
A Closer Look at the Probabilistic Description Logic Prob-EL
Vı́ctor Gutiérrez-Basulto
Universität Bremen, Germany

victor@informatik.uni-bremen.de

Jean Christoph Jung
Universität Bremen, Germany

jeanjung@informatik.uni-bremen.de

Carsten Lutz
Universität Bremen, Germany

clu@uni-bremen.de

Lutz Schröder
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Abstract

We study probabilistic variants of the description logic EL.
For the case where probabilities apply only to concepts, we
provide a careful analysis of the borderline between tractabil-
ity and EXPTIME-completeness. One outcome is that any
probability value except zero and one leads to intractability in
the presence of general TBoxes, while this is not the case for
classical TBoxes. For the case where probabilities can also be
applied to roles, we show PSPACE-completeness. This result
is (positively) surprising as the best previously known upper
bound was 2-EXPTIME and there were reasons to believe in
completeness for this class.

Introduction

Classical description logics (DLs) are fragments of first-
order logic (FOL) and thus do not provide any built-in
means for representing uncertainty. This shortcoming has
been addressed in a number of proposals for probabilis-
tic DLs, see for example (Lukasiewicz and Straccia 2008;
Jaeger 1994; da Costa and Laskey 2006; Lukasiewicz 2008)
and references therein. Recently, a new family of proba-
bilistic DLs was introduced in (Lutz and Schröder 2010),
with the distinguishing feature that its members relate to
the well-established probabilistic FOL of (Halpern 2003;
Bacchus 1990) in the same way as classical DLs relate to
traditional FOL. The main purpose of DLs from the new
family, from now on called Prob-DLs, is to enable concept
definitions that require reference to (degrees of) possibility,
likelihood, and certainty. To this effect, Prob-DLs provide
a probabilistic constructor P∼p with ∼ ∈ {<,≤,=,≥, >}
and p ∈ [0, 1] that can be applied to concepts and sometimes
also to roles. For example,

Patient � ∃finding.(Disease � P>0.25Infectious)

describes Patients having a disease that is infectious with
probability at least .25.

As argued in (Lutz and Schröder 2010), Prob-DLs are
well-suited to capture aspects of uncertainty that are present
in almost all biomedical ontologies such as SNOMED CT.
Such ontologies, which typically reach considerable size
but still require efficient reasoning, are often formulated in
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lightweight DLs of the EL family for which the central rea-
soning problem of subsumption can be solved in polyno-
mial time (Baader, Brandt, and Lutz 2005; Schulz, Suntis-
rivaraporn, and Baader 2007). Consequently, studying prob-
abilistic extensions of EL in the style of the Prob-DL family
is particularly relevant in this context. Some initial results
in this direction have already been obtained in (Lutz and
Schröder 2010).

The purpose of this paper is to establish a more complete
picture of subsumption in probabilistic variants of EL. In
the first part of the paper, we consider Prob-EL in which
probabilities can only be applied to concepts, but not to
roles. It was known that some concrete combinations of
probability constructors such as P>0 and P>0.4 lead to in-
tractability (in fact, EXPTIME-completeness) of subsump-
tion while a restriction to the probability values zero and
one does not. We prove the much more general result that
the extension of EL with any single concept constructor
P∼p, where ∼ ∈ {<,≤,=,≥, >} and p ∈ (0, 1), results
in EXPTIME-completeness. More specifically, this result ap-
plies to general TBoxes, i.e., to sets of concept inclusions
C � D when ∼ ∈ {=,≥, >} and even to the empty
TBox when ∼ ∈ {<,≤, }. Inspired by the observation that
many biomedical ontologies such as SNOMED CT are clas-
sical TBoxes, i.e., sets of concept definitions A ≡ D with
A atomic, we then show that probabilities other than zero
and one can be used without losing tractability in classical
TBoxes for the cases ∼ ∈ {>,≥}. More precisely, sub-
sumption in Prob-EL is tractable when only the construc-
tors P∼p and P=1 are admitted, for any (single!) choice of
∼ ∈ {≥, >} and p ∈ (0, 1). The resulting logics actually
coincide for all possible choices. We also show that when
a second probability value from the range (0, 1) sufficiently
‘far away’ from p is added, the complexity of subsumption
snaps back to EXPTIME-completeness.

