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Abstract

We present a new approach to characterizing the semantics
for the integration of rules and first-order logic in general,
and description logics in particular, based on a circumscrip-
tion characterization of answer set programming, introduced
earlier by Lin and Zhou. We show that both Rosati’s seman-
tics based on NM-models and Lukasiewicz’s answer set se-
mantics can be characterized by circumscription, and the dif-
ference between the two can be seen as a matter of circum-
scription policies. This approach leads to a number of new in-
sights. First, we rebut a criticism on Lukasiewicz’s semantics
for its inability to reason for negative consequences. Second,
our approach leads to a spectrum of possible semantics based
on different circumscription policies, and shows a clear pic-
ture of how they are related. Finally, we show that the idea of
this paper can be applied to first-order general stable models.

Introduction

In many real world applications, different types of knowl-
edge may be represented and engineered in different logic
frameworks, and their integration is a key issue that must be
addressed, preferably on a formal basis to facilitate reason-
ing and computation. The Semantic Web happens to be one
of such applications, which aims at providing a machine-
readable meaning to web pages by formal knowledge repre-
sentation (KR) technology.

Ontologies, expressed in description logics (DLs), and
rules in the form of logic programming, have been consid-
ered prominent KR formalisms for the Semantic Web. As
fragments of first-order logic, description logics do not pro-
vide nonmonotonic features such as defeasible inheritance
and default reasoning. On the other hand, rules under the an-
swer set semantics typically do not reason with unbounded
or infinite domains, nor do they support quantifiers. Since a
combination of the two can offer features of both, there has
been a continuous interest in integrating the two.

The traditional classification of existing approaches is by
the degree of integration (see, e.g., (de Bruijn et al. 2007b;
de Bruijn, Eiter, and Tompits 2008)), resulting in a loose
integration where rules provide an a query interface to the
underlying ontology, a hybrid integration where a separa-
tion is made between the predicates of the rules and those
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of the ontology, and a full integration where a unifying non-
monotonic formalism encompasses both ontology and rules
in which no distinction of predicates is made.

Another way to characterize existing approaches is by the
semantics of integration, which results in two distinguished
features. In the first, a formula in the body of a rule may act
as a query to the underlying ontology resulting in a query-
based (or entailment-based) approach. A notable example is
DL-programs by (Eiter et al. 2008), where rule bodies may
contain DL-atoms which are queries to ontology and serve
as interfaces between ontology and rules. In hybrid MKNF
knowledge bases (Motik and Rosati 2010), MKNF rules can
also be used as a powerful mechanism for manipulating con-
sequences of a first-order theory.

The second category of approaches may be best phrased
as model-based, where rules extend reasoning with individ-
ual models of ontology. Examples of this kind include r-
hybrid knowledge bases of (Rosati 2005), DL+ log (Rosati
2006), and disjunctive dl-programs (Lukasiewicz 2010).
Though the last was not formulated this way originally, as
we will see in this paper, an answer set in Lukasiewicz’s
approach corresponds to one or more models of a circum-
scription formula.

As an illustration, consider the following knowledge base
KB = (O,R) where O is an ontology given in description
logic and R is an answer set program1:

O = {ConferencePaper(a),
ConferencePaper � RegularPaper � ShortPaper}

R = {article(a)← RegularPaper(a),
article(a)← ShortPaper(a)}

In a model-based approach, KB implies article(a), since
a is either a RegularPaper or a ShortPaper, or both. In
the query-based approach of (Eiter et al. 2008), if R is rep-
resented by the following DL-rules

article(a)← DL[RegularPaper](a)
article(a)← DL[ShortPaper](a)

where DL[RegularPaper](a) is a DL-atom which queries
whether RegularPaper(a) holds, given O (similarly for

1In DLs, the operator � corresponds to set union and � is a is-a
relation. The technical development of this paper does not depend
on the detailed knowledge of DLs.
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DL[ShortPaper](a)), as neither RegularPaper(a) nor
ShortPaper(a) is implied by (possibly augmented) O,
article(a) is not true in any answer set. Similarly, if R is
represented by the following MKNF rules

Karticle(a)← KRegularPaper(a)
Karticle(a)← KShortPaper(a)

there is no MKNF model of KR that implies article(a).
We classify MKNF as entailment-based, as it is capable

of entailment reasoning by the use of the K operator in rule
bodies. However, it should be clear that the expressiveness
of MKNF stems from the flexible usage of the two modal
operators K and not, along with (nonmodal) first-order for-
mulas in rules, and as shown by (Motik and Rosati 2010),
this combined usage makes it possible to encode a number
of query-based as well as model-based approaches by hybrid
MKNF knowledge bases.

