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Abstract

We propose a novel technique for proving the consistency of
large, complex and heterogeneous theories for which ‘stan-
dard’ automated reasoning methods are considered insuffi-
cient. In particular, we exemplify the applicability of the
method by establishing the consistency of the foundational
ontology DOLCE, a large, first-order ontology. The approach
we advocate constructs a global model for a theory, in our
case DOLCE, built from smaller models of subtheories to-
gether with amalgamability properties between such models.
The proof proceeds by (i) hand-crafting a so-called architec-
tural specification of DOLCE which reflects the way models
of the theory can be built, (ii) an automated verification of the
amalgamability conditions, and (iii) a (partially automated)
series of relative consistency proofs.

Introduction

The field of formal ontology may be subdivided into the
study of domain ontologies, devoted to specific application
areas, and foundational ontologies, axiomatising fundamen-
tal and domain-independent concepts. Foundational ontolo-
gies, such as SUMO (Niles and Pease 2001), DOLCE (Ma-
solo et al. 2003), GFO (Herre 2010), and BFO (Grenon,
Smith, and Goldberg 2004), are typically specified in some
variant of first-order logic, and their first-order theories tend
to be rather large. DOLCE, for instance, consists of a few
hundred axioms, and SUMO of several thousand.

Automated and semi-automated theorem proving systems
have successfully been applied to reasoning about founda-
tional ontologies. In particular, using automated provers,
a number of inconsistencies in SUMO have been found
(Voronkov 2006; Horrocks and Voronkov 2006), and SUMO
has been corrected accordingly. The problem of proving the
consistency of ontologies, however, is much harder in gen-
eral.

In the literature, two main approaches for proving con-
sistency are described: model finders and relative consis-
tency proofs. There are several model finders for first-order
logic available. Some of them search for finite models by
a translation to propositional logic (and then using SAT
solvers) (e.g. Isabelle-refute (Weber 2005)), some
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of them use more advanced methods like the model evolu-
tion calculus (e.g. Darwin (Baumgartner and Tinelli 2003;
Baumgartner, Fuchs, and Tinelli 2004)), or resolution via de-
tecting a saturated set of clauses (e.g. SPASS (Weidenbach et
al. 2002)). However, these techniques currently only suffice
to find models for relatively small first-order theories—they
do not scale to DOLCE, let alone SUMO. In fact, the diffi-
culties already arise for the rather small sub-theories ‘clas-
sical extensional parthood’ (CEP) and ‘constitution’ (CON)
of DOLCE. CEP is a theory of mereology, and it is straight-
forward to see that finite models for it can be obtained by
powersets of finite sets, where the empty set has to be ex-
cluded. The singleton sets are then just the atoms of the
mereology. The above first-order model finders could not
find models with more than four atoms for these theories.
Moreover, several weeks of computation time did not suf-
fice to find a model for the whole of DOLCE.

An alternative way of proving consistency is to use a rela-
tive consistency proof, that is, to provide a theory interpreta-
tion into some other theory that is known (or assumed) to be
consistent. An obvious disadvantage of this approach is that
it not only requires the manual construction of such a the-
ory interpretation, but that such an interpretation will also
typically be rather large and complex.

In this work, we propose to construct models not in a
monolithic, but in a structured way.1 We employ a set of op-
erations for model construction that have been introduced in
the context of software specification under the name of ar-
chitectural specifications. These allow for decomposing the
task of constructing a model for a (large) theory into smaller
subtasks. These subtasks include: (a) automatically finding
(or manually constructing) models for (relatively) small the-
ories, (b) proving the conservativity of theory extensions,
which can be done performing (local) relative consistency
proofs, and (c) establishing amalgamability between already
constructed models (or model classes).

Relative Consistency Proofs

For the purposes of this paper we shall identify a (first-order)
ontology with a theory in first-order logic, namely a signa-
ture (set of non-logical symbols) and a set of axioms. We

1Early work towards the consistency proof for DOLCE pre-
sented here appeared in (Kutz, Lücke, and Mossakowski 2008).
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will say that a theory is consistent (=satisfiable) if it has a
model; by completeness this is equivalent to formal consis-
tency, which means that no contradiction can be derived.

When we are unable to directly establish that a certain
theory, say T , is consistent, we can instead show that it is
consistent provided some other theory T ′ is.

