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Abstract

Building on a general theory of action by Reiter and his col-
leagues, Bacchus et al. give an account for formalizing de-
grees of belief and noisy actions in the situation calculus. Un-
fortunately, there is no clear solution to the projection prob-
lem for the formalism. And, while the model has epistemic
features, it is not obvious what the agent’s knowledge base
should look like. Also, reasoning about uncertainty essen-
tially resorts to second-order logic. In recent work, Gabal-
don and Lakemeyer remedy these shortcomings somewhat,
but here too the utility seems to be restricted to queries (with
action operators) about the initial theory. In this paper, we
propose a fresh amalgamation of a modal fragment of the sit-
uation calculus and uncertainty, where the idea will be to up-
date the initial knowledge base, containing both ordinary and
(certain kinds of) probabilistic beliefs, when noisy actions are
performed. We show that the new semantics has the right
properties, and study a special case where updating proba-
bilistic beliefs is computable. Our ideas are closely related to
the Lin and Reiter notion of progression.

1 Introduction

It is generally argued that when agents interact with an in-
completely known world, in addition to reasoning about the
effects of their actions, they need to be able to quantify their
uncertainty about faulty sensors and effectors. Building on
a logical theory of action by Reiter and his colleagues, Bac-
chus et al. [BHL] (1995) give an account for formalizing
degrees of belief and noisy actions in the situation calculus.
Their model can be thought of as two important extensions
to the epistemic situation calculus (Reiter 2001): a set of ax-
ioms to capture nondeterminism in actions which still fall
back on Reiter’s solution to the frame problem, and a com-
panion fluent to the epistemic one to capture a subjective
assessment of uncertainty. Of course, a model of belief has
limited appeal if it is not regularly updated with what is ob-
served. BHL demonstrate that this is indeed the case.

Somewhat surprisingly, despite having epistemic features,
it is not obvious what the agent’s knowledge base actually
looks like. There are also other problems. Since the situa-
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tion calculus is defined axiomatically, reasoning about un-
certainty, essentially a summation over the weights on epis-
temically accessible situations, resorts to second-order logic.
For another, there is no clear solution to the projection prob-
lem, where we are to determine if a formula holds after a
number of named actions have occurred, which is arguably
a fundamental application of action formalisms.1

To remedy a few of these shortcomings, Gabaldon and
Lakemeyer [GL] (2007) extend a modal fragment of the
situation calculus, called ES , to include similar notions,
which we review below. ES also has epistemic features
including only-knowing, which refers to all that the agent
knows in the sense of having a knowledge base, and fully
captures Reiter-style basic action theories allowing one to
formulate successor state axioms of the form:

∀v, y. �[v]wall = y ≡ (v = adv1 ∧ wall = y + 1)∨
(v = reverse ∧ wall = y − 1)∨
v �= adv1 ∧ v �= reverse ∧ wall = y,

which in English says that after any sequence of actions
(�), doing an adv1 brings the agent closer to the wall by
a meter, and doing a reverse moves the agent away by a
meter. Noisy or stochastic actions, which are to correspond
to a number of ordinary actions such as adv1 and reverse,
are captured by including as part of the background theory:
∀x, y.choice(move, x) = y ≡ (x = adv1 ∨ x = adv0)

∧ y = 1 ∨ (x �= adv1 ∨ x �= adv0) ∧ y = 0,

prob(move, adv1) = .2, prob(move, adv0) = .8,
which in English says that executing move may correspond
to doing adv1 or doing adv0, with probabilities of .2 and .8
respectively. Now, if all that the agent knows is that the wall
is 5 meters away and the above theory, then after doing a
move it believes that it is 4 meters away with a probability
of .2, as expected. The main technical leverage to BHL is
that beliefs are evaluated semantically, avoiding the use of
second-order representations.

While the results seem intuitive, it is also, unfortunately,
not without problems. First, after doing noisy actions, they
can only reason about probability formulas, whose seman-
tics is quite involved. Moreover, here too the utility seems
to be restricted to queries (with action operators) about the

1By solution we mean either the regression or the progression
methodology (Reiter 2001). The latter is to be introduced shortly.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

165



initial theory. Reasoning about actions this way is clearly
unmanageable for anything but a small number of actions.