In this paper we propose to characterize hybrid knowledge
bases by circumscription (McCarthy 1980) for model-based
semantics, by adopting the circumscription characterization
of answer sets of (Lin and Zhou 2011). This approach faith-
fully extends both ontologies and rules, in that when one
component is empty, the hybrid knowledge base has the se-
mantics that coincides with the semantics of the other. The
approach is also flexible in that different circumscription
policies may be adopted to reflect different intuitions. In-
deed, we show that both Rosati’s semantics based on NM-
models and Lukasiewicz’s answer set semantics can be char-
acterized this way, and the difference between the two can
be seen as a matter of circumscription policies, along with
other possible policies for different semantics.

Our approach offers a rebuttal to the criticism on
Lukasiewicz’s semantics for the problem of reasoning
for classically negated consequences, as we will see that
Lukasiewicz’s answer sets are just projections of models of
a circumscription formula, under the Standard Names As-
sumption. Our approach may also be viewed as an extension
of circumscription in description logic by (Bonatti, Lutz, and
Wolter 2006) by augmenting its reasoning with rules. In ad-
dition, we show that the idea of this paper can be applied to
first-order stable models (Ferraris, Lee, and Lifschitz 2011).

Preliminary
First-order logic

Our approach is motivated primarily by the integration of
DLs and rules for the Semantic Web. As DLs are fragments
of (many sorted) first-order logic, here we choose to present
our approach for integration of rules and first-order logic.

We consider a first-order language LΣ with equality,
where Σ = 〈Fn, Pr〉 is a signature consisting of denumer-
able disjoint sets of function and predicate symbols Fn and
Pr, respectively, each having a non-negative arity n (con-
stants are zero-ary functions). Let V be a countable set of
variable symbols. Terms and atoms are constructed as usual
and literals are atoms or negated atoms. Formulas are con-
structed as usual from atoms using connectives ¬, ∧, ∨, ∃,
∀, and ⊃. Closed formulas are those where each variable is
bound by some quantifier. In this paper, it suffices to con-
sider first-order theories as finite sets of closed formulas.

An interpretation of formulas in LΣ is a tuple I = 〈U, ·I〉,
where U is a non-empty domain and ·I is a mapping which
assigns a function f I : Un → U to every n-ary function
symbol f ∈ Fn and a relation pI ⊆ Un to every n-ary pred-
icate symbol p ∈ Pr. The notions of satisfaction, model,
and logic consequences are defined as usual.

We adopt the Standard Names Assumption (SNA) as for-
mulated in (Motik and Rosati 2010), i.e., every interpreta-
tion is over the same fixed, countably infinite domain U that
contains all the constants in Σ such that tI = t for each
ground term t constructed from Σ and U , and the interpre-
tation of the predicate ≈ is a congruence relation, which is
reflexive, symmetric and transitive, and allows the replace-
ment of equals by equals.2 Since both Fn and U are in-
finitely countable, in this paper we simply identify U with
Fn. We denote by NΣ the set of ground terms and by HΣ

the set of ground atoms under the language LΣ. Then, un-
der SNA for each n-ary predicate symbol p ∈ Pr and any
interpretation I = 〈U, ·I〉, we have pI ⊆ NΣ

n. Thus SNA
interpretations of LΣ can be represented by subsets of HΣ.
We will follow this notation in the sequel. In particular, a
model/interpretation means an SNA model/interpretation if
not said otherwise. The restriction of an interpretation I to
a set of predicate symbols Q, denoted I|Q, is the projec-
tion of the atoms in I whose predicate symbols are from Q.
Similarly, we write I|LΣ′ to mean the restriction of I to a
sub-language LΣ′ .

