
Higher-Order Description Logics for Domain Metamodeling

Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati
Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma
lastname@dis.uniroma1.it

Abstract

We investigate an extension of Description Logics (DL)
with higher-order capabilities, based on Henkin-style
semantics. Our study starts from the observation that
the various possibilities of adding higher-order con-
structs to a DL form a spectrum of increasing expres-
sive power, including domain metamodeling, i.e., using
concepts and roles as predicate arguments. We argue
that higher-order features of this type are sufficiently
rich and powerful for the modeling requirements aris-
ing in many relevant situations, and therefore we carry
out an investigation of the computational complexity of
satisfiability and conjunctive query answering in DLs
extended with such higher-order features. In particular,
we show that adding domain metamodeling capabilities
to SHIQ (the core of OWL 2) has no impact on the
complexity of the various reasoning tasks. This is also
true for DL-LiteR (the core of OWL 2 QL) under suit-
able restrictions on the queries.

Introduction

Metamodeling allows one to treat concepts and properties
as first-order citizens, and to see them as individuals whose
properties can be asserted and reasoned upon. This feature is
important in all applications where the need arises of model-
ing and reasoning about meta-concepts, i.e., concepts whose
instances are themselves concepts, and meta-properties, i.e.,
relationships between meta-concepts.

It is well-known that in logic, and in Description Log-
ics (DLs) in particular, higher-order constructs are needed
for a correct representation of concepts and properties at the
meta-level. However, the issue of devising suitable exten-
sions to DLs for representing and reasoning about meta-level
elements is largely unexplored. Recent research on this sub-
ject shows that there is a spectrum of meta-level modeling
capabilities. Four points in this spectrum represent specific
notable cases, which we now discuss.
Domain modeling. This is the simplest case of the spec-
trum, with no higher-order feature, and is actually the one
addressed in most of the research on DLs.
Metaquerying. This is the case where the knowledge base
does not contain any axiom regarding meta-concepts or

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

meta-roles, but the query language allows for using meta-
concepts, so that concepts and roles in the knowledge base
can match the variables in the query, and may thus be re-
turned as answers to the query [Angiulli et al., 2003]. This
mechanism allows to express queries that are beyond first-
order logic.

Domain metamodeling. This is the case where the language
allows for using concepts and roles as predicate arguments,
so that one can assert properties of concepts and roles, as
if they were individuals. Domain metamodeling includes
metaquerying as a special case. It is our opinion that higher-
order features of this kind are sufficiently rich and powerful
for the modeling requirements arising in many relevant situ-
ations. One of the most popular approaches to domain meta-
modeling, which is closely related to DLs, is HiLog [Chen
et al., 1993]. HiLog is a logic with a higher-order syntax,
thus allowing predicates to appear as arguments in atomic
formulae, but with a Henkin-style semantics, which implies
that the expressive power of the language actually remains
within first-order.

Full metamodeling. This is the most general case, where
the modeling language allows not only for using concepts
and roles as predicate arguments, but also for refining and
extending the properties of the language operators, and to
reason upon such properties. For instance, RDF and RDFS
allow for stating properties not only on domain (meta-
)elements, but also on the so-called built-in vocabulary (i.e.,
operators such as rdf:type) of the language.

In this paper, we investigate an extension of DLs with
higher-order capabilities. We are especially interested in
those features that allow us both to model and to query
individuals, concepts, roles, meta-concepts and meta-roles
with no limitations. Therefore, the extension that we study is
geared towards domain metamodeling (thus including meta-
querying). Specifically we provide the following contribu-
tions. First, we present syntax and semantics of an extension
of DLs with domain metamodeling features (see Section 2).
In particular, we show how, starting from any DL L, one can
define its higher-order version, called Hi(L). From the syn-
tax point of view, our approach stems from two ideas. On
one hand, every modeling element can be seen simultane-
ously as an individual, as a concept, and as a role. On the
other hand, since concepts in DLs are denoted not only by
names, but also by complex expressions, every complex ex-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

183

pression is a modeling element in our language. From the
semantic point of view, we adopt a Henkin semantics, as
in HiLog and RDF(S). Second, we carry out an investiga-
tion of the computational complexity of reasoning in DLs
extended with higher-order features. By reasoning we mean
not only logical implication, but also answering unions of
conjunctive queries with metaquerying abilities. We show
that adding domain metamodeling capabilities to expressive
DLs, in particular to SHIQ [Baader et al., 2003], has no
impact on the complexity of the various reasoning tasks,
including satisfiability (Section 3), and conjunctive query
answering (see Section 4). The situation is similar for the
tractable DLs of the DL-Lite family [Calvanese et al., 2007],
under suitable restrictions on the queries (Section 5).