In a seminal paper, Lin and Reiter [LR] (1997) propose a
powerful method to the projection problem called progres-
sion, where the idea is to update the initial theory. The ad-
vantage is clear: one can process multiple queries about the
resulting state without any extra overhead. In recent work,
Lakemeyer and Levesque [LL] (2009) propose a new seman-
tics of ES that allows us to use the progression methodology
in the presence of only-knowing. The question arises if such
a solution can also be lifted for a model of uncertainty.

In this paper, we propose a fresh amalgamation of ES and
uncertainty, where we show, among other things, what the
knowledge base should look like after noisy actions. Our
knowledge bases contain both ordinary beliefs, by which we
mean first-order sentences taken to be the facts known by the
agent, and probabilistic ones. We will propose a way where
the ordinary beliefs can be progressed in a standard fashion,
and probabilistic beliefs are updated in computable manner.
To obtain these results, we will need to restrict the kinds
of probabilistic beliefs in the knowledge base. Nevertheless,
we believe the case we make is of practical interest. To the
best of our knowledge, this is the first time that LR progres-
sion is investigated in the presence of uncertainty. For space
reasons, this version of the paper only formulates results for
noisy actions, leaving sensors for an extended version.

Organization is as follows. We begin with an introduction
to the new logic. We then discuss basic action theories and
our main results. Finally, we review related work and con-
clude. For reasons of space, this paper contains no proofs.

2 The Logic ESμ

Syntax Symbols are taken from the following vocabulary:
first-order variables, second-order function variables, fluent
and rigid functions, distinguished fluent Poss, rigid second-
order functions, connectives ¬, ∀,∧, [v], [[v]], �, K, B,O.2

We assume that functions and variables come in three
sorts: object, (ordinary) action and stochastic action with
the understanding that actions are used with [·] and stochas-
tic actions are used with [[·]]. Further, we assume that every
fluent is of the object sort, and that distinguished symbols
prob and choice are the only rigids of the object sort. Let
− No be a countably infinite set of object names, e.g., obj5.

It also includes the set of rational numbers Q closed under
standard arithmetical operations: +,−,×,÷. Let Q[0,1]

denote the subset between 0 and 1 inclusive.
− Na = {A(m1, . . . ,mk) | mj ∈ No, A is a function of

the action sort} be action names, e.g., adv1, drop(obj5).
− Nst = {A(m1, . . . ,mk) | mj ∈ No, A is a function of the

stochastic action sort} be noisy action names, e.g., move.
Let N be the set of all names, i.e., No ∪Na ∪Nst.

1. Terms: Every first-order variable and name is a term.
We use t to denote a vector of terms, and tj to denote a term
in t. If f is a function and R is a second-order variable, then
f(t) and R(t) are also terms.

2Predicates are excluded for simplicity. Also, other symbols,
such as ∨, ∃, ≡ and ⊃ are understood as usual.

By primitive term and primitive second-order term, we
mean ones of the form f(m) and R(m), where mj ∈ N .

2. Formulas: Suppose t, t′ are terms. If α, β are formu-
las, then so are: t = t′, α ∧ β,¬α, ∀xα, ∀Rα, [t]α, [[t′]]α,
�α,Kα,Oα, and Bα ≥ r where r ∈ Q[0,1].3

A primitive formula is of the form f(m) = n, where
mj ∈ N and n ∈ No. A fluent formula is one that does
not mention Poss, choice, prob, [v], [[v]],�,K,B and O. We
also syntactically restrict formulas appearing in the scope of
B to be fluent formulas. We refer to formulas of the form
Bα ≥ r as probability or belief atoms.

We write αf
X to denote that every occurrence of function

f in α is replaced by second-order variable X . We write αx
t

to mean that all free occurrences of variable x are substituted
by term t. We read [t]α as ”α holds after action t”, [[s]]α as ”α
holds after noisy action s”, Kα as ”α is known”, Bα ≥ r
as ”α is believed with a probability ≥ r”, and Oα as ”only
α is known”.4

Semantics Let Z denote all finite sequences of names
fromNa, including 〈〉 (the empty sequence). The semantical
apparatus is a possible-worlds framework, where worlds are
functions from (non-rigid) primitive terms and Z toNo, and
from primitive second-order terms toNo. An epistemic state
e ⊆ W is any set of worlds.

