing the expression

|E| ln 1
σ
√

2π
+ lnexp

(
−∑(r,s)∈E (er,s · p̂r − q̂r − ẑs)

2

2σ2

)

= |E| ln 1
σ
√

2π
− ∑(r,s)∈E (er,s · p̂r − q̂r − ẑs)

2

2σ2 .
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with respect to ẑs, p̂r, and q̂r. Observe that the assignment
for these variables maximizing the above expression does
not depend on the value of σ . Maximizing the above ex-
pression is equivalent to minimizing

∑
(r,s)∈E

(er,s · p̂r − q̂r − ẑs)
2 . (4)

Note that this is a quadratic optimization problem, which
can be formulated as a so-called quadratic program, see, e.g.,
(Nocedal and Wright 2006). In general, a quadratic program
(QP) is an optimization problem of the form:

minimize
1
2

xT Qx+ cT x (5)

subject to Ax ≥ b, (6)

where x ∈ Qn, Q ∈ Qn×n, c ∈ Qn, A ∈ Qm×n, and b ∈ Qm.
The solution of a QP is a vector x that minimizes the expres-
sion in (5), simultaneously fulfilling all constraints in (6).

With respect to our specific QP as discussed so far, note
that the solution would be trivial by setting all p̂r, q̂r, and ẑs
to zero—which is obviously not a sensible result. If we as-
sume the reviewers to be sort of rational on average, though,
then we may require

1
m ∑

r∈R
p̂r = 1 (7)

as a normalization constraint.
If we write the variables to estimate in a vector

x = (ẑ1 . . . ẑn p̂1 . . . p̂m q̂1 . . . q̂m)
T
,

we obtain the following QP:

minimize
1
2

xT Qx

subject to Ax ≥ b

with a square matrix Q (see lines 2–13 of Algorithm 1), and
a matrix A representing the normalization constraint (7). To
have contraints of the form Ax ≥ b (instead of Ax = b) we
simply “double” our normalization constraint (7) to

1
m ∑

r∈R
p̂r ≥ 1 and − 1

m ∑
r∈R

p̂r ≥−1.

A QP with a positive definite matrix Q has a unique so-
lution and can be solved in polynomial time using interior-
point methods, see, e.g., (Wright 1997). In our specific QP,
the matrix Q is at least positive semi-definite,3 because it
can be written as H ·HT (see Algorithm 1 for the definition
of matrix H). Unfortunately, though, it turns out that Q is
not positive definite. So, let us have a closer look at why a
unique solution actually cannot exist in general for our prob-
lem.

Observe that if all the absolute qualities zs, s ∈ S, of the
submissions were decreased by the same amount ξ , and the
individual biases of each reviewer (parameters qr, r ∈ R)

3A matrix A ∈ Qn×n is said to be positive definite if all eigen-
values of A are positive. A is said to be positive semi-definite if its
eigenvalues are nonnegative.

were shifted accordingly, then we would end up with ex-
actly the same review scores er,s and thus an identical op-
timization problem. So, clearly, the fact that we do not
have any global, absolute “reference” to which the overall
scores could be adjusted results in an additional degree of
freedom in the optimization, which prevents us from obtain-
ing a unique maximum. In fact, a similar issue occurred in
(Scheuermann et al. 2009), and along similar lines as there
it is easy to overcome: For one arbitrarily picked reviewer
r∗ we may set qr∗ = 0, thus using this reviewer as a “fixed”
reference point. The choice of r∗ is not critical, as the opti-
mization result will only be shifted and scaled accordingly.
We suggest to eliminate this effect by normalizing the result-
ing scores to the interval [0,1] in an additional step; then, all
choices of r∗ yield identical results, and the estimated scores
ẑs are unique.

Yet, also with this modification it is still possible to come
up with pathological instances where the solution is not
unique. This lies in the nature of the problem: For in-
stance, it is clearly impossible to estimate the absolute qual-
ity of a submission which did not receive at least one review.
Similarly, it is impossible to compare the relative “rigor” of
two groups of reviewers, if there is no paper that has been
reviewed by at least one reviewer out of each of the two
groups. In general, such ambiguities are easily identified
and can always be resolved by introducing additional con-
straints as needed (or, alternatively, by assigning additional
reviews). This then yields a positive definite matrix Q and
consequently a unique solution of the QP.

To solve our QP, we can use existing solvers like, for
example, MINQ (Neumaier 1998), a MATLAB script for
“bound constrained indefinite quadratic programming.” For
given scores er,s corresponding to the review assignments
(r,s) ∈ E, Algorithm 1 illustrates our approach. We as-
sume the scores to be nonnegative for line 5 to work (e.g.,
in [0,1]). Any negative number (e.g., −1) at position (r,s)
in the input matrix M indicates that reviewer r did not re-
view submission s. M thus encodes both E and the review
scores er,s. Note that the resulting estimated scores in ẑ can
exceed the interval of the input scores. This will, however,
be overcome by subsequently scaling to results in [0,1], as
discussed above; this yields the scaled score estimates, in
the following denoted by z∗s , for all submissions s ∈ S.