The idea of representing concepts and properties at the
meta-level is an old one in Knowledge Representation and
Computer Science. Semantic networks and early Frame-
based systems incorporated specific mechanisms for repre-
senting concepts whose instances are themselves concepts
[Lehmann, 1992; Attardi and Simi, 1981]. Conceptual mod-
eling languages proposed in the 70’s, such as TAXIS [My-
lopoulos et al., 1980], provided both the notion of meta-
class, and suitable facilities for describing properties of op-
erators on meta-classes. The notion of meta-class is also
present in virtually all object-oriented languages, including
modern programming languages.

The issue of extending DLs with higher-order constructs
has been addressed only by few research papers. In [Badea,
1997], probably the first paper on this subject, the notion of
“reification of concepts” is proposed as a means to express
meta-level classes, but the paper does not address neither
the issue of meta-roles, nor the issue of query answering. A
more recent paper is [Colucci et al., 2010] where second-
order features with Henkin semantics are introduced in DLs
to captures several forms of nonstandard reasoning. (Further
references are dropped for preserving anonymity.) Other re-
cent investigations, such as [Motik, 2007; Pan and Hor-
rocks, 2006], address the issue of full metamodeling in the
context of ontology languages, and therefore go beyond the
scope of our work.

Finally, we remark that punning, i.e., using the same name
for different elements of the ontology (for example, an indi-
vidual and a concept), has been introduced in OWL 21, as a
consequence of recognizing the importance of domain meta-
modeling2. While punning can be treated trivially in classi-
cal reasoning tasks over the DL ontology, it poses interest-
ing problems in the context of query processing. In partic-
ular, if variables are not typed a priori, punning introduces
the kind of metaquerying studied in our work. Indeed, the
DL query language presented in this paper is the first one
(to our knowledge) that exploits punning in queries, since it
allows for expressing joins involving variables which simul-
taneously denote both individuals and predicates.

Higher-order Description Logics

In this section, we show how, starting from a DL L, one
can define its higher-order version, called Hi(L). In partic-

1http://www.w3.org/2007/OWL/wiki/OWL Working Group
2http://www.w3.org/2007/OWL/wiki/Punning

ular, we refer to a specific DL, namely SHIQ (the core of
OWL 2), and detail the higher-order DL Hi(SHIQ).

Before delving into Hi(L), we present some preliminary
definitions. Every traditional DL L is characterized by a set
OP(L) of operators, used to form concept and role expres-
sions, and a set of MP(L) of meta-predicates, used to form
assertions. Each operator and each meta-predicate have an
associated arity. If symbol S has arity n, then we write S/n
to denote such symbol and its arity. For SHIQ, we have:

OP(SHIQ) = {Inv/1, And/2, Not/1} ∪
{AtLeastQn/2 | n ∈ N}

MP(SHIQ) = {InstC/2, InstR/3, IsaC/2, IsaR/2,Tran/1}.

We assume that the reader is familiar with SHIQ. There-
fore, the intuitive meaning of all the above symbols should
be clear. Their semantics will be given shortly.
Syntax. We assume the existence of two disjoint, countably
infinite alphabets: S , the set of names, and V , the set of vari-
ables. The building blocks of a Hi(L) knowledge base are
assertions, which in turn are based on expressions. We define
the set of expressions, denoted by EL(S), over the alphabet
S for Hi(L) inductively as follows:

• if E ∈ S then E ∈ EL(S);
• if C/n ∈ OP(L) and E1, . . . , En ∈ EL(S) then

C(E1, . . . , En) ∈ EL(S).

A Hi(L) assertion over EL(S) is a statement of the form
M(E1, . . . , En) where M ∈ MP(L), n ≥ 0 is the arity
of M , and for every 1 ≤ i ≤ n, Ei ∈ EL(S). A Hi(L)
knowledge base (KB) is a set of assertions over EL(S). Thus,
an assertion is simply an application of a meta-predicate to
a set of expressions. Intuitively, an assertion is an axiom that
predicate over a set of individuals, concepts or roles.