Terms are interpreted as follows. Names act as rigid des-
ignators, and the co-referring name for an arbitrary term
is obtained wrt a world w as: |t|w = t if t is a name;
|f(t)|w = w[f(n), 〈〉] where nj = |tj |w and f is a func-
tion of the object sort; |A(t)|w = A(n) where nj = |tj |w
as before and A is of the action or stochastic action sort; and
|R(t)|w = w[R(n)].5

To interpret second-order variables, we introduce the no-
tation w ∼X w′ to mean that w and w′ agree on everything
except assignments involving X .

Next, to reason about noisy actions, we introduce func-
tions Π and PR as follows. For every t ∈ Na, Π(t) = t
and for every s ∈ Nst, Π(s) is a finite set of action names.
Finally, PR(v) : Π(v) → Q[0,1] − {0} is a distribution,
i.e. choices obtain strictly positive probabilities.

Now, to interpret belief atoms over W , we introduce the
notion of a probability space (Halmos 1950).

Definition 1: A probability space is a tuple (D,X , μ) where
D is a set called the sample space, X is a σ-algebra of sub-
sets of D (i.e. a set of subsets containing D and closed un-
der complementation and countable union), and a measure
μ : X → [0, 1].

Known properties include: μ(∅) = 0, μ(D) = 1 and μ(A ∪
B) = μ(A) + μ(B), if A and B are disjoint elements of X .
We only consider probability spaces that satisfy: X = 2D,
μ : X → Q[0,1], and μ(b) > 0 for all b ∈ X , b �= ∅.

3While the only inequality operator we consider is ≥, this is
wlog since expressing that α has a probability of r is easily written
as Bα ≥ r ∧B¬α ≥ 1− r.

4The term ”knowledge” is used with K and ”belief” with B for
readability purposes only. We do not insist that knowledge is true.

5We only need to obtain the co-referring name initially because
the semantics we propose progresses worlds iteratively.
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The idea is, much like (Fagin and Halpern 1994), to asso-
ciate each world w ∈ W with a probability space. Suppose
� is a function that maps worlds w ∈ W to a probability
space (Dw,Xw, μw), where Dw ⊆ W . Fagin and Halpern
(1994) discuss the various properties that result from how
precisely Dw is defined. Perhaps, the most intuitive model,
is to let Dw, for every w ∈ W , be the epistemic state e.
Uncertainty is then interpreted relative to the agent’s beliefs,
and this is what we will need. We simplify this idea further
and only consider a single probability space over e.6

However, owing to our language, e may be uncountable.
Instead of working with an infinite sample space (Halpern
2003), we proceed by reducing e to a (finite) set of equiv-
alence classes of worlds. So let F be a finite set of func-
tions, H be a finite set of names, and G = {f(m) | f ∈
F ,mj ∈ H}. We write w ≈ w′ to mean that for all p ∈ G,
w[p, 〈〉] = w′[p, 〈〉]. Now, given an epistemic state e, define
||w|| = {w′ ∈ e | w′ ≈ w} as the set of epistemically pos-
sible worlds that agree on G initially.7 Analogously, for any
e′ ⊆ e, let ||e′|| = {||w|| | w ∈ e′} which is always finite.
Intuitively, F includes the fluents over which we define the
basic action theory, and this sublanguage represents every
fluent and name that an agent encounters during its opera-
tion. Putting this together, we define � as (||e||, 2||e||, μ).

By a model we mean a tuple 〈e, w, μ, δ〉, where δ denotes
the pair 〈Π, PR〉. The main purpose of our semantics is to
clarify how fluent functions and belief atoms are to be un-
derstood. The account given is closely related to earlier work
by LL, who define a notion of progressing epistemic states,
and BHL, who give an account of how probabilities should
be assigned to successor states. We briefly review both ideas:

− Given w and t ∈ Na, the progressed world wt is defined
as a world s.t. wt[p, z

′] = w[p, t·z′] for all primitive terms
p and actions sequences z′. Then, let et = {w′

t | w′ ∈ e}.
− In the latter work, probabilities on a state are transferred

to successor states when ordinary actions are performed,
and are weakened by a factor on doing noisy ones.

So in a sense, the progression of worlds in ||w|| must ob-
tain the same probability as ||w|| when ordinary actions are
performed (analogously for noisy ones). Unfortunately, this
would make the definition ill-defined in our case, mainly be-
cause even if w and w′ are two different worlds, wt and w′

t
may be identical. This is not a bug. With progression we are
essentially forgetting the past, but in BHL, the initial the-
ory, and hence the initial situation(s), is kept around. It turns
out, the only technical device we need is a notion of normal
worlds, which fits very well with the purpose of the paper as
we shall shortly see.

