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Abstract

This paper presents a framework for relevance-based
belief change in propositional Horn logic. We firstly es-
tablish a parallel interpolation theorem for Horn logic
and show that Parikh’s Finest Splitting Theorem holds
with Horn formulae. By reformulating Parikh’s rele-
vance criterion in the setting of Horn belief change, we
construct a relevance-based partial meet Horn contrac-
tion operator and provide a representation theorem for
the operator. Interestingly, we find that this contraction
operator can be fully characterised by Delgrande and
Wassermann’s postulates for partial meet Horn contrac-
tion as well as Parikh’s relevance postulate without re-
quiring any change on the postulates, which is qualita-
tively different from the case in classical propositional
logic.

Introduction

It has been widely recognised that computational intractabil-
ity is one of the major challenges for knowledge base
maintenance. Most of the knowledge base maintenance op-
erations, such as belief revision, knowledge updates and
counterfactuals, are computationally intractable provided
knowledge and beliefs are represented in propositional lan-
guages (Nebel 1992; Eiter and Gottlob 1992). More remark-
ably, tractability is not taken for granted even though the
language is restricted to Horn formulae, given that the infer-
ence problem with Horn clauses is polynomial. It was shown
by Eiter and Gottlob ( 1992) that for those formula-based
operators, the complexity of knowledge base change can be
co-NP-hard even in the case that the knowledge base under
consideration is represented in Horn formulae and the size
of input information is bounded by a constant. The main is-
sue, as (Eiter and Gottlob 1992) observed, is that a small
change to a knowledge base could make dramatic effects on
the whole knowledge base, including those items that are ir-
relevant to the trigger events. For instance, if a knowledge
base contains ¬p ∨ (q1 ∧ · · · ∧ qn) and ¬p, then a change
of p from ¬p to p forces the originally completely irrelevant
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conjunction q1 ∧ · · · ∧ qn to become true (Eiter and Gottlob
1992).

One of the solutions we can possibly use to tackle the
problem is so-called relevance-based belief change, pro-
posed by Parikh ( 1999). The idea is that whenever a be-
lief set incurs a change, revise only the relevant beliefs and
leave the rest of the beliefs unchanged. The key technique
Parikh used to implement his idea is what it was called the
Finest Splitting Theorem. The theorem says that for any the-
ory in a finite propositional language, there is a unique finest
splitting of the propositional language that splits the the-
ory into a set of pieces, each of which is represented by a
sub-language of the splitting. Based on the observation, it
becomes possible to impose a criterion, known as Parikh’s
Relevance Postulate, on belief changes through syntactical
restrictions: whenever an element of a belief set is separated
through the finest language splitting from the new informa-
tion, it remains an element of the revised belief set. Parikh
has demonstrated that there exists a belief change operator
that satisfies the basic AGM postulates for belief revision
and the relevance postulate. However, Parikh argued that
the relevance postulate conflicts conceptually with two other
AGM pustulates (the supplementary postulates).

Parikh’s method has been further developed by (Kourou-
sias and Makinson 2007). Kourousias and Makinson firstly
generalised Craig’s interpolation theorem to so-called paral-
lel interpolation theorem, through which they successfully
extended Parikh’s finest splitting theorem from the finite
case to the infinite case. Secondly they showed that the AGM
partial meet contraction applied to the finest splitting of a
consistent belief set satisfies Parikh’s relevance postulate.
Although the result does not provide a representation theo-
rem for the whole set of the AGM postulates and Parikh’s
relevance postulate1, it sends us a clear message that the
AGM partial meet operations can be naturally tuned to meet
Parikh’s relevance postluate.

Kourousias and Makinson’s framework was built upon
classical propositional logic. An open question was posted
in (Kourousias and Makinson 2007): How far can the re-
sults be established for sub-classical (e.g. intuitionistic) con-

1Note that the redefined contraction operator applies to the
finest splitting of the original belief set, which is not necessarily
logically closed. Therefore a number of AGM postulates, such as
closure and extensionality, no longer hold.
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sequence relations or supra-classical ones? This is by no
means a trivial question because Kourousias and Makinson’s
proof of the Finest Splitting Theorem is based on Craig’s In-
terpolation Theorem, which fails in many non-classical log-
ics (van Benthem 2008). More seriously, Parikh’s relevance
criterion is a syntactical requirement, which is sensitive to
any variation of languages.

This paper demonstrates that Parikh’s idea of relevance-
based belief change and Kourousias & Makinson’s results
on partial meet contraction can be fully retained in Horn
logic. Benefiting from the interpolation theorem in Horn
logic (Gabbay and Maksimova 2005), we firstly show that
the Finest Splitting Theorem holds for Horn formulae. We
then construct a relevance-based partial meet Horn contrac-
tion operator and reformulate Parikh’s relevance postulate in
the setting of Horn belief change (Delgrande and Wasser-
mann 2010). Finally we present two representation theo-
rems: one for the relevance-based maxichoice Horn con-
traction and one for the relevance-based partial meet Horn
contraction. Interestingly, we show that these two contrac-
tion operators can be fully characterised by (Delgrande and
Wassermann 2010)’s respective postulates for Horn belief
contraction and Parikh’s relevance postulate without requir-
ing any changes in nature.