In the second part, we consider Prob-ELr, where proba-
bilities can be applied to both concepts and roles, concentrat-
ing on general TBoxes. While decidability is an open prob-
lem for full Prob-ELr, it was known that subsumption is
in 2-EXPTIME and PSPACE-hard in Prob-EL>0;=1

r , where
probability values are restricted to zero and one. It is in-
teresting to note that Prob-DLs are a special kind of two-
dimensional DLs as studied for example in (Gabbay et al.
2003) and that, until now, any two-dimensional extension
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of EL turned out to have the same complexity as the corre-
sponding extension of the expressive DL ALC, see e.g. (Ar-
tale et al. 2007). Since subsumption in the ALC-variant of
Prob-EL>0;=1

r is 2-EXPTIME-complete, it was thus tempt-
ing to conjecture that the same holds for Prob-EL>0;=1

r . We
show that this is not the case by establishing a tight PSPACE
upper bound for subsumption in Prob-EL>0;=1

r . This also
implies PSPACE-completeness for the two-dimensional DL
S5EL, in sharp contrast with the 2-EXPTIME-completeness
of S5ALC .

Most proofs are deferred to the appendix of the long
version, which is available from http://www.informatik.uni-
bremen.de/∼clu/papers/index.html.

Preliminaries

Description logic concepts are built from a set of concept
names NC and a set of role names NR (both countably infi-
nite), using the available concept constructors. In the basic
description logic EL, these constructors are conjunction and
existential restriction, which gives rise to the syntax rule

C,D ::= 
 | A | C �D | ∃r.C

where 
 denotes the ‘top-concept’ (logical truth), A ranges
over NC and r over NR. To obtain a probabilistic version of
EL, we can apply probabilities to concepts or roles. Starting
with the former, we consider the set of constructors

P∼pC with ∼ ∈ {<,≤,=,≥, >} and p ∈ [0, 1],

denoting objects that are an instance of C with probability
∼p. The extension of EL with all these constructors is called
Prob-EL. For example, the SNOMED CT concept ‘animal
bite by potentially rabid animal’ can be expressed as

Bite � ∃by.(Animal � P>0.5∃has.Rabies).

When we admit only a few values for ∼ and n, we put them
in superscript; for example, Prob-EL>0.4,<0,1 denotes the
extension of EL with P>0.4C and P<0.1C.

Probabilities can be applied to roles using the concept
constructors ∃P∼pr.C where ∼ and p range over the same
values as above, expressing that there is an element satisfy-
ing C that is related to the current element by the role name
r with probability ∼ p. For example, the SNOMED CT con-
cept ‘disease of possible viral origin’ can be modeled as

Disease � ∃P>0origin.Viral.

We denote the extension of Prob-EL with all the above (con-
cept and role) constructors with Prob-ELr. We will also con-
sider the restriction of Prob-ELr to the constructors P>0

and P=1 both on concepts and roles, which is called Prob-
EL>0;=1

r .
The semantics of classical DLs such as EL is based on

interpretations I = (ΔI , ·I), where ΔI is a non-empty set
called the domain and ·I is an interpretation function that
maps each A ∈ NC to a subset AI ⊆ ΔI and each r ∈ NR

to a subset rI ⊆ ΔI × ΔI , see (Baader et al. 2003) for
more details. The semantics of the probabilistic DLs consid-
ered here is given in terms of a probabilistic interpretation

I = (ΔI ,W, (Iw)w∈W , μ), where ΔI is the (non-empty)
domain, W a non-empty set of possible worlds, μ a discrete
probability distribution on W , and for each w ∈ W , Iw
is a classical DL interpretation with domain ΔI . We usu-
ally write CI,w for CIw , and likewise for rI,w. For concept
names A and role names r, we define the probability
• pId (A) that d ∈ ΔI is an A as μ({w ∈ W | d ∈ AI,w});
• pId,e(r) that d, e ∈ ΔI are related by r as μ({w ∈ W |