Example 1 Suppose that the alphabet S contains the
names Cours,Teaches,Full ,GradCourse,UnivConcept ,
ObsoleteConcept , John , and DefinedBy . Then the following are
Hi(SHIQ) assertions:

IsaC(GradCourse,
And(Course,Not(AtLeastQ2(Inv(Teaches)),Full))))

InstC(And(Course,
Not(AtLeastQ2(Inv(Teaches)),Full))),UnivConcept)

InstR(UnivConcept , John,DefinedBy)
InstR(Not(ObsoleteConcept), John,DefinedBy)

The first assertion states that every graduate course is taught
by at most one full professor. The second assertion says that
concept And(Course,Not(AtLeastQ2(Inv(Teaches)),Full)))
is an instance of concept UnivConcept (which is therefore a meta-
concept). Finally, the meaning of the third and the fourth assertions
is that concepts UnivConcept and Not(ObsoleteConcept) have
been introduced in the KB by John .

Next, we introduce the notion of query, which relies on
the notion of “atom”. Intuitively, an atom is constituted by
a meta-predicate applied to a set of arguments, where each
argument is either an expression or a variable. Formally, we
define the set τ(S,V) of terms over S and V to be EL(S)∪V .
Terms of the form EL(S) are called ground. We define an
atom to be constituted by the application of a meta-predicate
in MP(L) to a set of terms, and we call an atom ground if no
variable occurs in it. Note that a ground atom has the same

184

form of an assertion. An atom whose meta-predicate is IsaC

or IsaR is called an ISA-atom, while we call instance-atom
an atom whose meta-predicate is InstC or InstR.

A higher-order conjunctive query (HCQ) of arity n is an
expression of the form q(x1, . . . , xn) ← a1, . . . , am where
q, called the query predicate, is a symbol that does not be-
long to S ∪ V , every xi belongs to V , every ai is a (possi-
bly non-ground) atom, and all variables x1, . . . , xn occur in
some aj . The variables x1, . . . , xn are called the free vari-
ables (or distinguished variables) of the query, while the
other variables occurring in a1, . . . , am are called existen-
tial variables. A higher-order union of conjunctive queries
(HUCQ) of arity n is a set of HCQs of arity n with the same
query predicate. A HCQ/HUCQ is called Boolean if it has
no free variable.

Example 2 Referring to the alphabet mentioned in Example 2,
the following is a HCQ:

q(x) ← InstC(x, y), InstR(y, John,DefinedBy)

Intuitively, the query asks for the instances of all the concepts
in the KB defined by John. In our case, the answer will be simply
{GradCourse,Not(AtLeastQ2(Inv(Teaches)),Full)))}.

Example 3 Consider now the case where we want to ask for the
instances of all the concepts y such that the expression Not(y)
is a concept in the knowledge base defined by John. The natural
formulation of this query would be:

q(x) ← InstC(x, y), InstR(Not(y), John,DefinedBy)

However, according to our syntax for queries, variables cannot ap-
pear as arguments within terms, and therefore the above is not a
query in Hi(SHIQ). See also the conclusions.

Semantics. The semantics of Hi(L) is based on the notion
of interpretation structure. An interpretation structure is a
triple Σ = 〈Δ, Ic, Ir〉 where: (i) Δ is a non-empty (possibly
countably infinite) set; (ii) Ic is a function that maps each
d ∈ Δ into a subset of Δ; and (iii) Ir is a function that maps
each d ∈ Δ into a subset of Δ×Δ. In other words, Σ treats
every element of Δ simultaneously as: (i) an individual; (ii)
a unary relation, i.e., a concept, through Ic; and (iii) a binary
relation, i.e., a role, through Ir.

An interpretation over Σ is a pair I = 〈Σ, Io〉, where
Σ = 〈Δ, Ic, Ir〉 is an interpretation structure, and Io is a
function that maps: (i) each element of S to a single domain
object of Δ; and (ii) each element C/n ∈ OP(L) to an
n-ary function CIo : Δn → Δ that satisfies the conditions
characterizing the operator C/n. In particular, the conditions
for the operators in OP(SHIQ) are the following:

1. for each d1 ∈ Δ, if d = InvIo(d1) then dIr = (dIr
1)−1;

2. for each d1, d2 ∈ Δ, if d = AndIo(d1, d2) then dIc =

dIc
1 ∩ dIc

2 ;
3. for each d1 ∈ Δ, if d = NotIo(d1) then dIc = Δ− dIc

1 ;
4. for each d1, d2 ∈ Δ and n ∈ N, if d = AtLeastQn(d1, d2)

then dIc = {e | ∃e1, . . . , en s.t. ei �= ej for i �= j, and
∀i s.t. 1 ≤ i ≤ n, 〈e, ei〉 ∈ dIr

1 and ei ∈ dIc
2 .

We extend Io to expressions in EL(S) inductively as fol-
lows: if C/n ∈ OP(L), then (C(E1, . . . , En))

Io =

CIo(EIo
1 , . . . , EIo

n). To interpret non-ground terms, we

need assignments over interpretations. An assignment μ
over 〈Σ, Io〉 is a function μ : V → Δ.