To save space, all proofs will be presented in the ap-
pendix.

Preliminaries

We assume a propositional language L with a countable
set Φ of elementary letters (alias propositional variables),
the standard logical connectives ¬,∨,∧,→, and the logi-
cal constants � (true) and ⊥ (false). We use lower case
Roman letters a, b, x, y, · · · to range over elementary letters
and the Greek letters φ, ϕ, ψ, ... for propositional formulae.
Sets of formulae are denoted by upper case Roman letters
A,B, F,K, ....

For any formula ϕ, we write E(ϕ) to mean the set of the
elementary letters that occur in ϕ. The same notation also
applies to a set of formulae. For any set F of formulae, L(F )
represents the sub-language generated by E(F ), i.e. the set
of all formulae ϕ with E(ϕ) ⊆ E(F ).

Following (Delgrande and Wassermann 2010), Horn for-
mulae are defined as follows:

1. Every a ∈ Φ is a Horn clause.

2. a1 ∧ a2 ∧ ...∧ an → a is a Horn clause, where n ≥ 0 and
a, ai ∈ Φ (1 ≤ i ≤ n).

3. Every Horn clause is a Horn formula.

4. If ϕ and ψ are Horn formulae, so is ϕ ∧ ψ.

We let Horn(L) be the set of all Horn formulae with re-
spect to L.

A Horn formula ψ is derived from a set F of Horn for-
mulae, written as F �H ψ, if ψ can be obtained from F
by a finite number of applications of the following rules and
axioms (Delgrande and Wassermann 2010):
Axioms: ⊥ → a a → a
Rules:

1. From a1 ∧ a2 ∧ ...∧ an → a and b1 ∧ ...∧ bm → ai infer
a1∧a2∧ ...∧ai−1∧b1∧b2∧ ...∧bm∧ai+1∧ ...∧an → a.

2. From a1∧a2∧...∧an → a infer a1∧a2∧...∧an∧b → a.

3. For rules r1 := a1∧a2∧ ...∧an → c and r2 := b1∧ b2∧
... ∧ bm → c, if {a1, a2, ..., an} = {b1, b2, ..., bm} then
from r1 infer r2.

4. From φ ∧ ψ infer φ and ψ.

5. From φ, ψ infer φ ∧ ψ.

where a, b, c (with or without subscriptions) range over the
elementary letters only. For simplicity, from now on we will
drop the subscript H for the Horn derivability symbol �H .
Specifically in this paper, ϕ 
� ψ means ϕ � ψ and ψ � ϕ.
For two sets P and Q of Horn formulae, P � Q means
P � ϕ for all ϕ ∈ Q.

A set F of Horn formulae is inconsistent if F �⊥ and is
consistent otherwise. We call the following set

H(F ) = {ϕ ∈ Horn(L) : F � ϕ}
the Horn closure of F . A set K of Horn formulae is a Horn
belief set if K = H(K). In addition, |ϕ| represents the set
of all maximal consistent Horn theories that contains ϕ and
|¬φ| is the complement of |ϕ|, i.e., the set of maximal con-
sistent Horn theories that do not contain φ (Delgrande and
Wassermann 2010).

Language Splitting in Horn Logic

The general rationale for relevance-based belief change, as
outlined by Parikh (1999), is that “if we know that two sub-
ject matters are unrelated and we receive information about
one of the two, we should only update our beliefs in that
subject and leave the rest of our beliefs unchanged”. How-
ever, formulating the idea of relevance change gives a big
challenge: “how to specify relevance of matters?”. Parikh
proposed a syntactical approach, called language splitting,
which defines relevance as: two subject matters are unre-
lated if they can be described in two disjoint sub-languages.
He proved that any theory in finite propositional language
has a unique way of splitting which separates the theory in
the finest manner. The result is known as the Finest Split-
ting Theorem. Parikh’s proof of the theorem assumes that
the language is finite thus is relatively easy. Kourousias and
Makinson (2007) extended the result to any propositional
language with infinite many propositional variables. Their
proof is based on Craig’s Interpolation Theorem .In this sec-
tion, we demonstrate that the finest splitting theorem also
holds in Horn logic.

We will follow Kourousias and Makinson’s roadmap to
prove the finest splitting theorem. Firstly we prove the par-
allel interpolation theorem for Horn logic based on the fol-
lowing Interpolation Theorem given by (Gabbay and Mak-
simova 2005)2.

2Note that Gabbay and Maksimova’s proof of the theorem is
based on a different proof theory. It is easy to verify that it remains
true under the current proof theory. See Theorem 15.8 in (Gabbay
and Maksimova 2005).
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Theorem 1 (Interpolation theorem for Horn logic) Let P
and Q be sets of Horn clauses and a be an elementary letter
in E(Q). Suppose that P,Q � a. Then there is a set H of
Horn clauses in L(P )∩L(Q) such that P�H and H,Q�a.

Definition 1 Let E = {Ei}i∈I be any partition of Φ, where
I �= ∅. E is said to be a splitting of a set, K, of Horn for-
mulae if and only if

⋃
i∈I{H(K) ∩ L(Ei)} 
� K.