6As argued in GL, this often leads to agents holding precise
beliefs about every formula. But consider a basket of oranges and
bananas, where their proportion is not known. Then, we may not
be able to assign an exact probability to the event ”a selected fruit
is orange”. One remedy is to allow a set of measures to capture the
entire range of possibilities. We ignore such issues for simplicity.

7Note that equivalence classes are understood wrt a particular
epistemic state. But since it will be clear from the context which
epistemic state we mean, we avoid the notational clutter.

Definition 2: Let w and w′ be any two worlds, and suppose
w ≈ w′. They are said to be normal if wz ≈ w′

z for all
z ∈ Z|H, which is the restriction of Z to all sequences that
only mention names (of the action sort) from H. A normal
epistemic state e is any set of normal worlds.

Definition 3: Given a model M = 〈e, w, μ, δ〉, where e is
normal, its progression wrt t ∈ Na is 〈et, wt, μt, δ〉:
- let wt and et be as above;
- for w∗ ∈ et, let ||w∗|| = {w′ ∈ et | w′ ≈ w∗};
- let μt(||w∗||) = μ(∪{w′∈e|w′

t≈w∗}||w′||).
Definition 4: Given M as above, its progression wrt s ∈ Nst,
where Π(s) = {t1, . . . , tk}, is 〈es, wtj , μs, δ〉:
- let wtj and etj be as above, and let es = ∪etj ;
- for w∗ ∈ es, let ||w∗|| = {w′ ∈ es | w′ ≈ w∗};
- let μs(||w∗||) = ∑

j μ(∪{w′∈e|w′
tj

≈w∗}||w′||)× PR(tj).
8

Before moving on, let us review what we have. Definition 2
says that if two (normal) worlds belong in an equivalence
class, the same holds for their progressed versions. Def-
inition 3 considers the possibility that when we progress
worlds in e, different classes may merge since they end
up agreeing on G; in which case, a sum of the weights on
the earlier classes must apply to the merged one (to main-
tain normalization). Definition 4 follows the same princi-
ples, but this time for noisy actions defined over a distribu-
tion. One desirable property that we get from this machin-
ery is that both μt(||et||) and μs(||es||) are always 1. For any
z = t1 · . . . · tk ∈ Z , we define 〈ez, wz, μz, δ〉 as the result
of progressing 〈e, w, μ, δ〉 wrt z, in an iterative manner.

Given 〈e, w, μ, δ〉, the complete semantic definition is:

1. e, w, μ, δ |= (t1 = t2) iff n1 and n2 are the same, where
nj = |tj |w;

2. e, w, μ, δ |= ¬α iff e, w, μ, δ �|= α;

3. e, w, μ, δ |= α ∧ β iff e, w, μ, δ |= α and e, w, μ, δ |= β;

4. e, w, μ, δ |= ∀xα iff e, w, μ, δ |= αx
n for all names of

appropriate sort;

5. e, w, μ, δ |= ∀Xα iff e, w′, μ, δ |= α for every w′ ∼X w;

6. e, w, μ, δ |= [τ ]α iff et, wt, μt, δ |= α, where |τ |w = t;

7. e, w, μ, δ |= [[σ]]α iff es, wtj , μs, δ |= α for all tj ∈ Π(s),
where |σ|w = s;

8. e, w, μ, δ |= choice(σ, τ) = 1 iff t ∈ Π(s), where |σ|w =
s and |τ |w = t;

9. e, w, μ, δ |= prob(σ, τ) = r iff t ∈ Π(s) and PR(t) = r,
where |σ|w = s and |τ |w = t;

10. e, w, μ, δ |= �α iff ez, wz, μz, δ |= α for all z ∈ Z;

11. e, w, μ, δ |= Kα iff for all w′ ∈ e, e, w′, μ, δ |= α;

12. e, w, μ, δ |= Oα iff for all w′, w′ ∈ e iff e, w′, μ, δ |= α;

13. e, w, μ, δ |= Bα ≥ r iff μ(||[α]e||) ≥ r;

8Here we mean PR(s)[tj ], i.e., the probability assigned to tj by
the distribution PR(s). We abbreviate this as PR(tj) for readability.
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where, for a fluent formula α, [α]e = {w | w |= α,w ∈ e}.
We say a sentence α is true for 〈e, w, μ, δ〉 if e, w, μ, δ |=

α. Given a set of sentences Σ , we write Σ |= α if for every
normal e, w, μ, δ s.t. e, w, μ, δ |= α′ for every α′ ∈ Σ , then
e, w, μ, δ |= α. Finally, we write |= α to mean {} |= α.