S1 S2 S3 S4 S5 S6 S7 S8 S9
average .25 .28 .21 .50 .43 .68 .63 .71 .76

z∗ 0 .05 .18 .40 .53 .68 .75 .92 1

Table 2: Average and normalized scores for Example 2.
Example 2 Let us now continue Example 1 from the in-
troduction. We use the review scores from Table 1 and
build a QP as explained above. Solving this problem with
MINQ, we are able to compute a solution containing the es-
timates ẑs in addition to the parameters p̂r and q̂r, for each
s ∈ {S1, . . . ,S9} and r ∈ {R1, . . . ,R5}. The resulting scaled
estimates z∗s are given in Table 2 (along with the average re-
view scores from Table 1 above, for convenience). Indeed
we notice that according to the normalized review scores
obtained by using our method, the expected ranking of the
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Algorithm 1 Computing the estimated scores
1: Input: M ∈Qm×n // M contains the given scores.
2: H = [0] ∈Q(2m+n)×(m·n)
3: for j ∈ {1,2, . . . ,m} do
4: for k ∈ {1,2, . . . ,n} do
5: if M( j,k) ≥ 0 then
6: H(k,(k−1)·m+ j) = 1
7: H(n+ j,(k−1)·m+ j) =−M( j,k)
8: H(n+m+ j,(k−1)·m+ j) = 1
9: end if

10: end for
11: end for
12: remove the last row from H // normalization
13: Q = 2 ·H ·HT

14: h1 = (0 · · · 0) ∈Qn

15: h2 = (1 · · · 1) ∈Qm

16: h3 = (0 · · · 0) ∈Qm−1

17: A =

[
h1

1
m ·h2 h3

h1 − 1
m ·h2 h3

]
18: b =

(
1
−1

)
19: solve: min 1

2 xT Qx subject to Ax ≥ b
20: ẑ = (x1 · · · xn)

T

21: Output: ẑ ∈Qn

submissions is preserved. It is now trivial to identify and
accept the three top submissions to be presented at the 3rd
International Three Papers Get Accepted Conference.

Discussion

In the example above we saw that our proposed algorithm
was able to reconstruct the global order according to the “ab-
solute” paper qualities. This raises the question of whether
this property holds in general. Apparently, if we permit an
arbitrary level of “noise” in the reviews—in the form of very
large Δr,s values—, then this “noise” will at some point dom-
inate the “signal,” and submissions may switch order with
respect to their absolute qualities. So, we should slightly
reformulate this question: If the noise is sufficiently small,
will the order of the global paper qualities zs be preserved in
the estimated global scores ẑs?

To approach this question, let us first consider the case
where there is no noise at all, i.e., where Δr,s = 0 for all
(r,s) ∈ E. For simplicity, let us also assume that there is
a unique solution to the optimization problem (as argued
above, this can always be achieved). Since all Δr,s are zero,
it holds that

∀(r,s) ∈ E : er,s = przs +qr. (8)

Thus, the objective function (4) of the QP is equal to zero if
the estimated values p̂r, q̂r, and ẑs are each equal to the cor-
responding correct values pr, qr, and zs. Since the objective
function is always nonnegative, this value is optimal. Since
we assume a unique optimum, our estimator will therefore
correctly determine both all absolute paper qualities and the

parameters of all reviewers’ bias functions.4
Now consider any two submissions, s1 and s2, which both

have been evaluated by the same reviewer r. Since we as-
sumed that all Δr,s values are zero, this reviewer’s scores are
given by (8). Since pr > 0, these scores represent the same
order as the absolute qualities zs1 and zs2 , i.e., er,s1 < er,s2 if
and only if zs1 < zs2 . As this will hold for any reviewer in
the setting without “noise,” and since the estimated quality
levels ẑs for all submissions are then, as argued above, equal
to the correct values zs, it holds that the local order of all
reviewer scores is preserved in the resulting global ranking
of the submissions.

Let us now consider the case where the Δr,s are not all
equal to zero. Observe that each er,s is a continuous function
of Δr,s (refer to (2)), and that the objective function of the
QP is a continuous function of all er,s, and thus also of all
Δr,s. Intuitively speaking, a small change of the Δr,s values
will therefore also cause only a small change in the solution
of the QP. That is, the point where the objective function
is minimal will “move” continuously with a changed input.
As a result, the estimates ẑs are also a continuous function
of the Δr,s.