Example 1 Let Φ={p, q, r} and K={p, p→q, p→r}. Then
{{p, r}, {q}} is a splitting of K because K 
� {p, p → r}∪
{q}. In fact, it is easy to verify that {{p, q, r}},{{p}, {q, r}},
{{p, q}, {r}}, {{p}, {r}, {q}} are all splittings of K. Obvi-
ously {{p}, {r}, {q}} is the finest splitting.

Assume that E = {Ei}i∈I and F = {Fj}j∈J are two
splittings of a set K of Horn formulae in language L. Let
RE and RF be the corresponding equivalent relations of E
and F on Φ. We say that E is at least as fine as F, written
by E � F, if RE ⊆ RF.

Theorem 2 (Parallel Interpolation in Horn Logic) Let
ψ∈Horn(L) and

⋃
i∈I{Ai}⊆Horn(L) such that E(Ai)

are pairwise disjoint for all i ∈ I . If
⋃

i∈I{Ai}�ψ, then
for each i ∈ I there is a Horn formula φi such that Ai � φi,⋃

i∈I{φi}�ψ and E(φi)⊆E(Ai)∩E(ψ) for all i∈I .

Next we seek to prove the finest splitting theorem. To this
end, we need two technical lemmas.

Lemma 1 Let E and F be any splittings of a Horn belief
set K. Then the partition G of Φ defined by the equivalence
relation RE ∩RF also splits K.

If the language under consideration is finite, the above
lemma guarantees existence and uniqueness of the finest
splitting of any Horn belief set. However, for infinite propo-
sitional languages, we need the following lemma to ensure
existence of the finest splittings.
Lemma 2 Let Θ be a non-empty chain of splittings of
a Horn belief set K under the relation �. Let RΘ =⋂

E∈Θ RE. Then the partition of Φ corresponding to the
equivalence relation RΘ is also a splitting of K.

The above two lemmas implies the following theorem:

Theorem 3 (The Finest Splitting in Horn Logic) Every set
K of Horn formulae has a unique finest splitting for a given
propositional Horn language.

Relevance-Based Belief Change in Horn Logic

Recent years have seen a surge of research on belief change
under the language restriction to Horn formulae (Delgrande
2008; Booth, Meyer, and Varzinczak 2009; Delgrande and
Wassermann 2010; Zhuang and Pagnucco 2010). As men-
tioned in the introduction, such a restriction does not neces-
sarily gain computational tractability for belief change and
knowledge update operations (Eiter and Gottlob 1992). So-
lutions have to be found to tackle the computational chal-
lenges. In this section, we demonstrate that Parikh’s idea
of relevance-based belief change can be fully implemented
in Horn belief change. Our work will be based on (Del-
grande and Wassermann 2010)’s framework. Firstly we re-
call a number of basic concepts on Horn belief contraction.

Horn belief contraction operator

We firstly recall the basic concepts of Horn belief contrac-
tion from (Delgrande and Wassermann 2010). Let K be a
Horn belief set and ϕ be a Horn formula. K ⇓ ϕ is the set of
the sets of formulae such that K

′ ∈ K ⇓ ϕ iff K
′
= K ∩m

for some m ∈ |¬ϕ|. Each K ′ ∈ K ⇓ ϕ is called a weak
remainder set of K and ϕ.

Let K be a Horn belief set. γ is a selection function for K
if for any Horn formula ϕ,

1. K ⇓ ϕ �= ∅ implies ∅ �= γ(K ⇓ ϕ) ⊆ K ⇓ ϕ;

2. K ⇓ ϕ = ∅ implies γ(K ⇓ ϕ) = {K}.

Given a Horn belief set K and a selection function γ for
K, the partial meet Horn contraction −̇ with respect to K
and γ is defined as follows: for any ϕ ∈ Horn(L),

K−̇ϕ =
⋂

γ(K ⇓ ϕ)

Specifically, the contraction operator is a maxichoice Horn
contraction if γ(K ⇓ ϕ) is restricted to a singleton for any
ϕ.

Similar to the AGM theory, Delgrande and Wassermann
(2010) proposed the following postulates to specify the Horn
contraction operators:
(−̇1) K−̇ϕ is a Horn belief set. (closure)
(−̇2) If �� ϕ, ϕ /∈ K−̇ϕ. (success)
(−̇3) K−̇ϕ ⊆ K. (inclusion)
(−̇4) If ϕ /∈ K, K−̇ϕ = K. (vacuity)
(−̇5) If � ϕ, K−̇ϕ = K. (failure)
(−̇6) If ϕ 
� ψ, K−̇ϕ = K−̇ψ. (extensionality)
(−̇7m) If K �=K−̇ϕ, there is a Horn formula β such that
{ϕ, β} is inconsistent, K−̇ϕ⊆H({β}) and for all K ′⊆K
such that K−̇ϕ⊂ K ′, K ′�H({β}). (maximality)
(−̇7p) If β∈K\(K−̇α), there is a K ′⊆K such that
K−̇α⊆K ′, α/∈H(K ′) and α∈H(K ′∪{β}). (weak
relevance)

Delgrande & Wassermann (2010) showed that −̇ is a Horn
maxichoice contraction iff it satisfies postulates (−̇1)-(−̇6)
and (−̇7m) while −̇ is a Horn partial meet contraction iff it
satisfies postulates (−̇1)-(−̇6) and (−̇7p).