We are now ready to interpret terms in Hi(L). Given an
interpretation I = 〈Σ, Io〉 and an assignment μ over I, we
define the function (·)Io,μ : τ(S,V) → Δ as follows:

• if t ∈ S then tIo,μ = tIo ;
• if t ∈ V then tIo,μ = μ(t);
• if t is of the form C(t1, . . . , tn), then tIo,μ =

CIo(tIo,μ
1 , . . . , tIo,μ

n).
Satisfaction of an assertion with respect to an interpreta-

tion I and an assignment μ over I is based on the semantics
of the meta-predicates in MP(L). For the meta-predicates
in SHIQ, satisfaction in I, μ is defined as follows:

• I, μ |= InstC(E1, E2) if EIo,μ
1 ∈ (EIo,μ

2)Ic ;
• I, μ |= InstR(E1, E2, E3) if 〈EIo,μ

1 , EIo,μ
2 〉 ∈ (EIo,μ

3)Ir ;
• I, μ |= IsaC(E1, E2) if (EIo,μ

1)Ic ⊆ (EIo,μ
2)Ic ;

• I, μ |= IsaR(E1, E2) if (EIo,μ
1)Ir ⊆ (EIo,μ

2)Ir ;
• I, μ |= Tran(E) if (EIo,μ)Ir is a transitive relation.
A Hi(L) KB H is satisfied by I if all the assertions in H

are satisfied by I.3 As usual, the interpretations I satisfying
H are called the models of H. A Hi(L) KB H is satisfiable
if it has at least one model.

Let I be an interpretation and μ an assignment over I.
A Boolean HCQ q of the form q ← a1, . . . , an is satisfied
in I, μ if every assertion ai is satisfied in I, μ. A Boolean
HUCQ Q is satisfied in I, μ if there exists a Boolean HCQ
q ∈ Q that is satisfied in I, μ. A Boolean HUCQ Q is satis-
fied in I, written I |= Q, if there exists an assignment μ over
I such that Q is satisfied in I, μ. Given a Boolean HUCQ Q
and a Hi(L) KB H, we say that Q is logically implied by H
(denoted by H |= Q) if for each model I of H there exists
an assignment μ such that Q is satisfied by I, μ.

Given a non-Boolean HUCQ q of the form
q(t1, . . . , tn) ← a1, . . . , am, a grounding substitution of q
is a substitution θ such that t1θ, . . . , tnθ are ground terms.
We call t1θ, . . . , tnθ a grounding tuple. The set of certain
answers to q in H is the set of grounding tuples t1θ, . . . , tnθ
that make the Boolean query qθ ← a1θ, . . . , anθ logically
implied by H. Notice that, in general, the set of certain
answers may be infinite even if the KB is finite. Therefore,
it is of interest to define suitable notions of safety, which
guarantee that the set of answers is bounded. This issue,
however, is beyond the scope of the present paper.

Indeed, in this paper, we focus on Boolean queries only,
so as to address the computation of certain answers as a deci-
sion problem. Also, in our analysis, we measure the compu-
tational complexity in three different ways: with respect to
the size of the whole KB (KB complexity), with respect to the
size of the part of the KB formed by the assertions involving
only the meta-predicates InstC/2, InstR/3 (instance com-
plexity), and with respect to the size of the KB and the query
together (combined complexity).

Satisfiability in Hi(SHIQ)
In this section we study the computational characterization
of KB satisfiability in the higher-order DL Hi(SHIQ).

3We do not need to mention assignments here, since all asser-
tions in H are ground.

185

We start by defining a translation Π from Hi(SHIQ) to
SHIQ. First, we define three injective functions νO :
ESHIQ(S) → So, νC : ESHIQ(S) → Sc, and νR :
ESHIQ(S) → Sr, where So, Sc and Sr are three mutually
disjoint alphabets of names, each one disjoint from S . Then,
we inductively define two functions τC and τR as follows:

• if S ∈ S, then τC(S) = νC(S) and τR(S) = νR(S);
• τC(Not(E)) = Not(τC(E));
• τC(And(E1, E2)) = And(τC(E1), τC(E2));
• τC(AtLeastQn(E1, E2))=AtLeastQn(τR(E1), τC(E2));
• τR(Inv(E)) = Inv(τR(E)).