For space reasons, we do not go over all of the general
properties of the logic, but it suffices to say that K satisfies
the usual introspective properties of weak S5 (Hughes and
Cresswell 1972). Additionally, we can demonstrate:
|= �(Oα ⊃Kα);
|= �(Kα ⊃ Bα ≥ r) for every 0 ≤ r ≤ 1;
|= �(Bα ≥ r ⊃ ¬K¬α), for every 0 < r ≤ 1;
|= �(B(α∧β) ≥ r1∧B(α∧¬β) ≥ r2) ⊃ Bα ≥ r1+ r2;
The first property is about only-knowing and knowing (LL),
and the remaining are about knowledge and probability, as
in (Fagin and Halpern 1994), but where the properties hold
in the presence of actions.

3 The Semantics of Progression

We begin by considering the equivalent of basic action the-
ories (BATs) of the situation calculus.

Definition 5: Given a set of fluents F , a set Σ ⊆ ESμ is
called a basic action theory over F if it is the union of:9

1. the initial theory Σ0 is any set of fluent sentences;
2. Σpre is a sentence �Poss(v) = 1 ≡ π, where π is a fluent

formula and Poss(v) = 1 denotes that v is possible;
3. Σpost are sentences �[v]f(x) = y ≡ γf (x, y, v)∨f(x) =

y ∧¬∃h.γf (x, h, v) where γf is a fluent formula, one for
each f . We refer to them as successor state axioms (SSA).

4. ΣΠ and ΣPR are sentences of the form choice(x, x′) =
y ≡ ψ and prob(x, x′) = y ≡ ϕ resp., where ψ and ϕ are
fluent formulas only mentioning variables or names.

The idea is that Σ0 expresses what is true initially, and there
are sentences for the preconditions and effects of actions,
which are formulated so as to incorporate Reiter’s solution
to the frame problem (Reiter 2001).10 The two additional
components model stochastic actions. We often denote Σ0

as φ, and the rest as �β. We assume that φ∧�β is all that an
agent knows.11 Finally, the agent’s background theory also
includes a conjunction of belief atoms, which we refer to as
the belief set, and is handled separately from the above. We
follow this terminology: by a knowledge base S we mean a
sentence of the form O(φ ∧�β) ∧∧

Bα ≥ r.

Example 1: Some aspects of a BAT are already dealt with
in Section 1, where we have definitions for Σpost, ΣΠ and
ΣPR. In addition, let Σpre = {�Poss(v) = 1 ≡ true} (for
simplicity), and let Σ0 = {wall = 4 ∨ wall = 5} which
the agent quantifies as say B(wall = 4) ≥ .3 ∧B(wall =
5) ≥ .7 (denote by θ). Putting all this together, the agent’s
knowledge base is characterized as: O(Σ0 ∧�β) ∧ θ.

9Free variables are assumed to be universally quantified.
10We remark that the unique name assumption for actions (Reiter

2001) is built into the logic.
11Given any set of primitive formulas, an action theory deter-

mines precisely which of these are true after actions. Note that
worlds that satisfy a BAT are normal. In this sense, e is normal.

In the sequel, we are concerned with the progression of our
knowledge bases (S). The question we must now answer
is this: what is progression in the presence of belief atoms
and noisy actions? Consider classical progression. In their
work, LR give a model-theoretic definition for progressing
basic action theories and discuss several properties that the
new theory should satisfy. The main message is that for all
queries about the future, the new and the initial theory be-
have identically (in a particular formal sense). It turns out an
account similar to the LR notion also works for us.

Henceforth, let t (and s) denote a primitive action
i.e., name, from Na (and name from Nst resp.).

Definition 6: We call S ′ the progression of S wrt t (or s) iff
for every model M , M is a model of S ′ iff there is a model
M ′ of S s.t. M is the progression of M ′ wrt t (or s).