Relevance criterion in Horn logic

We now restate Parikh’s relevance criterion in the context
of Horn belief change. Utilising (Makinson 2005)’s termi-
nology, we say that a Horn formula ψ is an essential Horn
formula of a Horn formula φ if ψ 
� φ and E(ψ) ⊆ E(χ)
for every Horn formula χ that satisfies χ 
� φ. Note that an
essential Horn formula of a Horn formula is not necessarily
unique. However, it is easy to see that all the essential Horn
formulae of a Horn formula contain the same set of elemen-
tary letters. We let Ē(φ) to represent the set of elementary
letters that occur in any essential formula of φ.

Following (Kourousias and Makinson 2007), we define
that two Horn formulae are irrelevant respect to a Horn be-
lief set if and only if they have no shared elementary letters
in any cell of the finest splitting of the Horn belief set.

Definition 2 (Irrelevancy) Let K be a consistent set of Horn
formulae and E = {Ei}i∈I be the unique finest splitting of
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K. Given any Horn formula φ, we say that a Horn formula
ϕ ∈ K is irrelevant to φ modulo K iff there is no Ei ∈ E
such that Ei ∩ Ē(φ) �= ∅ and Ei ∩ Ē(ϕ) �= ∅.

We denote the set of the irrelevant formulae to φ modulo
K by IK,φ and simply by Iφ in the context where the iden-
tity of K is clear. Now we can restate Parikh’s relevance
criterion in the setting of Horn logic:

(−̇IR) IK,φ ⊆ K−̇φ. (Irrelevance)

In other words, whenever an element ϕ ∈ K is irrelevant
to φ modulo K, it remains in the outcome of contracting K
by φ.

Relevance-based partial meet contraction operator

Similar to the classical case, Delgrande and Wassermann’s
partial meet contraction does not “naturally” meets the rele-
vance criterion. We could follow (Kourousias and Makinson
2007)’s approach by applying the partial meet contraction
operation on the splitting of a Horn belief set in lieu of on the
original belief set so that irrelevant information can be effec-
tively retained. However, their approach is not constructive.
In this section, we develop a method that constructs a partial
meet Horn contraction operator by using relevance concept.

Definition 3 Let K be any Horn belief set and E =
{Ei}i∈I be the finest splitting of K. For each Horn formula
φ, let E∗ =

⋃
i∈I{Ei ∈ E : Ei ∩ Ē(φ) = ∅}. In other

words, E∗ is the elementary letters irrelevant to φ based on
the finest splitting of K. We define

K ↓ φ = {K ′ ∈ K ⇓ φ : K �E∗= K ′ �E∗}
where K �E∗ means the set of formulae in K that are re-
stricted to language E∗.

Each K ′ ∈ K ↓ φ is called a relevance-based remainder
set of K with respect to φ.

Example 2 Assume a propositional language with only two
elementary letters {p, q}. Let K = H({p, p → q}) and φ be
p. Obviously {{p}, {q}} is the finest splitting of K. E∗ =
{q} is the irrelevant letter set based on the finest splitting of
K. It is also easy to see that H(q) ∈ K ↓ φ. However, since
H(p → q, q → p) �E∗= ∅, H(p → q, q → p) /∈ K ↓ φ
even though it belongs to K ⇓ φ.

The following lemma shows that a relevance-based re-
mainder set exists if and only if a weak remainder set does.

Lemma 3 Let K be a Horn belief set and φ a Horn formula.
K ↓ φ �= ∅ iff K ⇓ φ �= ∅.

The next lemma shows that if an element of a Horn belief
set K is irrelevant to a formula φ modulo K, then it remains
an element of any relevance-based remainder set of K with
respect to φ.

Lemma 4 IK,φ ⊆ K
′

for any K
′ ∈ K ↓ φ.

Now we give our construction of the relevance-based
Horn contraction operator.

Definition 4 Let γ be a selection function for Horn belief
set K. γ is said to be a relevance-based selection func-
tion if γ(K ⇓ φ) �= ∅ implies γ(K ↓ φ) �= ∅ for any
φ ∈ Horn(L). The relevance-based partial meet Horn con-
traction operator −̈ with respect to a Horn belief set K and
a relevance-based selection function γ is defined as follows:
for any φ ∈ Horn(L),

K−̈φ =
⋂

γ(K ↓ φ)

Note that the relevance-based maxichoice Horn contrac-
tion can be defined in a similar way. Lemma 3& 4 guaran-
tee the existence of relevance-based selection function for a
Horn belief set.

The following two representation theorems show that both
the relevance-based maxichoice Horn contraction and the
relevance-based partial meet Horn contraction can be char-
acterised by Delgrande and Wassermann’s respective postu-
lates as well as the relevance postulate (−̇IR).
Theorem 4 Let K be a Horn belief set. −̈ is a relevance-
based maxichoice Horn contraction for K iff −̈ satisfies
(−̇1)-(−̇6), (−̇7m) and (−̇IR).
Theorem 5 Let K be a Horn belief set. −̈ is a relevance-
based partial meet Horn contraction for K iff −̈ satisfies
(−̇1)-(−̇6), (−̇7p) and (−̇IR).