(d, e) ∈ rI,w}).
Next, we extend pId (A) to compound concepts C and define
the extension CI,w of compound concepts by mutual recur-
sion on C. The definition of pId (C) is exactly as in the base
case, with A replaced by C. The extension of compound
concepts is defined as follows:


I,w = ΔI

(C �D)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ ΔI | ∃e ∈ CI,w.(d, e) ∈ rI,w}
(P∼pC)I,w = {d ∈ ΔI | pId (C) ∼ p}

(∃P∼pr.C)I,w = {d ∈ ΔI | ∃e ∈ CI,w : pId,e(r) ∼ p}
In DLs, an ontology is formalized as a TBox. In this paper,
we consider two kinds of TBoxes. A general TBox is a finite
set of concept inclusions C � D, where C,D are concepts.
A classical TBox is a set of concept definitions A ≡ C,
where A is a concept name and the left-hand sides of con-
cept definitions are unique. Note that cyclic definitions are
allowed.

A probabilistic interpretation I satisfies a concept inclu-
sion C � D if CI,w ⊆ DI,w and a concept definition
A ≡ C if AI,w = CI,w, for all w ∈ W . I is a model
of a TBox T if it satisfies all inclusions/definitions in T . A
concept C is subsumed by a concept D relative to a TBox T
(written T |= C � D) if every model I of T satisfies the
inclusion C � D. Deciding subsumption is the most impor-
tant reasoning task for DLs as it underlies the computation
of the concept hierarchy, a central tool for structuring and
accessing ontologies (Baader et al. 2003).

The above definition is the result of transferring the notion
of subsumption from standard DLs to probabilistic DLs in a
straightforward way. However, there is an alternative variant
of subsumption that is natural for probabilistic DLs: a con-
cept C is positively subsumed by a concept D relative to a
TBox T (written T |=+ C � D) if CI,w ⊆ DI,w for every
probabilistic model I = (ΔI ,W, (Iw)w∈W , μ) and every
w ∈ W with μ(w) > 0. Intuitively, classical subsumption
is about subsumptions that are logically implied whereas
positive subsumption is about subsumptions that are cer-
tain. For example, when T∅ is the empty TBox, then T∅ |=
P=1A � A, but we can only have d ∈ (P=1A)

I,v \ AI,v
when μ(v) = 0, thus non-subsumption is only witnessed by
worlds that we are certain to not be the actual world. Conse-
quently, T∅ |=+ P=1A � A. In the extension Prob-ALC of
Prob-EL with negation studied in (Lutz and Schröder 2010),
positive subsumption can easily be reduced to subsumption.
This does not seem easily possible in Prob-EL. In fact, we
will sometimes use (Turing) reductions in the opposite di-
rection.
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Probabilistic Concepts

In (Lutz and Schröder 2010), it was shown that subsumption
in Prob-EL>0;=1 with general TBoxes is in PTIME, whereas
the same problem is EXPTIME-complete in Prob-EL>0;>0.4

(both in the positive and in the unrestricted case). This raises
the question whether any probability except 0,1 can be ad-
mitted in Prob-EL without losing tractability. The following
theorem provides a strong negative result.
Theorem 1. For all p ∈ (0, 1), (positive) subsumption in
Prob-EL∼p relative to

1. general TBoxes is EXPTIME-hard when ∼ ∈ {=, >,≥}
2. the empty TBox is EXPTIME-hard when ∼ ∈ {≤, <}
Matching upper bounds are an immediate consequence of
the fact that each logic Prob-EL∼p is a fragment of the DL
Prob-ALCc for which subsumption was proved EXPTIME-
complete in (Lutz and Schröder 2010). To prove the lower
bounds, it suffices to show that each logic Prob-EL∼p is non-
convex i.e., that there are a general TBox T and concepts
C,D1, . . . , Dn, n ≥ 2, such that T |= C � D1 � · · · �Dn,
but T |= C � Di for all i (the semantics of disjunction is
defined in the obvious way). Once that this is established,
standard proof techniques from (Baader, Brandt, and Lutz
2005) can be used to reduce satisfiability in ALC relative to
general TBoxes, which is EXPTIME-complete, to subsump-
tion in Prob-EL∼p. The following constructions work for
standard subsumption and positive subsumption alike.