More formally, let ε =min{|zs1 −zs2 | : s1,s2 ∈ S,s1 �= s2}.
Then, as long as no estimated review score deviates by more
than ε/2 from the corresponding correct value, there cannot
be a change in order. Since the estimates are, as stated be-
fore, a continuous function of the Δr,s, it follows from the
definition of continuity that there exists some δ > 0 (de-
pending on ε) such that if |Δr,s| < δ for all (r,s) ∈ E then
|zs − ẑs| < ε/2 for all s ∈ S. Consequently, if the Δr,s do not
become too large, the estimated scores ẑs will not deviate far
enough from the correct values zs to cause a change in the
resulting ranking of the submissions.

A Case Study

We evaluated data from the “Third International Work-
shop on Computational Social Choice” (COMSOC-2010)
that took place in September 2010 in Düsseldorf, Ger-
many (Conitzer and Rothe 2010). There were 57 submis-
sions (where submissions that had to be rejected on formal
grounds are disregarded) and 21 reviewers. Every submis-
sion was reviewed by at least two reviewers; a third reviewer
was assigned to some submissions later on. The results are
shown in Table 3 for accepted submissions and in Table 4
for rejected submissions. In each row of both tables, (a) the
first column gives the number of submissions that received
the same final score, resulting as the average of the single
reviewers’ overall scores for this submission (weighted by
the reviewers’ confidence level); (b) the second and third
columns give this final average score and the correspond-
ing rank of the paper; (c) the fourth and fifth columns give
the score(s) and rank(s) our algorithm produces based on the
same overall scores of the reviewers.

Scores are here assumed to be integers in the range
[−3,3], so when applying our method we also re-normalized

4For simplicity, we neglect the effects of the normalization here,
which, as argued above, may result in a scaling and shifting which
applies equally to all reviewers and scores.
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# PC decision our approach
score rank score(s) rank(s)

4 3.0 1 2.79, 2.79, 3, 4,
2.48, 2.41 6, 10

3 2.7 5 2.50, 2.44, 1.97 5, 8, 16

4 2.5 8 3.00, 2.45, 1,7,
2.41, 1.90 9,17

1 2.4 12 2.21 14
1 2.3 13 2.37 12

9 2.0 14
2.38, 2.23, 1.85, 11, 13, 18,
1.65, 1.56, 1.55, 20, 21, 23,
1.03, 0.99, 0.70 30, 31, 35

2 1.8 23 2.81, 2.06 2, 15

4 1.6 25 1.76, 1.35, 19, 26,
1.31, -0.03 28, 39

2 1.5 29 1.48, 0.70 25, 34

5 1.4 31 1.56, 1.50, 1.04, 22, 24, 29,
-0.25, -0.29 44, 46

1 1.3 36 1.33 27
2 1.0 37 0.75, 0.55 33, 36
1 0.9 39 0.88 32
1 0.7 40 0.40 38

Table 3: Conference data: accepted papers.

the results to that range. Using an acceptance threshold of
0.6, a total of 40 submissions were accepted and 17 were
rejected by the program committee (PC). As one can see,
our method provides a different ranking of the papers. In
particular, if the PC again accepted 40 submissions, accord-
ing to the ranking resulting from our method two originally
accepted submissions would now be rejected (see the bold-
faced entries in Table 3), whereas two originally rejected
submissions would now be accepted (see the boldfaced en-
tries in Table 4).

# PC decision our approach
score rank score(s) rank(s)

1 0.5 41 -0.12 42
1 0.3 42 -0.27 45
1 0.0 43 0.46 37

1 -0.1 44 -0.09 40

1 -0.2 45 -0.16 43
3 -0.6 46 -0.47, -0.59, -1.05 47, 48, 50

5 -1.0 49 -0.11, -0.77, -1.35, 41, 49, 52,
-1.42, -1.49 53, 54

1 -1.5 54 -2.37 56
1 -2.4 55 -3.00 57
1 -2.7 56 -1.17 51
1 -3.0 57 -2.12 55

Table 4: Conference data: rejected papers.

Conclusions

We have presented a novel method—using maximum like-
lihood estimation and quadratic programming—to calibrate

the scores of potentially biased, partially blindfolded review-
ers in peer reviewing that is arguably superior to the cur-
rently common method of simply taking the average of the
individual reviewers’ scores. We have discussed some crit-
ical points in applying our method and proposed ways of
how to handle them, and we have applied it empirically
using real-world data. An interesting task for future re-
search is to compare our method, analytically and empiri-
cally, to other mechanisms of preference aggregation in a
partial-information model. Also, it would be nice to spec-
ify theoretical properties a ranking method like ours should
satisfy and then compare such methods based on these prop-
erties.
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