To get an idea about how one formulates S ′, let us consider
the base theorem. In recent work, LL show that all that an
agent knows after an (ordinary) action corresponds to the
LR progression of an initial theory. When B does not appear
anywhere, we are able to reprove this result:

Theorem 1: If S = O(φ∧�β), then its progression wrt t is
O(P(φ) ∧�β) where:
P(φ) = ∃R [φF

R ∧
∧ ∀x, y. f(x) = y ≡ γv

t
F
R], R are

second-order variables s.t. Rj and fj are of the same arity.

What this states is that if all that the agent knows is a
BAT, then after t the agent knows another BAT, but where
φ is replaced by P(φ). While the general definition is
second-order, under certain restrictions progression is first-
order definable and efficient (Liu and Lakemeyer 2009;
Belle and Lakemeyer 2011).

We now turn to the case when belief atoms do appear in
S . Fortunately, here too the only-knowing story is clear: we
obtain a result on the set of sentences that the agent comes
to know after ordinary and noisy actions. But it is not always
clear what the belief set of S ′ should be given an arbitrary S .
So unfortunately, we do not have proof as of yet if S ′ exists
in general. However, we are able to show that if it does exist,
then it has the right properties, i.e. S ′ is fully compatible
with S on unrestricted queries about the future.

Theorem 2: Suppose S ′ is the progression of S wrt t. Then,
given any formula α, S |= [t]α iff S ′ |= α.

(Analogously formulated for s.) For the rest of the paper, we
are interested in a practical case, where S ′ does exist and one
obtains a representation theorem that characterizes S ′ from
S in a computable manner.

3.1 Progression after ordinary actions

For the kind of applications we have in mind, it often suffices
to maintain beliefs about (positive and negative) primitive
formulas, as in the case of Example 1 and others in BHL. In
general, we are interested in reasoning problems of the type:

Suppose wall = 5 is believed with a .7 probability. Then
after doing a reverse, wall = 6 is now believed with the
same probability.
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Given this use case, it would be nice if after doing an action,
a simple computational step, such as updating the value of a
primitive term, is the only step needed (at least wrt beliefs).
Unfortunately, once SSAs mention fluents about which the
agent does not have complete information, then such a step
is not possible. To this end, the only assumption we make
when considering ordinary actions is that for all fluents men-
tioned in the belief set, denoted as FB ⊆ F , we have (some
sort of) complete knowledge about their SSAs.

Interestingly, expecting complete information about flu-
ents in a SSA, even if only for belief atoms, is often too
strong an assumption. To see why, consider Example 1. The
problem here is that the new value of the fluent wall de-
pends on the previous one, about which the agent is uncer-
tain. In order to capture such useful cases, we introduce nor-
mal SSAs, where γf is a disjunction of formulas of the form:
∃u, b.[v = A(z) ∧ λf (z) ∧ f(x) = b ∧ y = α(b, z)]

where u are the remaining variables from z not appearing in
x, λf is any fluent formula not mentioning actions, and α is
any arithmetical expression involving the previous value of
f(x) and z.12 So let SSAs for every f ∈ FB be normal. Here
is the complete information assumption that we are after:
Definition 7: A fluent sentence φ is complete wrt a set of
primitive formulas A if for all l ∈ A, either φ |= l or φ |=
¬l. It is complete wrt a fluent f ∈ F , if it is complete wrt all
instances of f which are primitive formulas.
Definition 8: We say S = O(φ ∧ �β) ∧∧

Bl ≥ r is com-
plete (for its belief set) wrt an action theory if φ is complete
wrt all fluents appearing in λf , for every f ∈ FB.13

Given a primitive action A(e), denoted t, normal SSAs can
be simplified, i.e., γf vt simplifies to disjunctions of the form:

∃b. [λf (e) ∧ f(x) = b ∧ y = α(b, e)].

By assumption, λf (e) can be evaluated wrt the initial theory.
Suppose φ |= λf (e). Then, the intuition is that, given any
primitive formula of f that holds initially, say f(m) = n,
the instantiated SSA determines a precise value for f(m)
after t, i.e. α(n, e), which returns a name since α is an arith-
metical expression. Of course, if φ |= ¬λf (e), then the
value for f(m) stays the same after doing t. In either case,
if l denotes what holds initially, say f(m) = n, then denote
the formula f(m) = n′, where n′ is the value after t, as
ρ(l). We now present some results on updating belief sets:
Lemma 1: Let S be complete (for its belief set), and l, lj be
primitive formulas. Given any model 〈e, w, μ, δ〉 of S:

1. If e, w, μ, δ |= Bl ≥ r then et, wt, μt, δ |= Bρ(l) ≥ r.
2. If e, w, μ, δ |= Bl ≥ r ∧Bl ≥ r′ then

et, wt, μt, δ |= Bρ(l) ≥ max(r, r′).
3. If e, w, μ, δ |= ∧

Blj ≥ rj , where lj are different, then
et, wt, μt, δ |=

∧
Bρ(lj) ≥

∑
{i|ρ(li) is the same as ρ(lj)} ri.