The general method behind this is as follows: T ′ is ex-
tended conservatively with new definitions (call the result-
ing theory T ′′), and then T is interpreted in T ′′, via a theory
morphism (interpretation of theories) σ : T → T ′′. Now if
T ′ is consistent, it has a model. Since T ′′ is a conservative
extension, it has a model, too, and this model can be reduced
(via σ) to a model of T . Hence, altogether, consistency of T ′
implies that of T .

Let us make the notion of ‘conservative extension with
new definitions’ a bit more precise. A conservative extension
of a theory T is a theory extension ι : T → T ′ such that
for any model M of T , there is a ι-expansion of M to a
T ′-model M ′, i.e. such that the reduct M ′|ι of M ′ via ι is
again M . If the ι-expansion is in fact always unique, then
the theory extension is called definitional.

We can summarise the above as follows: diagrammati-
cally, we can represent relative consistency proofs in the
form of conservativity triangles as shown in Fig. 1, i.e.
we are given theories T, T ′, T ′′, and signature morphisms
σ : T → T ′′, ι1 : T ′ → T ′′, and ι2 : T ′ → T such that the
following triangle commutes:

T ′

T ′′ �.................................................
σ

�....
......

......
......

..
ι1

def!

T

ι2cons �

Figure 1: A conservativity triangle

We then have the following:
Lemma 1. Let T be a conservativity triangle. Suppose T ′
is consistent. If ι1 is conservative (definitional) and σ is a
theory interpretation, then ι2 is conservative and T is con-
sistent.

Since conservativity of theory extensions is in general un-
decidable (not even semi-decidable), we need syntactic cri-
teria that are sufficient (but not necessarily necessary) to en-
sure conservativity. Obviously, extensions by explicit defi-
nitions of function and predicate symbols are conservative
in this sense. Considering a many-sorted first-order logic,
we will also allow extensions by definitional introduction of
new sorts, where the new sort is either given by a finite enu-
meration of constants that are pairwise different and jointly
exhaustive, or by a disjoint union of a finite number of al-
ready existing (i.e. in T ′) sorts. All this is easily expressible
in first-order logic.

With these criteria for conservativity, we can even show
the (absolute) consistency of a theory T : namely, if we let
T ′ be the empty theory (which trivially is consistent), con-
servatively extend it to T ′′ and then interpret T in T ′′.

Dolce

DolceModel

Tax PreDolce

Constitution

BeingPresentERorP

ParthoodM

TM TP_SC

ImmediateQuale

DependenceAQNPED ConstitutionPD

Mereology_and_TemporalPartPD TP_ED

................

................

................

Figure 2: Part of the refinement tree for DOLCE.

Of course, this method is still quite unstructured. If T is
significantly larger than T ′ (say, more than 10 new non-
trivial axioms), showing the conservative extension prop-
erty may be quite unmanageable. Moreover, this method
often easily succeeds with trivial results: we can find a
model of DOLCE by interpreting most concepts as the empty
set. But then, the question whether this emptiness is es-
sential or whether other, non-trivial models exists, remains
unresolved.2 Note, in this context, that in typical applica-
tions of foundational ontologies, namely when the founda-
tional ontology is refined against a domain ontology (see
e.g. (Gangemi et al. 2002)), the main problem with regard
to consistency is to settle the question whether models in-
stantiating certain parts of the foundational signature exist.
This cannot be resolved by consulting trivial models, but re-
quires knowledge about the structure of possible models of
the foundational ontology.

A more structured approach uses a decomposition into a
sequence of conservativity proofs, visualised as follows:

T ′
1

� T ′
2

� . . . � T ′
n

� T

This represents an intermediate step between a completely
monolithic conservativity proof and a tree-like decomposi-
tion as shown in Fig. 2, and already is (a) more manageable,
and (b) due to the decomposition into small and independent
steps, it is easier to find non-trivial models.

Consistency and Architectural Specification

It turned out that such a linear decomposition still is not
well-suited for dealing with the subtle interactions that oc-
cur in DOLCE. In fact, we need a tree-like decomposition3

2Models with empty ‘categories’ are in fact not considered
proper models by the DOLCE designers.

3In general, such a decomposition can yield any acyclic graph.
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as shown in Fig. 2, which illustrates an overall picture4 of
the development of a Dolce model, successively construct-
ing larger units out of smaller units (here, units are models,
or functions on models).