Now, let Expr(H) denote the set of ground expres-
sions occurring in H (notice that every subexpression of
an expression occurring in H also belongs to Expr(H)).
Then, given a Hi(SHIQ) KB H, we inductively define the
SHIQ KB Π (H) as follows:

1. if Not(E) ∈ Expr(H), then νC(Not(E)) ≡
τC(Not(E)) ∈ Π (H);

2. if Inv(E) ∈ Expr(H), then νR(Inv(E)) ≡ τR(Inv(E)) ∈
Π (H);

3. if And(E1, E2) ∈ Expr(H), then νC(And(E1, E2)) ≡
τC(And(E1, E2)) ∈ Π (H);

4. if AtLeastQn(E1, E2) ∈ Expr(H), then
νC(AtLeastQn(E1, E2)) ≡ τC(AtLeastQn(E1, E2)) ∈
Π (H);

5. if InstC(E1, E2) ∈ H, then νC(E1)(νO(E2)) ∈ Π (H);
6. if InstR(E1, E2, E3) ∈ H, then

νR(E1)(νO(E2), νO(E3)) ∈ Π (H);
7. if IsaC(E1, E2) ∈ H, then νC(E1) � νC(E2) ∈ Π (H);
8. if IsaR(E1, E2) ∈ H, then νR(E1) � νR(E2) ∈ Π (H);
9. if Tran(E) ∈ H, then Tran(νR(E)) ∈ Π (H).

Informally, the above translation provides a SHIQ KB
Π (H) in which for every ground term E occurring in H
(notice that E may be a subterm of another term occurring
in H) there exists a concept name νC(E) (and a role name
νR(E)) that is defined, through the use of the function τC
(respectively, τR) as equivalent to the term E seen as a con-
cept (respectively, role) expression.

Based on the above translation, we get our first result,
namely a reduction of KB satisfiability in Hi(SHIQ) to KB
satisfiability in SHIQ.

Theorem 4 A Hi(SHIQ) KB H is satisfiable iff the
SHIQ KB Π (H) is satisfiable.

From the above theorem, and the computational characteri-
zation of KB satisfiability in SHIQ [Baader et al., 2003],
we are able to provide the computational characterization of
KB satisfiability in Hi(SHIQ).

Theorem 5 KB satisfiability in Hi(SHIQ) is EXPTIME-
complete w.r.t. KB complexity, and coNP-complete w.r.t. in-
stance complexity.

Query answering in Hi(SHIQ)
In this section we study query answering in Hi(SHIQ).
In particular, we restrict our attention to a specific class of
HUCQs, which we call guarded. For the definition of this
class of queries, we need the notions of object position, con-
cept position, and role position, whose goal is to character-
ize the various argument positions in atoms and terms. If we
use symbol O to mark object positions, symbol C to mark

concept positions, and symbol R to mark role positions,
then we have: InstC(O,C), InstR(O,O,R), IsaC(C,C),
IsaR(R,R), Tran(R), Not(C), And(C,C), and Inv(R).

Now, a HCQ q is called guarded if, for every variable x
occurring in an ISA-atom of q, x also occurs in a concept
or role position of an instance-atom of q. A HUCQ is called
guarded is every HCQ q in Q is guarded.

We start our analysis of query answering by showing that
answering guarded HUCQs is coNP-hard w.r.t. KB com-
plexity (actually, w.r.t. instance complexity only) and Πp

2-
hard w.r.t combined complexity, as soon as the DL admits
the InstC , InstR and IsaC meta-predicates (and even if the
DL does not allow for any logical operator).

Theorem 6 Let L be a DL such that MP(L) contains
the meta-predicates InstC , InstR and IsaC . Answering
guarded HUCQs over Hi(L) KBs is coNP-hard w.r.t. in-
stance complexity, and Πp

2-hard w.r.t. combined complexity,
even if OP (L) = ∅.

The coNP lower bound stated in the theorem is obtained
through a reduction from 3-CNF unsatisfiability, while the
Πp

2 lower bound is proved through a reduction from 2-QBF.
Both reductions exploit the possibility of defining a HUCQ
where one disjunct asks for an instance of a concept named
C, and another disjunct checks containment of C into other
concepts. Since in every model in which C is empty, C is
contained into every concept, this query forces a form of
“reasoning by cases” over the models of the KB (i.e., dif-
ferent variable assignments must be considered in different
models). Actually the proof uses a KB formed by instance
assertions only.

This theorem implies that answering guarded HUCQs is
intractable w.r.t. instance (and KB) complexity not only in
Hi(SHIQ), but in all the DLs currently studied, since all
DLs comprise the meta-predicates InstC , InstR and IsaC .

We now provide a technique for query answering over
Hi(SHIQ) KBs, which is based on the reduction to SHIQ
provided by the function Π () defined for KB satisfiability.
For query answering, however, the function Π () must be ex-
tended to account for expressions occurring in the query;
moreover, we also need to define a translation π of HUCQs.
Such functions are defined below.