Conclusion and Related Work

We have shown that Parikh’s idea of relevance-based belief
change can be fully implemented in Horn logic based on
the framework of (Delgrande and Wassermann 2010) and
the roadmap of (Kourousias and Makinson 2007). We con-
structed a relevance-based partial meeting Horn contraction
operator and showed that it is exactly characterised by (Del-
grande and Wassermann 2010)’s postulates for partial meet-
ing Horn contraction and the Horn version of Parikh’s rele-
vance postulate.

This paper is greatly inspired by the work (Kourousias
and Makinson 2007). In fact, we have used a similar ap-
proach to show the finest splitting theorem for Horn logic
therefore the result applies to the languages with infinite
many propositional variables. However, our construction
of relevance-based partial meet contractions is significantly
different from KM’s. Kourousias and Makinson’s approach
simply applies the partial meet contraction to the finest split-
ting of a belief set instead of to the original belief set. One
problem of the approach, as listed as one of the open prob-
lems by the authors, is that there is no links between the
selection mechanism on the original belief set and the one
on its splitting. Our approach is constructive. We construct a
new set of remainder sets from the set of the original remain-
der sets to force a selection function to choose the remainder
sets that is irrelevant to the input information.

One may wonder whether knowledge base update using
relevance-based operators would become computationally
tractable in any situation. The answer is no. In fact, the
relevance-based change does not reduce the worst-case com-
plexity because if everything in a knowledge base is relevant,
splitting does not help. However, if the size of new infor-
mation and its relevant knowledge base are bounded by a
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constant, the complexity of relevance-based change is also
bounded by a constant. A systemic analysis of the computa-
tional complexity, including language splitting, Delgrande
and Wassermanns operators and the associated relevance-
based operators, needs to be done in the near future.

Appendix: Proof of Theorems

Proof of Theorem 2 : Since Horn derivability �H is com-
pact, we can assume that I is finite and each Ai is a finite
set of Horn formulae. Evidently each Ai is (Horn’s) logically
equivalent to a finite set of Horn clauses, say {ϕi1, ..., ϕimi},
with E({ϕi1, ..., ϕimi})⊆E(Ai). Therefore we can assume now
{ϕ11,· · · ,ϕ1m1 , ϕ21,· · · ,ϕ2m2 ,· · · ,ϕn1,· · · , ϕnmn} � ψ.

If ψ is a Horn clause. Let ψ = a1 ∧ · · · ∧ ak → a
where k ≥ 0 and a, ai are elementary letters. We have
{ϕ11,· · · ,ϕ1m1 ,· · · ,ϕn1,· · · ,ϕnmn} �a1∧· · · ∧ak→a. Hence
{ϕ11,· · · ,ϕ1m1 , · · · , ϕn1,· · · , ϕnmn , a1, · · · ,ak} � a. By Gabbay
and Maksimova’s Interpolation Theorem (Theorem 1), there is
a set H of Horn clauses such that {ϕ11, · · · , ϕ1m1} � H and
H ∪ {ϕ21, · · · , ϕ2m2 , · · · , ϕn1, ..., ϕnmn , a1, · · · , ak} � a and
every elementary letter that occurs in H belongs to E(A1) ∩
E({ϕ21, · · · , ϕ2m2 , · · · , ϕn1, · · · , ϕnmn , a1, · · · , ak, a}). Ap-
plying compactness onH∪{ϕ21, · · · , ϕ2m2 , · · · , ϕn1, · · · , ϕnmn ,
a1,· · · , ak}�a, we obtain that there is a finite subset {h1, · · · , hs}
of H such that {h1, · · · , hs} ∪ {ϕ21, · · · , ϕ2m2 , · · · , ϕn1, · · · ,
ϕnmn ,a1, · · · , ak} � a. Let φ1 = h1 ∧ · · · ∧ hs. Then
{ϕ11, · · · , ϕ1m1} � H � φ1 and {φ1} ∪ {ϕ21, · · · , ϕ2m2 , · · · ,
ϕn1, · · · , ϕnmn , a1, · · · , ak} � a and every elemen-
tary letter occurs in φ1 also occurs in both A1 and
{ϕ21, · · · , ϕ2m2 , · · · , ϕn1, · · · , ϕnmn , a1, · · · , ak, a}. But
E(A1)∩E({ϕ21, · · · , ϕ2m2 ,· · · ,ϕn1,· · · , ϕnmn , a1, · · · , ak, a})
⊆ E(A1) ∩ (E(A2) ∪ · · · ∪ E(An) ∪ E(a1, · · · , ak, a)) =
E(A1) ∩ E(a1, · · · , ak, a) = E(A1) ∩ E(ψ) as the sets E(Ai)
are pairwise disjoint. So we have E(φ1) ⊆ E(A1) ∩ E(ψ). Since
{φ1} ∪ {ϕ21, · · · , ϕ2m2 , · · · , ϕn1, · · · , ϕnmn , a1, · · · , ak} � a
and the sets E(φ1), E(A2), · · · , E(An) are pairwise disjoint,
we may therefore repeat the procedure for ϕ21, · · · , ϕ2m2 to
obtain a suitable interpolation φ2, and so on with n applications
of interpolation theorem over Horn formulae to obtain finally
φ1, · · · , φn such that φ1, φ2, · · · , φn � ψ where Ai � φi and
E(φi) ⊆ E(Ai) ∩ E(ψ).