12Normal SSAs are strictly more general than local-effects (Liu
and Lakemeyer 2009), where one constrains x to be included in z.
Note: to express a SSA that does not depend on a previous value,
let α simply not mention b.

13Complete knowledge about a SSA still allows for incomplete
information. Here is an example: �[v]f(x) = 1 ≡ v = act(x) ∧
g = 1, where (say) we know g = 1, but know nothing about f .

In other words, the new belief set is definable via simple
steps. For illustration, showing (3), suppose f(m) = n and
f(m) = n′ are believed initially with weights r and r′. If t
is s.t. it sets them both to f(m) = n∗, then it is now believed
with probability r+r′. For readability, we use Bl ≥ r in the
following where we mean

∧
Bl ≥ r, referring to Lemma 1

for the general case. Our representation theorem is this:

Theorem 3: If S = O(φ ∧ �β) ∧Bl ≥ r is complete, then
its progression wrt t is O(P(φ) ∧�β) ∧Bρ(l) ≥ r.

Example 1 continued. Suppose reverse is executed. The
progression of Σ0 is ∃R.[(R = 4∨R = 5)∧∀y. wall = y ≡
reverse = reverse ∧ R = y − 1], i.e. wall = 5 ∨ wall = 6.
Beliefs are updated similarly. Then, we get: O(wall = 5 ∨
wall = 6 ∧�β)∧B(wall = 5) ≥ .3 ∧B(wall = 6) ≥ .7.

It follows that if t does not affect fluents in FB, then we can
progress the initial theory while carrying over the belief set.

Theorem 4: Let S be as above and t is s.t. for every f ∈ FB,
Σpost |= [t]f(x) = y ≡ f(x) = y. Then the progression of
S wrt t is O(P(φ) ∧�β) ∧Bl ≥ r.

3.2 Progression after noisy actions

With noisy actions, a number of additional complexities
arise. The subtlety here is that even where we have complete
knowledge initially, doing a noisy action may result in non-
trivial probabilistic beliefs in the progressed theory (see Sec-
tion 1 for an example). To this end, we make a local-effect
restriction (Liu and Lakemeyer 2009) with noisy actions.

We begin by grouping fluents that are affected when a
noisy action is performed. Suppose the choices of s ∈ Nst

are A1(e1), . . . , Ak(ek). Let FAj
denote the fluents f that

Aj affects, i.e., Aj appears in the SSA of f . LetFs =
⋃FAj

.
Let Hs be the set of names in

⋃
ej .

We now suppose that all fluents in Fs have normal SSAs,
where (additionally) the variables of an action (z) mention
all the variables appearing in the argument of the fluent (x).
The intuition is that every Aj(ej) ∈ Π(s) affects only a
finite number of primitive terms f(m1), . . . , f(ml) where
f ∈ Fs and mi are names mentioned in ej .

However, as hinted above, noisy actions generate proba-
bilistic beliefs about fluents in Fs. In this regard, we make
the following reasonable assumption. Let a clause of the
form

∨
f(m) = nj be called a possible value clause wrt

f(m). For efficiency reasons, we suppose that such clauses
appear in the initial theory wrt all of {f(m) | f ∈ Fs,mj ∈
Hs}. We then assume that beliefs are maintained for each
disjunct i.e. f(m) = nj . To see how this works, consider
Example 1. Since the only fluent affected by move is wall
and wall = 4 ∨ wall = 5 is in the initial theory, the assump-
tion essentially amounts to having beliefs about wall = 4
and wall = 5. In general, we do not believe the assumption
is so serious because in most realistic domains, possible val-
ues range over a small number of names. And as is standard
in probability literature, if the agent cannot specify a belief
then all remaining possibilities are taken to be equally likely.

The above conditions have a clear reading when we think
of fluents keeping information about the position of the robot
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or a key combination (see BHL), where usually the fluents
have no arguments, as is the case also with Example 1.