Parallel circumscription

If p and q are predicate constants of the same arity, then
p ≤ q stands for the formula ∀x(p(x) ⊃ q(x)), where x is a
tuple of distinct variables, and we write p↔ q iff p ≤ q and
q ≤ p. If p and q are tuples (p1, . . . , pn) and (q1, . . . , qn) of
predicate constants, then p ≤ q stands for the conjunction
(p1 ≤ q1) ∧ . . . ∧ (pn ≤ qn), and p < q stands for (p ≤
q) ∧ ¬(q ≤ p).

Given a first-order language LΣ, where Σ = (Fn, Pr),
let T be a first-order theory in LΣ, and p ∪ z ∪ f a partition
of all predicate constants in T . Parallel circumscription, de-
noted CIRC[T ;p; z], is the circumscription of p in T with
variables z, which is defined as a second-order theory
CIRC[T ;p; z] = T (p, z) ∧ ¬∃uv[(u < p) ∧ T (u,v)]

Here u and v are tuples of predicate variables which are of
the same arities as those in p and z, respectively.

We call a model M of CIRC[T ;p; z] a pz-minimal
model of T , as the extensions for the predicates in p are
minimal among the models of T that agree with M on ex-
tensions for predicates in f with those in z varying. The sets
of predicates in p and z define a preference relation �pz

among models of T : for two models M and N of T , we de-
fine M �pz N if and only if M |f = N |f and M |p ⊆ N |p.
If M �pz N but N �pz M , we write M ≺pz N .

Circumscription can be easily extended to many-sorted
languages (Lifschitz 1994), where a predicate is associated
with sorts of its arguments. In this paper, it is sufficient for

2With SNA, equality in our first-order language is redundant.
But later we will argue for an advantage of our approach in allow-
ing arbitrary structures, in which equality is interpreted classically.
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a predicate to have a single domain for all its arguments. In
the sequel, whenever necessary we will explicitly mention
the domains of predicate symbols under discussion.

Hybrid Knowledge Bases by Circumscription

Given a first-order language LΣ where Σ = (Fn, Pr), as
defined earlier, let Φ be a vocabulary with nonempty sets
of constants ΦC ⊆ Fn and predicate symbols ΦP ⊆ Pr,
respectively. Let X be a set of variables. A disjunctive logic
program on Φ is a finite set of disjunctive rules where each
rule has the form
α1 ∨ . . . ∨ αk ← β1, . . . , βm, not βm+1, . . . , not βn (1)

where k ≥ 1, m,n ≥ 0, and αi and βj are atoms of
the form p(x1, ..., xn) where p is an n-ary predicate sym-
bol in ΦP and each xi is either a constant from ΦC or
a variable from X . Given a rule r of the form (1), we
call the left hand side of the rule the head of r, denoted
H(r) = {α1, ..., αk}, and the right hand side the body, de-
noted B(r) = B+(r)∪B−(r) where B+(r) = {β1, ..., βm}
and B−(r) = {not βm+1, ..., not βn}.

Given vocabulary Φ, the Herbrand base (relative to Φ),
denoted HΦ, is the set of atoms constructed from constants
in ΦC and predicate symbols in ΦP . Herbrand interpreta-
tions are subsets of HΦ. For a ground atom p(t) ∈ HΦ and
a Herbrand interpretation I ⊆ HΦ, we write I |= p(t) if
p(t) ∈ I and I |= not p(t) if I �|= p(t). A rule r is satisfied
by I iff I |= H(r) or I �|= B(r).

A hybrid knowledge base is a pair KB = (O,R) where
O is a first-order theory in LΣ and R is a disjunctive logic
program on Φ.

Let KB = (O,R) be a hybrid knowledge base. In our cir-
cumscription characterization of the semantics of KB, we
map KB to a first-order theory by a translation

π(O,R) = O ∪ π(R)

For the translation of R, as we will see later in this paper,
a key ingredient in some semantics for integrating rules and
DLs is to be able to ”split” a predicate so that only part of
it follows the answer set semantics. For now, let us assume
a function, called split(R), which maps R to a collection of
disjunctive rules.