If ψ is a Horn formula but not a Horn clause. Let
ψ = ψ1 ∧ ψ2 ∧ ... ∧ ψl where ψi is a Horn clause. By
{ϕ11, ..., ϕ1m1 , ϕ21, ..., ϕ2m2 , ..., ϕn1, ..., ϕnmn} � ψ, we
have {ϕ11, ..., ϕ1m1 , ϕ21, ..., ϕ2m2 , ..., ϕn1, ..., ϕnmn} � ψi

for all i. Since ψi is a clause, there are φi1, φi2, ..., φin

such that φi1, φi2, ..., φin � ψi where Aj � φij and
E(φij) ⊆ E(Aj) ∩ E(ψi) ⊆ E(Aj) ∩ E(ψ) for all i. Let
φj = φ1j ∧ φ2j ∧ · · · ∧ φnj . We know that φ1, φ2, ..., φn � ψ
where Aj � φj and E(φj) ⊆ E(Aj) ∩ E(ψ). �

Proof of Lemma 1: Let E = {Ei}i∈I and F = {Fj}j∈J .
Consider the partition G = {Ei ∩ Fj}i∈I,j∈J\{∅} of Φ. We
need to show that G splits K. That is, we need to show that⋃

i∈I,j∈J{K ∩ L(Ei ∩ Fj)} � K. Fix any x ∈ K. We show
that

⋃
i∈I,j∈J{K ∩ L(Ei ∩ Fj)} � x.

Since E splits K and x ∈ K, there is a family {Ai}i∈I of Horn
formulae such that each E(Ai)⊆Ei and

⋃{Ai}i∈I��K � x. By
compactness there is a finite family {ai}i∈I

′ of individual Horn
formulae with I

′ ⊆ I such that for each i ∈ I
′
, E(ai)⊆Ei, Ai �

ai while
∧

i∈I
′ ai�x.

Since F = {Fj}j∈J splits K, there is also a fam-
ily {Bj}j∈J of individual Horn formulae such that each
E(Bj)⊆Fj while

⋃
j∈J{Bj}��K. Fix any i∈I ′

. Since
⋃

j∈J{Bj}��K�⋃i∈I
′ {Ai} � Ai�ai, we have

⋃
j∈J{Bj}�ai.

By compactness, there is a finite subset J
′⊆J with⋃

j∈J
′ {Bj}�ai. Then by Parallel Interpolation Theorem

(Theorem 2), for each j ∈ J
′

there is a Horn formula
dij with E(dij)⊆E(Bj) ∩ E(ai) and Bj�dij such that
⋃

j∈J
′ dij � ai. Hence, taking the conjunction for i ∈ I

′
, we have

⋃
i∈I

′
⋃

j∈J
′ {dij} � ∧

i∈I
′ ai�x.

To complete the proof, it suffices to show that⋃
i∈I

′
⋃

j∈J
′ {dij} ∈ ⋃

i∈I,j∈J{K ∩ L(Ei ∩ Fj)} =
K ∩ (

⋃
i∈I,j∈J{L(Ei ∩ Fj)}). Notice that K�Bj � dij for

each i ∈ I
′
, j ∈ J

′
, so K�⋃j∈J

′ {dij} for each i ∈ I ′. It turns
out that K�⋃i∈I′

⋃
j∈J′{dij} and thus

⋃
i∈I′

⋃
j∈J′{dij}∈K.

Also for each i∈I ′, j ∈ J ′ we have E(dij)⊆E(Bj) ∩ E(ai),
E(ai)⊆Ei, E(Bj)⊆Fj . It follows that E(dij)⊆Ei ∩ Ej

and so dij ∈ L(Ei ∩ Fj). Thus
⋃

i∈I
′ (
⋃

j∈J
′ dij) ∈⋃

i∈I
′
,j∈J

′ {L(Ei ∩ Fj)}⊆⋃
i∈I,j∈J{L(Ei ∩ Fj)}. �

Proof of Lemma 2: Let E = {Ei}i∈I be the partition of Φ cor-
responding to the equivalence relation RΘ. It is sufficient to prove
that

⋃
i∈I{K ∩ L(Ei)} � K.

Pick up any splitting F = {Fj}j∈J of K from Θ. For any x ∈
K, we have

⋃
j∈J{K ∩ L(Fj)} � x. Since x is a single formula,

it contains only finitely many elementary letters. Hence there is a
splitting G = {Gm}m∈M of K in the chain with G � F such
that there is no other partition in the chain such that it is even finer
than G and separates two letters in E(x) that are not separated by
G.