We now turn to our theorem. In what follows, we need
to distinguish between the effects of the individual choices
of s. To this end, let us denote by P(φ, tj) the progression
of φ wrt ordinary action name tj ∈ Π(s), i.e. ∃R [φF

R ∧∧ ∀x, y. f(x) = y ≡ γv
tj

F
R]. Analogously, let ρ(l, tj) de-

note the updated value of l when tj is executed.

Theorem 5: If S = O(φ ∧ �β) ∧Bl ≥ r is complete, then
its progression wrt s is O(

∨P(φ, tj) ∧�β) ∧ θ, where θ is
∧

Bρ(l, tj) ≥ r ×∑
{i|ρ(l,ti) is the same as ρ(l,tj)} PR(ti).

What this says is that since the agent does not know which
choice was considered, the progression of Σ0 wrt all choices
are believed to be possible. In a sense, the agent ends up
knowing less. This is what we would expect, and is also in
the spirit of BHL. The belief section says that if one be-
gins with a single atom, on doing a noisy action we obtain a
conjunction of k atoms, where each atom is the result of up-
dating wrt each of Π(s). Now, if any of the resulting atoms
are the same, then their probabilities will be added up. One
sees that this is along the lines of what we have for ordinary
actions, but where we now update wrt a set of actions.

Example 1 continued. On doing move, the progression of
wall = 4 ∨ wall = 5 is shown to be wall = 3 ∨ wall =
4 ∨ wall = 5. The new belief set is B(wall = 3) ≥
.06 ∧ B(wall = 4) ≥ .38 ∧ B(wall = 5) ≥ .56. So, ow-
ing to faulty execution, the belief in wall = 5 now is .7 ×
.8 (adv0 is executed) = .56. Quite analogously, the belief in
wall = 4 is .3× .8 (in case adv0 is executed given 4 meters)
plus .7 × .2 (in case adv1 is executed given 5 meters) = .38.
Belief in 3 meters is a result of adv1 given 4 meters: .3 × .2.

4 Related Work

Besides the situation calculus, a number of alternate for-
malisms for reasoning about action exist. Closely related in-
clude those based on the framework of dynamic logic (Harel,
Kozen, and Tiuryn 2000), such as (Demolombe 2003), and
the fluent calculus (Thielscher 2001). For a review on tech-
nical differences, see LL. Noisy actions are treated in BHL,
in GL and by Thielscher (2001), but where LR progression
is not considered. Progression, in fact, is not a new concept
and is at the heart of most planning systems, starting with
STRIPS. The most general account so far is by LR, where
they also demonstrate how a number of special cases are
compatible with their version.

The idea of assigning probabilities to possible worlds is
inspired by earlier approaches (Fagin and Halpern 1994;
Bacchus, Halpern, and Levesque 1995; Halpern 2003). Fa-
gin and Halpern (1994) even consider the many agent case,
but for a propositional language. They also do not explic-
itly address reasoning and actions. Halpern (2003) considers
some first-order treatments of uncertainty, but he too does
not address actions in that framework.14 Only-knowing is

14Some recent proposals deal with actions, knowledge and prob-
ability e.g., (Benthem, Gerbrandy, and Kooi 2009), but only for a
propositional language.

also not considered in these proposals. A different treatment
of only-knowing in the presence of uncertainty appears in
GL, but where progression is not considered. Besides the
area of KR, reasoning about probabilities is also of concern
in game theory and in program verification; see (Fagin and
Halpern 1994) for discussions.

5 Conclusions
The paper proposes a new model for reasoning about uncer-
tainty and action, within a modal fragment of the situation
calculus. Among its main features, is a semantics that clar-
ifies LR progression in the presence of probabilistic beliefs
and noisy actions. While we do not yet have a general re-
sult about the existence of progression in this setting, we
did show that, when it does exist, it has the right semanti-
cal properties. We then presented a practical case, where we
obtain representation theorems for characterizing the new
knowledge base from the previous one. As an extension to
this work, we also have results on noisy sensors, the details
of which we leave to a longer version of the paper. We be-
lieve two future directions present themselves. It would be
interesting to generalize the representation theorems for a
larger class of action theories and for cases where we may
express beliefs about quantified formulas. But perhaps the
more pressing issue is to investigate if progression always
exists, and if it does, whether it has a finite representation.
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