First consider ∼ = ≥ and assume p ≤ 0.5. Fix a k > 0
such that k · p > 1 and set

T = {Ai �Aj � P≥pBij | 1 ≤ i < j ≤ k}
C = P≥pA1 � · · · � P≥pAk

Dij = P≥pBij

Intuitively, the probabilities stipulated by C sum up to > 1,
thus some of the Ai have to overlap, but there is a choice
as to which ones these are. Formally, we can show non-
convexity by proving that T |= C � �1≤i<j≤k Dij , but
T |= C � Dij for any i, j. The comparisons ∼ ∈ {=, >}
can be handled similarly. For ∼ = > and p > 0.5, we use
a variation of the above. The main idea is to use P>pC to
simulate P>qC, for some q ≤ 0.5, which brings us back to a
case already dealt with. More precisely, let n > 0 be small-
est such that n > 1

2(1−p) and set q = pn − n + 1. An easy
computation shows that 0 ≤ q < 0.5. Moreover, it can be
shown that

P>pX1 � · · · � P>pXn � P>q(X1 � · · · �Xn)

which allows us to redo the above reduction with probability
q < 0.5. The comparisons ∼ ∈ {=,≥} can be dealt with
similarly.

For the remaining cases ∼ ∈ {<,≤}, there is a very sim-
ple argument for non-convexity even w.r.t. the empty TBox:
we have 
 � P<pA � P<pP<pA, but neither 
 � P<pA
nor 
 � P<pP<pA, and likewise when ∼ is ≤.

When ∼ ∈ {=, >,≥}, the proof of Theorem 1 relies on
general TBoxes in a crucial way. It turns out that when we
restrict ourselves to classical TBoxes, tractability can be at-
tained even with probabilities other than 0 and 1.

R1 If ∃r.B ∈ CA, and CB′ ⊆ CB

then replace A ≡ CA with A ≡ CA ∪ {∃r.B′}
R2 If P=1B ∈ CA

then replace A ≡ CA with A ≡ CA ∪ CB

R3 If P=1B ∈ CA

then replace A ≡ CA with A ≡ CA ∪ {P∼pB}
R4 If P∼pB ∈ CA, and D ∈ cert(CB)

then replace A ≡ CA with A ≡ CA ∪ {D}
R5 If CB ⊆ cert(CA)

then replace A ≡ CA with A ≡ CA ∪ {P=1B}
R6 If P∼pB ∈ CA and CB′ ⊆ cert(CA) ∪ CB

then replace A ≡ CA with A ≡ CA ∪ {P∼pB
′}

Figure 1: TBox completion rules for positive subsumption

Theorem 2. For all ∼ ∈ {>,≥} and p ∈ [0, 1], (positive)
subsumption in Prob-EL∼p;=1 relative to classical TBoxes
is in PTIME.
To prove Theorem 2, we start with positive subsumption. We
can assume p > 0 since subsumption in Prob-EL>0;=1 is in
PTIME even with general TBoxes. To prove a PTIME upper
bound, we use a ‘consequence-driven’ procedure similar to
the ones in (Baader, Brandt, and Lutz 2005; Kazakov 2009).
A concept name A is defined in a classical TBox T if there
is a concept definition A ≡ C ∈ T , and primitive otherwise.
We can w.l.o.g. restrict our attention to the subsumption of
defined concept names relative to TBoxes. We also assume
that the input TBox is normalized to a set of concept defini-
tions of the form