Let Q be a HUCQ. We say that Q is a metaground HUCQ
if it does not contain any variable in concept or role position.
Moreover, we say that Q is an instance HUCQ if it only
contains instance-atoms. We denote by Expr(Q) the set of
ground expressions occurring in a HUCQ Q. Let q be a HCQ
and let e1, . . . , ek be the ground expressions occurring as
arguments of ISA-atoms in q. We define inductively the set
of expressions conj ISA(q) as follows:

C1 = {e1, . . . , ek}
Ci+1 = {And(e, e0)|e ∈ Ci and eo ∈ C1}
conj ISA(q) = Ck

Informally, conj ISA(q) denotes the set of all the possible
conjunctions of ground expressions occurring as arguments
of ISA-atoms in q. We are now ready to define the set of
ground expressions Expr(H, Q) as follows:

Expr(H, Q) = Expr(H) ∪ Expr(Q) ∪
⋃

q∈Q

conj ISA(q)

186

Expr(H, Q) constitutes the set of ground expressions
that we use for grounding metavariables. Notice that
Expr(H, Q) has size polynomial in the size of H.

Let q be a HCQ. An H-metaground instantiation of q
is a HCQ obtained from q by replacing every variable
occurring in at least one concept or role position with
an expression of Expr(H, q). Given a HCQ q, we de-
fine metaground(q,H) as the HUCQ corresponding to the
union of all the H-metaground instantiations of q. If there
are no ground terms occurring in H (i.e., H is empty), we
define metaground(q,H) to be the HCQ obtained from q
by replacing all variables occurring in concept and role po-
sitions with any name in S . Given a HUCQ Q, we define
metaground(Q,H) =

⋃
q∈Q metaground(q,H).

Given a metaground HUCQ Q, we denote by π(Q,H) the
standard UCQ obtained from metaground(Q,H) by: (i) re-
placing every ground term E occurring as an argument in
object position of an atom in Q with νO(E); (ii) replacing
every ground term E occurring as an argument in concept
position of an atom in Q with νC(E); (iii) replacing every
ground term E occurring as an argument in role position of
an atom in Q with νR(E). Finally, given a Hi(SHIQ) KB
H and a HUCQ Q, we denote by Π (H, Q) the SHIQ KB
obtained starting from Π (H) and adding, for every ground
term E that occurs in metaground(Q,H) and does not oc-
cur in H, the inclusion assertions generated by the first 5
items in the definition of Π (H) above.

Now we restrict our attention to queries that are both
metaground and instance, for which we can easily prove:

Lemma 7 Let H be a Hi(SHIQ) KB, and let Q be a meta-
ground instance HUCQ. Then, H |= Q iff Π (H, Q) |=
π(Q,H).

Based on the known computational characterization of
answering “standard” UCQs, i.e., both metaground and in-
stance UCQs, in SHIQ [Glimm et al., 2007; Calvanese et
al., 2008; Ortiz et al., 2008], we immediately get:

Theorem 8 Answering metaground instance HUCQs over
Hi(SHIQ) KBs is coNP-complete w.r.t. instance com-
plexity, EXPTIME-complete w.r.t. KB complexity, and 2-
EXPTIME-complete w.r.t. combined complexity.

We can extend this result to the whole class of instance
HUCQs. First, we show the following key property, which
holds for the whole class of guarded HUCQs.

Theorem 9 Let H be a Hi(SHIQ) KB, and let Q be a
guarded HUCQ. H |= Q iff H |= metaground(Q,H).

Proof (sketch). One direction (if H |= metaground(Q,H)
then H |= Q) is trivial. The proof of the other direction
is quite involved. First, the following property (*) can be
shown: if H |= Q then H |= metaground(Q), where
metaground(Q) is the query obtained from Q through the
meta-grounding of the meta-variables over the set of all
expressions of the language (not only those terms occur-
ring in Expr(H, Q)). Now suppose H |= Q. If H �|=
metaground(Q,H), then there exists a model I for H such
that I |= metaground(Q) and I �|= metaground(Q,H).
It is now possible to define a model I ′ for H which is es-
sentially the disjoint union of a countably infinite number of

copies of I, in which the function I ′
o is defined in such a way

that I ′ �|= metaground(Q), which contradicts the above
property (*). Consequently, H |= metaground(Q,H).