In the second part of translation π, we would like to cap-
ture the answer set semantics by circumscription. Following
(Lin and Zhou 2011), for each predicate symbol p that ap-
pears in split(R), we assume a fresh predicate symbol p′ of
the same arity and over the same domain. Given split(R),
let C(split(R)) be the conjunction of the sentences obtained
by translating every rule of the form (1) in split(R) into the
universal closure of the following sentence:
β1 ∧ . . . ∧ βm ∧ ¬β′

m+1 ∧ ... ∧ ¬β′
n ⊃ α1 ∨ . . . ∨ αk (2)

where, for all m+ 1 ≤ j ≤ n, if βj is a ground atom a then
β′
j is a′, and if βj is p(t) then β′

j is p′(t).
Since a translation π may introduce new predicate sym-

bols, in the following, given a first-order language LΣ, by
the extended language of LΣ, we mean the language that in-
cludes all the new predicate symbols introduced in such a
translation, in addition to those in LΣ. Let us denote this
language by LΣ′ .

Definition 1. (Characterization of hybrid knowledge bases
under circumscription) Let KB = (O,R) be a hybrid
knowledge base and M an interpretation for the language
LΣ. M is a c-model (for combined model) of KB iff
for some interpretation I for the language LΣ′ such that
I|LΣ

= M and I is a model of the following sentence
∧

p∈Ω

p↔ p′ ∧CIRC[π(O,R);Q;Z] (3)

where Ω is the set of predicate symbols appearing in
split(R), and Q and Z are disjoint subsets of the predicate
symbols appearing in π(O,R) such that ≈ �∈ Q.

Formula (3) is actually a circumscription scheme. Given a
hybrid knowledge base KB = (O,R), a translation π, and
choices of Q and Z, this scheme determines the intended
models of KB, along with a specification of domains of rel-
evant predicates. Let us express formula (3) by

SEM(KB, π,Q,Z) (4)

In the sequel, given a hybrid knowledge base KB =
(O,R), we denote by P the set of predicate symbols ap-
pearing in KB, by PR the set of predicate symbols that oc-
cur only in R, and we let PO = P \ PR. In addition, since
equality ≈ originates from DLs, we assume ≈ �∈ PR.

Characterizing NM-Models of Hybrid

Knowledge Bases

Rosati proposes r-hybrid knowledge bases (Rosati 2005) and
generalizes it to DL+ log (Rosati 2006).

Given a function-free first-order language LΣ where Σ =
(Fn, Pr), let Φ be a vocabulary defined as above. An r-
hybrid knowledge base KB = (O,R) consists of a first-
order theory O of LΣ and a collection of disjunctive rules
R of the form (1) on Φ.3 The domain of the predicates in
PR is ΦC and the domain of all the other predicates is Fn.
In addition, we assume that the congruence relation induced
from the equality does not apply to predicates in PR.

To achieve decidability, r-hybrid knowledge bases employ
a notion of DL-safeness: every variable occurring in r ∈ R
must occur in at least one atom with its predicate p ∈ PR ∩
B+(r). That is, the grounding of program R is relative to
the constants occurring in R. For technical convenience, let
us assume that ΦC is the set of constants appearing in R,
and denote by gr(R,ΦC) the ground program instantiated
from R using ΦC . Note that gr(R,ΦC) is independent of
whether R is safe or not.

The semantics of a hybrid knowledge base KB=(O,R)
is defined by NM-models, which are obtained as fol-
lows. Given an interpretation I ⊆ HΣ, the projection of
gr(R,ΦC) w.r.t. I|PO

, denoted by Π(gr(R,ΦC), I|PO
), is

obtained by eliminating all predicates in PO from gr(R,ΦC)
as follows: for every rule r ∈ R, rΠ is defined as:

• rΠ does not exist if there exists a literal in the head of r
of the form A(t) with A ∈ PO and t ∈ AI|PO ;

3Rosati requires that the predicates in PO do not occur under
the default negation operator not, and we remove this assumption.
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• rΠ does not exist if there exists a literal in the body of r
of the form A(t) with A ∈ PO and t /∈ AI|PO ;

• rΠ does not exist if there exists a literal in the body of r
of the form not A(t) with A ∈ PO and t ∈ AI|PO ;

• otherwise rΠ is r after removing all occurrences of literals
whose predicate symbols are from PO;

and Π(gr(R,ΦC), I|PO
) = ∪{rΠ | r ∈ R

}
. The interpre-

tation I is an NM-model of KB = (O,R) if the following
conditions hold: (1) I|PO

satisfies O, and (2) I|PR
is an an-

swer set for Π(gr(R,ΦC), I|PO
).