A ≡ P1 � · · · � Pn � C1 � · · · � Cm

n,m ≥ 0, and where P1, . . . , Pn are primitive concept
names and C1, . . . , Cm are of the form P∼pA, P=1A, and
∃r.A with A a defined concept name (note that the top
concept is completely normalized away). It is well-known
that such a normalization can be achieved in polytime, see
(Baader 2003) for details. For a given TBox T and a defined
concept name A in T , we write CA to denote the defining
concept for A in T , i.e., A ≡ CA ∈ T . Moreover, we delib-
erately confuse the concept CA = D1 � · · · � Dk with the
set {D1, . . . , Dk}. We define a set of concepts ‘certain for
CA’ as

cert(CA) = {P∗B | P∗B ∈ CA} ∪
⋃

P=1B∈CA

{CB}

where, here and in what follows, P∗ ranges over P=1 and
P>p. Intuitively cert(CA) contains concepts that hold with
probability 1 whenever A is satisfied in some world. The
algorithm starts with the normalized input TBox and then
exhaustively applies the completion rules displayed in Fig-
ure 1. As a general proviso, each rule can be applied only
if it adds a concept that occurs in T and actually changes
the TBox, e.g., R1 can only be applied when ∃r.B′ occurs
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in T and ∃r.B′ /∈ CA. Exemplarily, we explain rule R5 in
more detail. If all defining concepts CB of B are certain for
A, then A � P=1B, thus we can add P=1B to CA. Let T ∗
be the result of exhaustive rule application and let C∗

A be the
defining concept for A in T ∗, for all concept names A. The
‘only if’ direction requires a careful and surprisingly subtle
model construction.
Lemma 3. For all defined concept names A,B, we have
T |=+ A � B iff C∗

B ⊆ C∗
A.

It is easy to see that TBox completion requires only poly-
time: every rule application extends the TBox, but both the
number of concept definitions and of conjuncts in each con-
cept definition is bounded by the size of the original TBox.

To prove Theorem 2 for unrestricted subsumption, we
provide a Turing reduction from unrestricted subsumption to
positive subsumption. We again assume that the input TBox
is in the described normal form and then exhaustively ap-
ply the rules shown in Figure 2, calling the result T ∗ with
defining concept of the form C∗

A.
Lemma 4. For all defined concept names A,B, we have
T |= A � B iff C∗

B ⊆ C∗
A.

Clearly, the Turing reduction and thus the overall algorithm
runs in polytime.

It is interesting to note that the proof of Theorem 2 is
based on exactly the same algorithm, for all ∼ ∈ {≥, >}
and p ∈ (0, 1]. It follows that there is in fact only a single
logic Prob-EL∼p, for all such ∼ and p. Formally, given a
Prob-EL∼p-concept C, ≈ ∈ {≥, >} and q ∈ (0, 1], let C≈q

denote the result of replacing each subconcept P∼pD in C
with P≈qD in C and similarly for Prob-EL∼p-TBoxes T .
Theorem 5. For any p, q > 0, ∼,≈ ∈ {>,≥}, EL∼p-
concepts C,D and -TBox T , we have T |=+ C � D iff
T≈q |=+ C≈q � D≈q , and likewise for unrestricted sub-
sumption.
Consequently, the (potentially difficult!) choice of a con-
crete ∼ ∈ {≥, >} and p ∈ (0, 1] is moot. In fact, it
might be more intuitive to replace the constructor P∼pC
with a constructor LC that describes elements which ‘are
likely to be a C’, and to replace P=1C with the construc-
tor C C to describe elements that ‘are certain to be a C’, see
e.g. (Halpern and Rabin 1987; Herzig 2003) for other ap-
proaches to logics of likelihood. Note that the case p = 0
is different from the cases considered above: for example,
we have T∅ |=+ ∃r.A � ∃r.P>pA iff p = 0, and like-
wise T∅ |= P>p∃r.A � P>p∃r.P>pA iff p = 0. In the
spirit of the constructors C and L, P>0C can be replaced
with a constructor PC that describes elements for which ‘it
is possible that they are a C’. For example, the SNOMED
CT concepts ‘definite thrombus’ and ‘possible thrombus’
can then be written as C Thrombus and P Thrombus (al-
though we speculate that the SNOMED CT designers mean
‘likely’ rather than ‘possible’).