Since G is in the chain,
⋃

m∈M{K ∩ L(Gm)} � x. For each
m ∈M , let Ym = K∩L(Gm). By Parallel Interpolation Theorem
(Theorem 2),

⋃
m∈M{Ym} � ⋃

m∈M{Ym ∩ L(x)} � x. Since no
partition in the chain that is finer than G separates any two letters
in E(x) that are not already separated by G, the language of each
Ym ∩ L(x) must be in some cell of E. That is, for each m ∈ M
there is i ∈ I with Ym ∩ L(x) ⊆ L(Ei). Since Ym ⊆ K we also
have Ym ∩ L(x) ⊆ K ∩ L(Ei) ⊆ ⋃

i∈I{K ∩ L(Ei)}. It follows
that

⋃
m∈M{Ym ∩ L(x)} ⊆ ⋃

i∈I{K ∩ L(Ei)}. However, we
already have

⋃
m∈M{Ym ∩ L(x)} � x. Therefore we conclude

that
⋃

i∈I{K ∩ L(Ei)} � x. �

Proof of Theom 3: For any Horn belief set K, Lemma 2 guaran-
tees that there is at least a finest splitting of K. Lemma 1 shows
that such a finest splitting must be unique. �

Proof of Lemma 3: It suffices to show that K ⇓ φ �= ∅ implies
K ↓ φ �= ∅. Suppose that K ⇓ φ �= ∅. By the definition of K ⇓ φ,
there is an m ∈ |¬φ| such that K ∩ m ∈K⇓φ. Thus � φ. Let
K′=

⋃
i∈I{K∩L(Ei)}. It follows that there is a maximal subset

A ofK′ such thatA �φ where {Ei}i∈I is the finest splitting ofK.
Firstly we show thatE(φ)∩Ei = ∅ impliesK∩L(Ei) ⊆ A for

any i ∈ I . Assume thatE(φ)∩Ei = ∅ andK∩L(Ei) � A. Then
there is ϕ ∈ K ∩ L(Ei) and ϕ /∈ A. By the maximum of A, we
have A ∪ {ϕ} � φ. Let Ak = A ∩ L(Ek) for all k ∈ I . It implies
that A =

⋃
k∈I Ak because A ⊆ K′. Note that E(φ) ∩ Ei = ∅

implies that there is a Horn formula φ′ such that φ �� φ′ and
E(φ′)∩Ei = ∅. By the Parallel Interpolation Theorem and the fact
A ∪ {ϕ} � φ, we then yield that (A ∪ {ϕ})\(K ∩ L(Ei)) � φ′.
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That is,
⋃

k �=iAk � φ because ϕ ∈ K ∩ L(Ei) and φ �� φ′. This
contradicts to the fact A � φ.

Let J = {j ∈ I : Ej ∩ E(φ) = ∅}. We then have⋃
j∈J{K ∩ L(Ej)} ⊆ A. It follows that

⋃
j∈J{K ∩ L(Ej)} ��

K ∩ L(
⋃

j∈J Ej) � φ. Since E∗ =
⋃

j∈J Ej , we have
K ∩ L(E∗) � φ. It follows that there is a m ∈ |¬φ| such
that K � E∗ ⊆ K ∩ m. Let K� = K ∩ m. It follows that
K� � E∗ = K � E∗. We have K� ∈ K ↓ φ. �

Proof of Lemma 4: Suppose K
′∈K↓φ. By Definition 3, we have

K�E∗= K′�E∗ where E∗ =
⋃{Ei : i ∈ I & Ei ∩ Ē(φ) = ∅}.

By the construction of IK,φ, we know that IK,φ = {y ∈ K :
Ē(y) ⊆ E∗}. Obviously IK,φ ⊆ K and E(IK,φ) ⊆ E∗. Since
K�E∗= K′�E∗ , we have IK,φ⊆K′. �

Proof of Theorem 4: Construction to Postulates:
The proof of a relevance-based maxichoice Horn contraction −̈

satisfying (−̇1)-(−̇6) and (−̇7m) is similar to the proof of Theo-
rem 2 in (Delgrande and Wassermann 2010). The proof for satisfy-
ing (−̇IR) is implied by the definition of −̈ and Lemma 4.

Postulates to Construction:
Assume that −̈ is a Horn contraction operator satisfying (−̇1)-

(−̇6), (−̇7m) and (−̇IR). Let γ(K ↓ φ) = {K−̈φ}. We have to
show firstly that γ is a function. That is, if K ↓ φ1 = K ↓ φ2 then
γ(K ↓ φ1) = γ(K ↓ φ2).

Case 1: φ1 /∈ K or φ2 /∈ K. Without loss of generality, assume
that φ1 /∈ K. Then K ↓ φ1 = {K}. Since K ↓ φ1 = K ↓ φ2, we
have that K ↓ φ2 = {K}. Hence K � φ2 and φ2 /∈ K since K is
a Horn belief set. ThenK−̈φ1 = K−̈φ2 = K by (−̇4). So γ(K ↓
φ1) = γ(K ↓ φ2) by the definition of γ(K ↓ φ) = {K−̈φ}.

Case 2: φ1, φ2 ∈ K. Since K ↓ φ1 = K ↓ φ2, it is easy to
verify that {K ∩m : m ∈ |¬φ1|} = {K ∩m : m ∈ |¬φ2|}.