Lemma 1. Let KB = (O,R) be an r-hybrid knowledge
base. For any interpretation I ∈ HΣ such that I |= O,
I |= R iff I |= Π(gr(R,ΦC), I|PO

).
Using this lemma, we can prove the following theorem.

Theorem 1. Let KB = (O,R) be an r-hybrid knowledge
base and I ⊆ HΣ be an interpretation. I is an NM-model
of KB iff I is a c-model of SEM(KB, π, PR, ∅), where
π(O,R) = O ∪ C(splitNM (R)) and splitNM (R) = R.

That is, to capture Rosati’s semantics, the translation
splitNM is void, and the only translation is that of (Lin and
Zhou 2011). Note that the translation π also includes remov-
ing congruence relation for predicates in PR.4

Rosati generalizes r-hybrid knowledge bases to DL+ log
(Rosati 2006) by relaxing the DL-safeness to weak safeness:
every variable occurring in H(r) with r ∈ R must occur
in at least one atom p(t) ∈ B+(r) where p ∈ PR. If a
variable appearing in B(r) only appears in predicates from
PO, it ranges over the domain Fn. In this case, as some
variables are substituted by constants from Fn, the ground-
ing of R is a superset of gr(R,ΦC). However, any addi-
tional atoms built on predicates from PO in rule instances
are treated as ”classic”, as their predicates are in fact fixed
in circumscription. Therefore, the statement in Theorem 1
holds for DL+ log as well.

Characterization of Answer Sets of

Disjunctive DL-Programs

Taking the viewpoint from the perspective of rule-based sys-
tems, Lukasiewicz (Lukasiewicz 2010) proposes an answer
set semantics for disjunctive dl-program.

Let LΣ be a function-free first-order language, where
Σ = (Fn, Pr), and Φ be a first-order vocabulary consist-
ing of a nonempty finite set of constants ΦC ⊆ Fn and
a nonempty finite set of predicates ΦP ⊆ Pr such that
≈ �∈ ΦP . The main idea behind the semantics of disjunc-
tive dl-program KB = (O,R) is to interpret R relative to
Φ while satisfying O, where this satisfiability is evaluated
under classic interpretations.

The domain of predicates in Pr is Fn, and the congru-
ence relation induced by the equality applies everywhere.5

4That is, given KB = (O,R), if a ≈ b ∈ O and p ∈ PR, we
do not require p(a) ↔ p(b).

5By ”R is on Φ”, we mean we use symbols from Φ to compose
R. But here the domain of a predicate appearing in KB is Fn.
Note that the domain for PR is different from the treatment for
Rosati’s semantics in the preceding section.

Let KB = (O,R) be a disjunctive dl-program and
I ⊆ HΦ. Following (Lukasiewicz 2010), assume that ΦC

(resp. ΦP ) consists of the constants (resp. predicate sym-
bols) appearing in R. I is a Herbrand model of O, de-
noted I |=HB O, iff O ∪ I ∪ {¬α |α ∈ HΦ \ I} is sat-
isfiable. I is a Herbrand model of KB, denoted I |= KB,
iff I |=HB O and I |= R. Following (Faber, Leone, and
Pfeifer 2004), Lukasiewicz defines the FLP-reduct of KB
relative to I to be KBI = (O,RI), where RI is the set of
rules r ∈ gr(R,ΦC) with I |= B(r). I is an answer set of
KB iff I is a minimal Herbrand model of KBI .
Example 1. Consider KB = (O,R), where O = {c(a) ∨
c(b)} and R = {c(a)← c(a)}, where Φ = ΦC ∪ΦP , ΦC =
{a}, ΦP = {c}, and HΦ = {c(a)}. There are exactly two
Herbrand interpretations, I1 = ∅ and I2 = {c(a)}. Both
are Herbrand models of KB, but only I1 is an answer set.
Note that the predicate c is minimized only on HΦ, leaving
the rest (namely {c(b)}) for varying.
Example 2. Let KB = (O,R), where O = {a ⊃ c} and
R = {b ← not a}. Here HΦ = {a, b}. There is a unique
answer set of KB, which is I1 = {b}. Note that the Her-
brand interpretation I2 = {a} is not an answer set of KB.
Even though it is a Herbrand model of O, i.e., O∪I2∪{¬b}
is satisfiable, I2 is not a minimal Herbrand model of KBI2 ,
as ∅ is also a Herbrand model of KBI2 .