Lemma 9, and Theorems 7, 8 allow us to immediately de-
rive the computational characterization of query answering
in Hi(SHIQ) for the whole class of instance HUCQs.
Theorem 10 Answering instance HUCQs over Hi(SHIQ)
KBs is coNP-complete w.r.t. instance complexity, EXPTIME-
complete w.r.t. KB complexity, and 2-EXPTIME-complete
w.r.t. combined complexity.

In order to go beyond instance HUCQs, and answer
guarded HUCQs in Hi(SHIQ), we now define a technique
which reduces this problem to answering standard UCQs
in SHIQ. In the following, we call intensional (or, TBox)
assertion every assertion using one of the meta-predicates
IsaC , IsaR, and Tran . Moreover, given a KB H and a
HUCQ Q, we define TAH,Q to be the set of all intensional
assertions in SHIQ that can be obtained from the set of
ground terms occurring in Expr(H, Q).

Let T ′ be a subset of TAH,Q. We say that T ′ is co-
herent with H iff T ⊆ T ′, where T is the set of TBox
assertions occurring in H, and T ′ ∪ H �|= α for every
α ∈ TAH,Q − T ′. Then, we denote by IntEval(Q,H, T ′)
the metaground instance HUCQ Q′ obtained starting from
Q′ = metaground(Q,H) and then evaluating every inten-
sional assertion over T ′ as follows:

• if α is an intensional assertion occurring in a HCQ q ∈ Q′

and α ∈ T ′, then eliminate α from q;
• if α is an intensional assertion occurring in a HCQ q ∈ Q′

and α �∈ T ′, then eliminate q from Q′.
Finally, we define KBSHIQ(H, T ′, Q) as the SHIQ

KB4 obtained starting from K′ = Π (H′, Q) (where H′ =
T ′ ∪ H) and then adding to K′ the following assertions for
every TBox assertion α ∈ TAH,Q − T ′:

• if α = IsaC(E1, E2) then add to K′ the ABox assertions
νC(E1)(n) and νC(Not(E2))(n), where n is a new individ-
ual name in K′;

• if α = IsaR(E1, E2) then add to K′ the TBox assertion
(role disjointness) νR(E2) � ¬Aux i, where i is such that
Aux i is a new role name in K′, and the ABox assertions
νR(E1)(n1, n2) and Aux i(n1, n2), where n1, n2 are new in-
dividual names in K′;

• if α = Tran(E) then add to K′ the TBox assertion
(role disjointness) νR(E) � ¬Aux i, where i is such that
Aux i is a new role name in K′, and the ABox assertions
νR(E)(n1, n2), νR(E)(n2, n3) and Aux i(n1, n3), where
n1, n2, n3 are new individual names in K′.

Intuitively, KBSHIQ(H, T ′, Q) is such that, if α ∈
TAH,Q − T ′, then α is forced to be false in every model of
KBSHIQ(H, T ′, Q). The following theorem (whose proof
relies on Theorem 9) reduces answering guarded HUCQs in
Hi(SHIQ) to answering standard UCQs in SHIQ.
Lemma 11 Let H be a Hi(SHIQ) KB, and let Q be a
guarded HUCQ. Then, H �|= Q iff there exists a sub-
set T ′ of TAH,Q such that T ′ is coherent with H, and
KBSHIQ(H, T ′, Q) �|= π(IntEval(Q,H, T ′),H).

4Actually, KBSHIQ(H, T ′, Q) is a SHIQ KB with role
disjointness assertions. However, adding this kind of axioms to
SHIQ does not change the complexity of query answering.

187

Based on Lemma 11, and Theorems 7, 8, we get the com-
putational characterization of answering guarded HUCQs in
Hi(SHIQ).
Theorem 12 Answering guarded HUCQs over Hi(SHIQ)
KBs is coNP-complete w.r.t. instance complexity, EXPTIME-
complete w.r.t. KB complexity, and 2-EXPTIME-complete
w.r.t. combined complexity.

Tractable cases
The results presented in the previous section show that
(guarded) query answering in the higher-order version of
SHIQ is computationally no worse than query answering
in standard (first-order) SHIQ. However, since all the ba-
sic reasoning tasks in SHIQ are already intractable, it is
impossible to identify a tractable subclass of HUCQs in the
higher-order version of SHIQ. So, we look at DLs in which
standard reasoning is tractable, to see whether tractability is
preserved in the higher-order extension of such logics. We
focus in particular on DL-LiteR, a well-known DL of the
DL-Lite family [Calvanese et al., 2007], which is the core of
OWL 2 QL. The higher-order extension of DL-LiteR, which
we call Hi(DL-LiteR), is immediately obtained as in the
case of SHIQ.