It is a natural question whether the PTIME upper bound
for classical TBoxes extends to the case of multiple proba-
bility values (except one, which is apparently always uncrit-
ical). The following result shows that many combinations
of two probability values lead to (non-convexity, thus) in-
tractability, even without any TBox.

S1 If ∃r.B ∈ CA, and CB′ ⊆ CB

then replace A ≡ CA with A ≡ CA ∪ {∃r.B′}
S2 If T |=+ cert(CA) � P∗B

then replace A ≡ CA with A ≡ CA ∪ {P∗B}

Figure 2: TBox completion rules for Turing reduction

Theorem 6. Let ∼ ∈ {>,≥}, and p, q ∈ [0, 1). Then (pos-
itive) subsumption in Prob-EL∼p;∼q relative to the empty
TBox is EXPTIME-hard if (i) q = 0, (ii) p ≤ 1/2 and q < p2,
or more generally (iii) 2p− 1 < q < p2.

In particular, we cannot combine the constructors P and L
mentioned above without losing tractability. The above for-
mulation of Theorem 6 is actually only a consequence of a
more general (but also more complicated to state) result es-
tablished in the appendix of the long version. We conjecture
that (positive) subsumption in Prob-EL∼p;∼q relative to the
empty TBox is in PTIME relative to classical TBoxes when-
ever p ≥ q ≥ p2 and that, otherwise, it is EXPTIME-hard.

Probabilistic Roles

Adding probabilistic roles to Prob-EL tends to increase the
complexity of subsumption. While for full Prob-ELr even
decidability is open, it was shown in (Lutz and Schröder
2010) that subsumption is in 2-EXPTIME and PSPACE-hard
in Prob-EL>0;=1

r . As discussed in the introduction, there
were reasons to believe that this problem is actually 2-
EXPTIME-complete. We show that this is not the case by
proving a PSPACE upper bound, thus establishing PSPACE-
completeness. This result holds both for positive and unre-
stricted subsumption, we start with the positive case.

We again concentrate on subsumption between concept
names and assume that the input TBox is in a certain nor-
mal form, defined as follows. A basic concept is a concept
of the form 
, A, P>0A, P=1A, or ∃α.A, where A is a con-
cept name and, here and in what follows, α is a role, i.e., of
the form r, P>0r, or P=1r with r a role name. Now, every
concept inclusion in the input TBox is required to be of the
form

X1 � · · · �Xn � X

with X1, . . . , Xn, X basic concepts. It is not hard to show
that every TBox can be transformed into this normal form in
polynomial time such that (non-)subsumption between the
concept names that occur in the original TBox is preserved.

Let T be the input TBox in normal form, CN the set of
concept names that occur in T , BC the set of basic concepts
in T , and ROL the set of roles in T . Call a role probabilistic
if it is of the form P=1r or P>0r. Our algorithm maintains
the following data structures:

• a mapping Q that associates with each A ∈ CN a subset
Q(A) ⊆ BC such that T |= A � X for all X ∈ Q(A);

• a mapping Qcert that associates with each A ∈ CN a sub-
set Qcert(A) ⊆ BC such that T |= A � P=1X for all
X ∈ Qcert(A);
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R1 If X1 � . . . �Xn � X ∈ T and X1, . . . , Xn ∈ Γ

then add X to Γ

R2 If P=1A ∈ Γ then add A to Γ

R3 If ∃P=1r.A ∈ Γ then add ∃r.A to Γ

R4 If A ∈ Γ then add P>0A to Γ

R5 If ∃r.A ∈ Γ then add ∃P>0r.A to Γ

R6 If ∃α.A ∈ Γ and B ∈ Q(A)

then add ∃α.B to Γ

Figure 3: Saturation rules for cl(Γ)

• a mapping R that associates with each probabilistic role
α ∈ ROL a binary relation R(α) on CN such that T |=
A � P>0(∃α.B) for all (A,B) ∈ R(α).