Given a disjunctive dl-program KB = (O,R), we define
a translation π1(O,R) = O ∪ π1(R) = O ∪ C(splitL(R)),
where splitL(R) is the same as R except that (1) each n-ary
predicate p appearing in R is replaced by a fresh predicate
symbol p∗ which is of the same arity and over the domain
ΦC , and (2) for each n-tuple t ∈ NΦ

n, we add the following
two rules into the resulting program

p∗(t)← p(t), p(t)← p∗(t) (5)

Let us denote by Θ∗ the set of these fresh predicate symbols.
The introduction of the new predicate symbol p∗ is to

”split” p into two parts, where p∗ represents the part de-
fined on domain ΦC while the original p is on Fn. Clearly,
the two rules in (5) enforce p(t) ↔ p∗(t), for any n-tuple
t ∈ NΦ

n, in any model of π1(R). That is, since ΦC ⊆ Fn,
in any model of π1(R) the extension of p∗ is a subset of the
extension of p.

In the above translation, we extend the given language
LΣ with predicates in Θ∗ and recall that in formula (3), we
also introduce primed predicate symbols. Let us denote this
extended language by LΣ′ .
Theorem 2. Let KB = (O,R) be a disjunctive dl-program.

(i) For any interpretation I ⊆ HΦ, if I is an answer set of
KB, then there is a model I ′ of SEM(KB, π1,Θ

∗, P )
such that I ′|Φ = I .

(ii) For any interpretation I ⊆ HΣ′ , if I is a model of
SEM(KB, π1,Θ

∗, P ), then I|Φ is an answer set of KB.
Example 3. (Cont’d from Example 2) Let KB = (O,R),
where O = {a ⊃ c} and R = {b ← not a}. We have
HΦ = {a, b}. For this KB, I1 = {b} is the unique answer
set. Note that SEM(KB, π1, {a∗, b∗}, {a, b, c}) is (a∗ ↔
a∗

′
) ∧ (b∗ ↔ b∗

′
) ∧ CIRC[π1(O,R); {a∗, b∗}; {a, b, c}],
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where π1(O,R) = O ∪ π1(R) and π1(R) = {¬a∗′ ⊃
b∗, a∗ ↔ a, b∗ ↔ b}. SEM(KB, π1, {a∗, b∗}, {a, b, c})
has two models I1 = {b∗′

, b∗, b} and I2 = {b∗′
, b∗, b, c}

(and their corresponding c-models are {b} and {b, c} re-
spectively), whereas I1|Φ = I2|Φ = {b}.

Discussion

Three important points are worthy of discussion.
First, (Motik and Rosati 2010) argue that Lukasiewicz’s

semantics is undefined for classically negated ground atoms.
Given a disjunctive dl-program KB = (O,R), they ar-
gue that an obvious extension would be to define, for
any ground atom p(t), (O,R) |= ¬p(t) if and only if
p(t) �∈ M , for each answer set M of KB. But then
(∅, ∅) |= ¬p(t). Therefore, question arises as whether en-
tailment is faithful w.r.t. the standard first-order semantics
of DLs. As we have an equivalent circumscription charac-
terization, consequences of KB are determined by the c-
models of SEM(KB, π1,Θ

∗, P ). In particular, we can de-
fine (O,R) |= ¬p(t) iff p(t) is false in every c-model of
SEM(KB, π1,Θ

∗, P ). Clearly, this entailment is faithful,
as when R is empty the c-models of SEM(KB, π1,Θ

∗, P )
are just the classic models of O.