First, due to Theorem 6, it follows that answering guarded
HUCQs in Hi(DL-LiteR) is in general intractable. That is,
for general guarded HUCQs, query answering is computa-
tionally harder than answering standard UCQs (w.r.t. all the
three complexity measures considered in this paper).

On the other hand, following the line of reasoning used
for Theorem 10, we can immediately show that answering
instance HUCQs in Hi(DL-LiteR) has the same complexity
as answering standard UCQs in DL-LiteR:
Theorem 13 Answering instance HUCQs over
Hi(DL-LiteR) KBs is in AC0 w.r.t. instance complex-
ity, in PTIME w.r.t. KB complexity, and NP-complete w.r.t.
combined complexity.

We now complement the previous tractability result, by
considering the class of ISA-ground HCQs, defined as fol-
lows: a HCQ q is ISA-ground if all its ISA-atoms are ground.
Observe that the class of ISA-ground HCQs is more gen-
eral than the class of instance HCQs. The technique for an-
swering instance HUCQs (based on the grounding of the
metavariables) can be easily extended to handle the pres-
ence of ISA-ground atoms in a HCQ. Essentially, first the
ISA-ground atoms are evaluated over the KB; then, if some
of the ISA-ground atoms is not entailed by the KB, then the
query is obviously false; if otherwise all such atoms are en-
tailed by the KB, the rest of the HCQ (which corresponds
to an instance HCQ) is evaluated according to the technique
described in the previous section. Thus we can prove:
Theorem 14 Answering ISA-ground HCQs over
Hi(DL-LiteR) KBs is in AC0 w.r.t. instance complex-
ity, in PTIME w.r.t. KB complexity, and NP-complete w.r.t.
combined complexity.

Finally, we remark that the above techniques can be used
to prove analogous results for other tractable DLs: e.g., the
above techniques immediately show tractability of answer-
ing instance HUCQs and ISA-ground HCQs also in the
higher-order extension of EL.

Conclusions
The research presented here can be continued along different
lines. First, while the query answering algorithm presented
in here is suited for the class of guarded HUCQs, it is of
interest to address query answering for the whole class of
HUCQs. Also, more metamodeling features can be added to
the query language. In particular, one might wonder whether
the query answering method described in this paper can be
extended to deal with the case where variables can appear
freely within the terms in the query atoms. Unfortunately,
our first investigation on this subject shows that allowing for
a more flexible use of variables in the queries easily leads to
undecidability of query answering.

Acknowledgments Work partially supported by the EU
under the project “ACSI: Artifact-Centric Service Interop-
eration”, grant n. FP7-257593, and by Regione Lazio under
the project “Integrazione semantica di dati e servizi per le
aziende in rete”.

References
F. Angiulli, R. Ben-Eliyahu-Zohary, G. Ianni, and L. Palopoli.
Computational properties of metaquerying problems. ACM Trans.
on Comput. Logic, 4(2):149–180, 2003.
G. Attardi and M. Simi. Consistency and completeness of OMEGA,
a logic for knowledge representation. In Proc. of IJCAI’81, pages
504–510, 1981.
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: The-
ory, Implementation and Applications. Cambridge U. Press, 2003.
L. Badea. Reifying concepts in description logics. In Proc. of
IJCAI’97, pages 142–147, 1997.
D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R.
Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.
D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive
query containment and answering under description logics con-
straints. ACM Trans. on Comput. Logic, 9(3):22.1–22.31, 2008.
W. Chen, M. Kifer, and D. Warren. HILOG: A foundation
for higher-order logic programming. J. of Logic Programming,
15(3):187–230, 1993.
S. Colucci, T. Di Noia, E. Di Sciascio, F. Donini, and Azzurra
Ragone. Second-order description logics: Semantics, motivation,
and a calculus. In Proc. of DL 2010, 2010.
B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query
answering for the description logic SHIQ. In Proc. of IJCAI 2007,
pages 399–404, 2007.
F. Lehmann, editor. Semantic Networks in Artificial Intelligence.
Pergamon Press, Oxford (United Kingdom), 1992.
B. Motik. On the properties of metamodeling in OWL. J. of Logic
and Computation, 17(4):617–637, 2007.
J. Mylopoulos, P. Bernstein, and H. Wong. A language facil-
ity for designing database-intensive applications. ACM Trans. on
Database Systems, 5(2):185–207, 1980.
M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query
answering in expressive description logics via tableaux. J. of Auto-
mated Reasoning, 41(1):61–98, 2008.
J. Pan and I. Horrocks. OWL FA: a metamodeling extension of
OWL DL. In Proc. of WWW 2006, pages 1065–1066, 2006.

188