Some intuition about the data structures is already provided
above; e.g., X ∈ Q(A) means that T |= A � X . However,
there is also another view on these structures that will be
important in what follows: they represent an abstract view
of a model of T , where each set Q(A) describes the con-
cept memberships of a domain element d in a world w with
d ∈ AI,w and R describes role memberships, i.e., when
(A,B) ∈ R(α), then d ∈ AI,w implies that in some world v
with positive probability, d has an element described by
Q(B) as an α-successor. In this context, Qcert(A) contains
all concepts that must be true with probability 1 for any do-
main element that satisfies A in some world. Note that non-
probabilistic roles r and probabilistic roles P=1r are not rep-
resented in the R(·) data structure; we will treat them in a
more implicit way later on.

The data structures are initialized as follows, for all A ∈
CN and relevant roles α:

Q(A) = {
, A} Qcert(A) = {
} R(α) = ∅.
The sets Q(·), Qcert(·), and R(·) are then repeatedly ex-
tended by the application of various rules. Before we can in-
troduce these rules, we need some preliminaries. As the first
step, Figure 3 presents a (different!) set of rules that serves
the purpose of saturating a set of concepts Γ. We use cl(Γ)
to denote the set of concepts that is the result of exhaustively
applying the displayed rules to Γ, where any rule can only
be applied if the added concept is in BC, but not yet in Γ.
The rules access the data structure Q(·) introduced above
and shall later be applied to the sets Q(A) and Qcert(A), but
they will also serve other purposes as described below. It is
not hard to see that rule application terminates after polyno-
mially many steps.

The rules that are used for completing the data struc-
tures Q(·), Qcert(·), and R(·) are more complex and refer
to ‘traces’ through these data structures, which we introduce
next.
Definition 7. Let B ∈ CN. A trace to B is a finite sequence
S,A1, α2, A2, . . . , αn, An where
1. S = A for some P>0A ∈ Q(A1) or S = (r,B) for some

(A1, B) ∈ R(P>0r);

2. each Ai ∈ CN and each αi ∈ ROL is a probabilistic role,
such that An = B;

3. (Ai, Ai−1) ∈ R(αi) for 1 < i ≤ n.

If t is a trace of length n, we use tk, k ≤ n, to denote the
shorter trace S,A1, α2, . . . , αk, Ak. Intuitively, the purpose
of a trace is to deal with worlds that are generated by con-
cepts P>0A and ∃P>0r.A; there can be infinitely many such
worlds as Prob-EL>0;=1

r lacks the finite model property, see
(Lutz and Schröder 2010). The trace starts at some domain
element represented by a set Q(A1) in the world generated
by the first element S of the trace, then repeatedly follows
role edges represented by R(·) backwards until it reaches
the final domain element represented by Q(B). The impor-
tance of traces stems from the fact that information can be
propagated along them, as captured by the following notion.

Definition 8. Let t = S,A1, α2, . . . , αn, An be a trace of
length n. Then the type Γ(t) ⊆ BC of t is
• cl({A} ∪Qcert(A1)) if n = 1 and S = A;
• cl(Qcert(A1) ∪ {∃r.B′ ∈ BC | B′ ∈ Qcert(B)}) if n = 1
and S = (r,B);
• cl(Qcert(An)∪{∃αn.B

′ ∈ BC | B′ ∈ Γ(tn−1)}) if n > 1.

Note that the rules R1 to R6 are used in every step of this
inductive definition. The mentioned propagation of informa-
tion along traces is now as follows: if there is a trace t to B,
then any domain element that satisfies B in some world must
satisfy the concepts in Γ(t) in some other world. So if for ex-
ample P>0A ∈ Γ(t), we need to add P>0A also to Qcert(B)
and to Q(B).

Figure 4 shows the rules used for completing the data
structures Q(·), Qcert(·), and R(·). Note that S6 and S7
implement the propagation of information along traces, as
discussed above. Our algorithm for deciding (positive) sub-
sumption starts with the initial data structures defined above
and then exhaustively applies the rules shown in Figure 4. To
decide whether T |= A � B, it then simply checks whether
B ∈ Q(A).