The specification DOLCE is refined to an architectural
specification DOLCEMODEL. Architectural specifications
introduce branching into the development; here, DOL-
CEMODEL branches into PREDOLCEMODEL and TAX,
the latter containing the full Dolce taxonomy. PREDOL-
CEMODEL in turn branches into CONSTITUTION and oth-
ers (CONSTITUTION is about objects constituting other ob-
jects during certain time intervals). This in turn branches into
PARTHOODM and others. With PARTHOODM, we reach the
bottom leaves of the tree, which mark the start of the de-
velopment. Actually, the whole development starts with a
model TM of time mereology, formalising the parthood re-
lation for time intervals. This is then extended to a model
TP SC of temporal parthood for ‘Society’ (SC), which is
in turn extended in many steps to a model TP ED of tem-
porary parthood for endurants. This in turn is extended to
a model MEREOLOGY AND TEMPORALPARTPD provid-
ing a mereology for perdurants as well, completing PART-
HOODM. Note that the dependencies among units within
PARTHOODM is non-linear; the dependency graph is shown
in Fig. 3. Similar dependency graphs exist for the other
branching points: CONSTITUTION, PREDOLCEMODEL and
DOLCEMODEL; they are omitted here.

Informally, a model for DOLCE can then be constructed
by providing models for all the leaves in the refinement tree.
At the branching points, models need to be combined (amal-
gamated), and it has to be ensured that overlapping parts of
models that are amalgamated are indeed equal, based purely
on certain sharing conditions induced by the dependency
graph structure of the branching point (like that in Fig. 3).

CASL architectural specifications (Bidoit, Sannella, and
Tarlecki 2002), originally invented in the context of soft-
ware specification, provide a language for writing down such
branching points, with a semantics ensuring amalgamabil-
ity. Architectural specifications are agnostic with respect to
both the underlying logic (e.g. first-order logic) and the lan-
guage for structuring specifications (e.g. a hierarchic struc-
ture, where specifications may import other ones, cf. imports
in OWL or Common Logic). Essential is that each such
structured specification has as its semantics a signature (=
vocabulary) and a class of models (typically, these are those
models over the signature that satisfy the axioms of the spec-
ification). Note that, while structured specifications do pro-
vide a hierarchical structure for logical theories, they still
treat models in a monolithic way. This is where architectural
specifications come in.

The building blocks of an architectural specification are
units. A unit can be just a declaration of a model, e.g.
TM : TIME MEREOLOGY states that TM is a model of
(the structured specification) TIME MEREOLOGY. Alterna-
tively, a unit can be a parametrised unit, mapping models
to models. For example, TP SC : TIME MEREOLOGY →

4Which is here very simplified: many nodes are omitted and
hidden in the white nodes with dotted content.
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Figure 3: Dependency graph for ParthoodM.

TEMPORARY PARTHOOD declares a parametrised unit
that takes any model of the parameter specification
TIME MEREOLOGY and extends it to a model of the re-
sult specification TEMPORARY PARTHOOD. With the so-
called unit application TP SC[TM], we can apply TP SC
to the model TM. As shorthand, we may also write
TP SC : TEMPORARY PARTHOOD GIVEN TM. This de-
clares TP SC to be a parametrised unit that is applied once.

Parametrised units introduce an important ab-
straction barrier. In the above example, the task of
constructing a model TM for TIME MEREOLOGY
is separated from the task of extending an (arbi-
trary) model of TIME MEREOLOGY to a model of
TEMPORARY PARTHOOD. When constructing the latter, we
are not allowed to “look inside” TM, but can only exploit
that it satisfies the axioms in TIME MEREOLOGY.

arch spec ASP =
units U1 : USP1;

. . .
Un : USPn

result UT
end

Figure 4: Architectural
specification

An architectural specifica-
tion (see Fig. 4) consists of
a sequence of declarations of
(possibly parametrised) units,
and definition of units by
unit terms. A unit term may
refer to named units, ap-
ply a parametrised unit to
other units, take reducts of
units, and amalgamate units to
larger units. Finally, an over-
all result unit term yields the

overall model that is provided by the architectural specifica-
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tion.

The semantics of architectural specifications ensures that
any realisation of the units U1, . . . , Un leads to a model cor-
responding to the result unit term. In particular, this means
that appropriate sharing conditions are checked; namely, if
two (or more) units are amalgamated, then the shared sym-
bols must originate from the same declared unit.