The second point is that the view of perspective of rule-
based systems, as advocated by Lukasiewicz, need not
have to be restricted to Herbrand structures. We have ap-
plied SNA up to this point, which allows us to identify
c-model of SEM(KB, π1,Θ

∗, P ) as super models of an-
swer sets of KB. However, a compelling view offered by
SEM(KB, π1,Θ

∗, P ) is that the essence of Lukasiewicz’s
semantics is to minimize ΦP on domain ΦC while leaving P
to vary. This essence is intact even if SNA is removed hence
arbitrary structures are permitted. This is what has been pro-
posed in a variant circumscription recently (Ferraris, Lee,
and Lifschitz 2011) (see the next section).

The last but not the least is that the circumscription char-
acterization shows a clear picture of a number of possible
model-based semantics and their relationships. Let us say
that a semantics S is stronger than another one S′, denoted
S � S′, if for any hybrid knowledge base KB = (O,R), a
c-model of KB under S is always a c-model of KB under
S′. We write S � S′ if S � S′ and S′ �� S. Consider

(a) SEM(KB, π, PR, ∅) (b) SEM(KB, π1,Θ
∗, P )

We know that (a) characterizes Rosati’s NM-models and (b)
characterizes Lukasiewicz’s answer sets. Before any com-
parison, we need to do a small patch on the difference in the
underlying languages - in the case of (a) the predicates in PR

range over ΦC and the congruence relation does not apply to
them, while in (b) the predicates in PR range over Fn and
congruence relation applies everywhere. Now, let us first
extend the domain of the predicates in PR in the language
of (a) to match that of (b). Since ground atoms constructed
from PR and Fn \ΦC do not appear in KB, their truth val-
ues don’t matter in a c-model (note also that in the case of
(a) the congruence relation does not apply to predicates in
PR). This gives us extended c-models of (a). In general, we
have neither (b) � (a) nor (a) � (b). The former is due

to equality. For example, with KB = ({a ≈ b}, {p(a) ←
not q(b)}), where ΦC = {a, b} and p, q ∈ PR, in the case of
Rosati, I = {a ≈ b, b ≈ a, a ≈ a, b ≈ b, p(a)} is the unique
NM-model, while {p(a), p(b)} is the unique answer set in
the case of Lukasiewicz, due to substitutivity in congruence
relation. If we eliminate the impact of equality, e.g., by as-
suming ≈ does not appear in KB, then it is easy to check
that (b) � (a). With this we can now compare the two.

We list below a few other possibilities:

(i) SEM(KB, π, PR, PO): A variant of Rosati’s by allow-
ing PO to vary in order to further minimize PR. Clearly,
(i) � (a).

(ii) SEM(KB, π,ΦP , P \ ΦP ): A variant of Rosati’s by
minimizing all predicates appearing in R, with all others
varying. Clearly, (ii) � (a).

(iii) SEM(KB, π1,Θ
∗,ΦP ): A variant of Lukasiewicz’s by

varying only those predicates appearing in R with the rest
fixed. It’s clear (b) � (iii).

It is interesting to see that of all above, Rosati’s semantics
is the weakest when equality is not considered, since it min-
imizes the smallest set of predicates while leaving all others
fixed. For instance, it is easy to show that Rosati’s seman-
tics is weaker than Lukasiewicz’s. To see that it is strictly
weaker, consider KB = (O,R), where O = {a ⊃ c} and
R = {b ← not a} in Example 2 again. Here PR = {b}
and PO = {a, c}. Clearly, KB has three NM-models,
I1 = {a, c}, I2 = {b, c}, and I3 = {b}, while {b} is the
only answer set of KB. Properties of these semantics are
interesting questions for further study.

First-Order General Stable Models

We show that, as an alternative to (Lin and Zhou 2011), we
can apply general stable models (Ferraris, Lee, and Lifschitz
2011) to characterize model-based semantics.