We claim that |¬φ1| = |¬φ2|. Assuming it is not the case, i.e.,
|¬φ1| �= |¬φ2|, without loss of generality, there ism′ ∈ |¬φ1| and
m′ /∈ |¬φ2|. Hence m′ is a maximal consistent Horn theory that
contains φ2. Since φ2 ∈ K, we know that φ2 ∈ K ∩ m′. This
means that K ∩ m′ ∈ {K ∩ m : m ∈ |¬φ1|}. But K ∩ m′ /∈
{K ∩m : m ∈ |¬φ2|} because φ2 /∈ m for any m ∈ |¬φ2|. This
contradicts the initial assumption.

Now we have |φ1| = |φ2| and φ1 �� φ2. By (−̇6), we have
K−̈φ1 = K−̈φ2. So γ(K ↓ φ1) = γ(K ↓ φ2). We have shown
that γ is a function.

Secondly, we show that γ(K ↓ φ) ∈ K ↓ φ. If φ /∈ K or � φ
then K−̈φ = K = K ↓ φ by (−̇4) and (−̇5). So γ(K ↓ φ) ∈
K ↓ φ since γ(K ↓ φ) = {K−̈φ}.

In the case when φ ∈ K and � φ, we need to show that K−̈φ ∈
K ↓ φ. In other words, we need to show K �E∗= K−̈φ �E∗ and
K−̈φ = K ∩m for some m ∈ |¬φ|.

Since −̈ satisfies (−̇IR), we have IK,φ ⊆ K−̈φ. By the defini-
tion of IK,φ and E∗, we know K �E∗= K−̈φ �E∗ .

Since � φ, we have φ /∈ K−̈φ by (−̇2). Then K �= K−̈φ
because φ ∈ K. There is m ∈ |¬φ| such that K−̈φ ⊆ m by an
equivalent proposition of (−̇7m) in (Delgrande and Wassermann
2010). We have K−̈φ ⊆ K by (−̇3). So K−̈φ ⊆ m∩K because
K−̈φ ⊆ m. We need to show that K−̈φ = m ∩ K. Assume by
contradiction that K−̈φ ⊂ m ∩ K. Let ψ ∈ (m ∩ K)\(K−̈φ).
Then K−̈φ ⊂ H(K−̈φ ∪ {ψ}) ⊆ m ∩K ⊂ K. By substituting
H(K−̈φ∪{ψ}) forK′ in (−̇7m), we get thatH(K−̈φ∪{ψ}) �
m, a contradiction.

We now have K−̈φ = m ∩K. Therefore m ∩K ∈ K ↓ φ as
K �E∗= K−̈φ �E∗ . �

Proof of Theorem 5: Construction to Postulates: Similar to the
proof of Theorem 4 thus omitted.

Postulates to Construction:
Assume that −̈ satisfies (−̇1)-(−̇6), (−̇7p) and (−̇IR). Let

γ(K ↓ φ) = {X ∈ K ↓ φ : K−̈φ ⊆ X}. We show that: (1)
γ is a function; (2) γ is a relevance-based selection selection func-
tion; and (3)

⋂
γ(K ↓ φ) = K−̈φ. The proof of (1) is similar to

the proof of Theorem 4 thus omitted.
For the proof of (2), we have that γ(K ↓ φ) ⊆ K ↓ φ by

the definition of γ. We have to show that if K ↓ φ �= ∅ then
γ(K ↓ φ) �= ∅; otherwise γ(K ↓ φ) = {K}.

If K ↓ φ = ∅ then � φ. So K−̈φ = K by (−̇5). By the
definition of −̈, we have γ(K ↓ φ) = {K}. Assume now K ↓
φ �= ∅. Then K �= ∅ and |¬φ| �= ∅. By (−̇1) and (−̇2), φ /∈
K−̈φ. There is m ∈ |¬φ| such that K−̈φ ⊆ K ∩ m. Similar
to the proof of Theorem 4, we have K �E∗= K−̈φ �E∗ . Hence
K �E∗= (K ∩m) �E∗ . It turns out that K ∩m ∈ γ(K ↓ φ), that
is, γ is a selection function. If K ⇓ φ �= ∅ then K ↓ φ �= ∅ by
Lemma 3. Form the above discussion, we have γ(K ↓ φ) �= ∅. So
γ is relevance-based selection function.

To prove (3), by the construction of γ(K ↓ φ), we know that
K−̈φ ⊆ ⋂

γ(K ↓ φ). Suppose that there is α ∈ ⋂
γ(K ↓ φ) and

α /∈ K−̈φ. We have α ∈ K\(K−̈φ) since
⋂
γ(K ↓ φ) ⊆ K.

By (−̇7p), we know that there is K
′

such that K−̈φ ⊆ K
′
,

φ /∈ H(K′) and φ ∈ H(K
′ ∪ {α}). Then there is m ∈ |¬φ| such

that K
′ ⊆ m and α /∈ m. Let X = K ∩m. Then X ∈ K ↓ φ

since K �E∗= K−̈φ �E∗ . By (−̇3) and K−̈φ ⊆ K
′ ⊆ m,

we have K−̈φ ⊆ K ∩ m = X . Hence X ∈ γ(K ↓ φ). It
turns out that α ∈ ⋂

γ(K ↓ φ) ⊆ X . However, α /∈ m implies
α /∈ X = K ∩m, a contradiction. �
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