In this way, the consistency of large theories can be re-
duced to the consistency of a number of unit declarations.
The latter amounts to consistency of smaller theories, in
case of non-parametrised units. For parametrised units, we
always require that the result specification extends the pa-
rameter specification. The parametrised unit is consistent iff
this extension is (model-theoretically) conservative (that is,
any model of the parameter specification can be extended
to a model of the result specification). Now consistency of
small theories as well as conservativity of theory extensions
can be checked with the means discussed above.

The Consistency of DOLCE

The DOLCE Ontology

DOLCE is the ‘Descriptive Ontology for Linguistic and Cog-
nitive Engineering’, developed at the Laboratory For Ap-
plied Ontology (LOA) in Trento (Gangemi et al. 2002;
Masolo et al. 2003). It contains several hundred axioms, for-
mulated in first-order logic.5

The complexity of the DOLCE ontology stems from the
fact that it combines several (non-trivial) formalised onto-
logical theories into one theory, viz. the theories of essence
and identity, parts and wholes (mereology), dependence,
composition and constitution, as well as properties and qual-
ities. Fig. 6 shows a graph of some interesting such sub-
theories of DOLCE. The taxonomy of DOLCE’s concepts is
shown in Fig. 5.

Building an Architectural Specification for DOLCE

We have carefully analysed the DOLCE theory and have de-
signed an architectural specification for it. In the process of
this design, we had to re-arrange the architectural decompo-
sition several times in order to find an optimal decomposi-
tion. The forces to be balanced out are the following:

• both the theories of the individual units and the theory ex-
tensions (for parametrised units) should be small enough
in order to keep the consistency and conservativity checks
feasible;

• the theory extensions of the parametrised units must be
large enough to make the conservativity checks work (that
is, if a new symbol is introduced, the theory extension
should contain all essential constraints for that symbol);

• the theory extensions must be large enough to guarantee
the amalgamability conditions.

5There are also versions of DOLCE including some axioms us-
ing modal logic, but they do not concern the heart of DOLCE, and
leaving them out does not in any way trivialise the consistency
problem (Masolo et al. 2003).
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Figure 5: DOLCE’s taxonomy.

Indeed, the check of the amalgamability conditions has
been implemented as part of the Heterogeneous Tool Set
HETS (Klin et al. 2001; Mossakowski, Maeder, and Lüttich
2007). This is of great help when designing an architectural
decomposition for DOLCE.

An important design principle of architectural specifica-
tions is the presence of the above mentioned abstraction
barrier between the different units. Recall that when pro-
viding the realisation of a parametrised unit (which extends
smaller models to larger ones), it is not allowed to look
into the specific construction of the parameter units (mod-
els). Rather, only the properties of the parameter models can
be exploited, as given by their specifications. Although this
principle sometimes makes the construction of models for
parametrised units more difficult, because less properties can
be exploited for the parametrised models, in the end, there is
a great pay-off: namely, the overall model construction has
been split into a number of subtasks that are really indepen-
dent. That is, we can locally change the construction of the
model (say, e.g., by interpreting concept SC (‘Society’) in
a more complex way), without losing the guarantee that the
different subparts can always be amalgamated to a global
model of DOLCE.

Our first attempt at designing an architectural specifica-
tion for DOLCE largely followed the specification structure
of DOLCE as shown in Fig. 6. The various notions are in-
troduced for certain concepts in the taxonomy (Fig. 5) and
automatically inherited for the subconcepts. Therefore, the
taxonomy itself can be integrated separately at a quite late
stage. However, this attempt badly failed at this late stage:
namely, after having successfully covered most of the sub-
theories, we faced the problem that the specification DE-
PENDENCE introduces subtle dependencies between various
parts of DOLCE’s taxonomy.
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Taxonomy

Partial_Order
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Temporary_Mereology

Constitution_Spec
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Direct_Quality Immediate_Quale

Temporary_Quale

Dependence

PreDolce

Dolce

Figure 6: Structure of DOLCE’s subtheories.

(Timed) Mereology: Bottom Up vs. Top Down

Hence, we needed to completely restructure the architec-
tural specification. Most importantly, the model for TEM-
PORARY PARTHOOD cannot be constructed for the top con-
cepts in the taxonomy and then be inherited to the subcon-
cepts. Rather, it has to be introduced in a bottom up manner.