Let p be a list of distinct predicate constants (p1, . . . , pn).
For any first-order formula F , by SMp[F ] we denote the
seconde-order sentence

F ∧ ¬∃u((u < p) ∧ F �(u)) (6)

where u is a list of n distinct predicate variables
(u1, . . . , un), and F �(u) is defined recursively:

• pi(t)
� = ui(t) for any tuple t of terms;

• F � = F for any atomic formula F that does not contain
members of p;

• (F ∧G)� = F � ∧G�;
• (F ∨G)� = F � ∨G�;
• (F → G)� = (F � → G�) ∧ (F → G);
• (∀xF )� = ∀xF �;
• (∃xF )� = ∃xF �.

For any sentence F , a p-stable (or simply stable) model of F
is an interpretation of the underlying signature that satisfies
SMp[F ]. Since the first conjunctive term of SMp[F ] is F ,
it is clear that every stable model of F is a model of F . Note
that if we drop the second conjunctive term from the clause
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for implication in the definition of F �(u), SMp[F ] reduces
to CIRC[F,p, ∅].

Given a disjunctive program R, let π2(R) be the conjunc-
tion of the sentences obtained by translating each rule of the
form (1) into the universal closure of the following sentence

β1 ∧ . . . ∧ βm ∧ ¬βm+1 ∧ ... ∧ ¬βn ⊃ α1 ∨ . . . ∨ αk

We write ¬p as shorthand for p→ ⊥.
The proposition below says that if O is empty, there is

a one-to-one correspondence between c-models of our cir-
cumscription characterization and general stable models.
Proposition 1. Let KB = (∅, R) be a hybrid knowledge
base where R is on Φ. For any interpretation I ⊆ HΦ,
I is a c-model of SEM(KB, π,ΦP , ∅), where π(O,R) =
∅ ∪ C(splitNM (R)) and splitNM (R) = R, iff I is a ΦP-
stable model of SMΦP

[π2(R)].
The next proposition shows a relation between general

stable models and Rosati’s NM-models.
Proposition 2. Let KB = (O,R) be an r-hybrid knowledge
base and I ⊆ HΣ be an interpretation. I is a PR-stable
model of SMPR

[O ∪ π2(R))] iff I is an NM-model of KB.
In Lukasiewicz’s semantics for disjunctive dl-program,

the predicates which represent the part defined on domain
ΦC are minimized while leaving the same predicates on the
rest of the domain and other predicates to vary. Since the
varying predicates in circumscription can be eliminated by
a chain of equivalences in circumscription (Lifschitz 1994),
i.e.,

CIRC[T (p, z);p; z] = T (p, z) ∧CIRC[∃vT (p,v);p]
in general stable models they can be treated similarly via a
syntactic transformation. Thus the formalism of general sta-
ble models with π2(splitL(R)) is also capable of capturing
Lukasiewicz’s semantics for disjunctive dl-programs.

Final Remarks

Comparing with hybrid MKNF (Motik and Rosati 2010),
our approach based on circumscription does not have an ex-
plicit means for entailment reasoning by rules. In addition,
while in MKNF the granularity of minimization depends on
the combined usage of the two modal operators K and not,
in circumscription minimization can only be specified on a
per predicate name basis.

Characterizations of hybrid knowledge bases under first-
order autoepistemic logic (FO-AEL) and quantified equi-
librium logic (QEL) have been studied in (de Bruijn et al.
2007a; 2007b; de Bruijn, Eiter, and Tompits 2008). The lat-
ter has been used as a unified logical foundation for r-hybrid
knowledge bases (Rosati 2005),DL+ log (Rosati 2006) and
their extensions, and we classify it as model-based, whereas
the former is shown to be capable of embedding descrip-
tion logic programs of (Eiter et al. 2008) (under the weak
answer set semantics), DL+ log, and hybrid MKNF knowl-
edge bases (de Bruijn, Eiter, and Tompits 2008). Compared
to these formalisms, circumscription has some attractive fea-
tures. One is that circumscription is directly built on classic
logic. Furthermore, semantics characterized by circumscrip-
tion can benefit from variations of circumscription, such as

pointwise circumscription (Lifschitz 1987) and priorities in
circumscription (Lifschitz 1994). These possibilities and
their applications deserve further study.
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