Lemma 9. Let T be a Prob-EL>0;=1
r -TBox in normal form

and A,B be concept names. Then T |=+ A � B iff, after
exhaustive rule application, B ∈ Q(A).

We now argue that the algorithm can be implemented using
only polynomial space. First, it is easy to see that there can
be only polynomially many rule applications: every rule ap-
plication extends the data structures Q(·), Qcert(·), and R(·),
but these structures consist of polynomially many sets, each
with at most polynomially many elements. It thus remains to
verify that each rule application can be executed using only
polyspace, which is obvious for all rules except those involv-
ing traces, i.e., S6 and S7. For these rules, we first note that
it is not necessary to consider all (infinitely many!) traces. In
fact, a straightforward ‘pumping argument’ can be used to
show that there is a trace t to B with some relevant concept
C ∈ Γ(t) iff there is a non-repeating such trace, i.e., a trace
t′ of length n such that for all distinct k, � ≤ n, we have
Γ(t′k) = Γ(t′�). Clearly, the length of non-repeating traces
is bounded by 2m, m the size of T . To get to polyspace, we
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S1 apply R1-R6 to Q(A) and Qcert(A)

S2 if P∗B ∈ Q(A)

then add P∗B to Qcert(A)

S3 if C ∈ Qcert(A)

then add P=1C and C to Q(A)

S4 If ∃α.B ∈ Q(A) with α a probabilistic role
then add (A,B) to R(α).

S5 If P>0B1 ∈ Q(A), (B1, B2) ∈ R(α), B3 ∈ Qcert(B2)

then add ∃α.B3 to Qcert(A)

S6 if t is a trace to B and P∗A ∈ Γ(t)

then add P∗A to Qcert(B)

S7 if t is a trace to B and ∃α.A ∈ Γ(t)

with α a probabilistic role
then add (B,A) to R(α)

Figure 4: The rules for completing the data structures.

use a non-deterministic approach, enabled by Savitch’s theo-
rem: to check whether there is a trace t to B with C ∈ Γ(t),
we guess t step-by-step, at each time keeping only a sin-
gle Ai, αi and Γ(ti) in memory. When we reach a situation
where Ai = B and C ∈ Γ(ti), our guessing was successful
and we apply the rule. We also maintain a binary counter of
the number of steps that have been guessed so far. As soon
as this counter exceeds 2m, the maximum length of non-
repeating traces, we stop the guessing and do not apply the
rule. Clearly, this yields a polyspace algorithm.

Theorem 10. Positive subsumption in Prob-EL>0;=1
r rela-

tive to general TBoxes is PSPACE-complete.
As a byproduct, the proof of Lemma 9 yields a unique
least model (in the sense of Horn logic), thus proving con-
vexity of Prob-EL>0;=1

r . Note that positive subsumption in
Prob-EL>0;=1

r is actually the same as subsumption in the
two-dimensional description logic S5EL, which is thus also
PSPACE-complete. Using a Turing reduction similar to that
shown in Figure 2, we can ‘lift’ the result from positive sub-
sumption to unrestricted subsumption.

Theorem 11. Subsumption in Prob-EL>0;=1
r relative to

general TBoxes is PSPACE-complete.

Conclusion

We have established a fairly complete picture of the com-
plexity of subsumption in Prob-EL, although some ques-
tions remain open. We speculate that Theorem 2 can be
proved also when ∼ is = with only minor changes (e.g.
rule R3 becomes unsound). It would be interesting to verify
the conjecture made below Theorem 6 that (positive) sub-
sumption in Prob-EL∼p;∼q relative to classical TBoxes is in
PTIME whenever p ≥ q ≥ p2 and that, otherwise, it is EX-
PTIME-hard relative to the empty TBox. It is even conceiv-
able that the conjectured PTIME result can be further gener-

alized to any set of probability values P ⊆ [0, 1] as long as
q ≥ p2 whenever p, q ∈ P and p ≥ q. Moreover, variants of
Theorem 6 that involve, additionally or exclusively, the case
where ∼ is = would also be of interest.
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