This bottom-up strategy also has an impact on the choice
of the logic. DOLCE originally has been formulated in
single-sorted first-order logic. However, this logic compli-
cates a modular consistency proof. If we wanted to fix the
interpretation of the different concepts of the taxonomy in
a step-by-step fashion, we would repeatedly need to extend
the universe of discourse. By contrast, when using a sub-
sorted variant of first-order logic, we can, step by step, add
interpretations of individual concepts: the interpretations of
super-concepts (aka supersorts) just combine and possibly
extend the interpretations of their sub-concepts (aka sub-
sorts). We here use the logic SubFOL= used in CASL, see
(Astesiano et al. 2002) for details. (Note that if needed, from
a subsorted model it is straightforward to construct a single-
sorted model by mapping subsorts into predicates.)

The temporal mereology in TEMPORARY PARTHOOD is
specified in DOLCE using a ternary predicate tP , where
tP (x, y, t) means that at time t, x is part of y. For fixed t,
this is required to be a partial order. In terms of tP , further
concepts like overlap and sum are specified:

∀ x : s; y : s; t : T

• tOv(x, y, t) ⇔ ∃ z : s • tP(z, x, t) ∧ tP(z, y, t)
∀ z : s; x : s; y : s
• tSum(z, x, y)
⇔ ∀ w : s; t : T • tOv(w, z, t) ⇔ tOv(w, x, t) ∨ tOv(w, y, t)

Here, T is DOLCE’s sort for time, while s is a generic sort
that is instantiated by various categories that require tempo-
ral parthood (see below for discussion). Moreover, mereo-
logical sums are required to exist:
∀ x, y : s; • ∃ z : s • tSum(z, x, y)

(and similarly for differences). Central concepts of DOLCE
are endurant (ED, roughly: objects) and perdurants (PD,
roughly: processes). The concept ED is required to be a tem-
poral mereology, while PD is only required to be a normal
mereology (i.e. where the time parameter t is omitted).

Now the bottom-up construction of the TEMPO-
RARY PARTHOOD model bears one important problem:
DOLCE requires concepts occurring higher in the taxonomy
to be a disjoint union of their subconcepts. Yet, the model
class of TEMPORARY PARTHOOD is not closed under dis-
joint unions, essentially because these are in general not
closed under the mereological sum and difference opera-
tions. Therefore, we have introduced a subtheory TEMPO-
RARY PARTHOOD NOSUM of TEMPORARY PARTHOOD
that omit the requirement of existence of sums and differ-
ences. We then have constructed a model for DOLCE’s timed
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mereology as follows:

• we take arbitrary models of TEMPORARY PARTHOOD for
the leaves of the taxonomy below ED: SC, SAG, NASO,
APO, NAPO, MOB, F, and M. Here, we may take mod-
els of different cardinality and structure for different sorts;

• at inner nodes below ED, we take the disjoint union of
subconcepts, ending up in a model of TP NOSUM (the
latter being closed under disjoint unions);

• for the concept ED (the top concept of the temporal mere-
ology), we take terms made up of formal sums and dif-
ferences of all elements in ED’s immediate subconcepts
PED (physical endurant) and NPED (non-physical en-
durant). Such a formal term is then taken to live within
PED or NPED iff the corresponding (possibly nested)
sum/difference does already exist in PED or NPED, re-
spectively. Otherwise, it is put into AS (arbitrary sum).
This corresponds to a reduced powerset construction (wrt
the equivalence relation just sketched), and is illustrated
in Fig. 7. Here, certain formal sums are being identified,
such as n1 + n3 and n2 + n3; the double-headed arrows
from NPED and PED to AS illustrate sums that have to
go into AS because they do not already exist in the re-
spective sort, such as p1 + p2 in PED. All mixed sums
(single-headed arrows that meet) go into AS as well.

A similar construction would be possible for the static
mereology PD, if it also had a subconcept for arbitrary sums.
However, in DOLCE, it does not. Since the problem with de-
pendency relations discussed above does not appear among
the subconcepts of PD, we instead could define a model in
a top-down manner. However, as the designers told us, the
general DOLCE methodology is to start with instantiating the
leaves of the taxonomy, that is, a model should be built in a
bottom-up manner. In any case, PD is specified to be the dis-
joint union of its two subconcepts EV (event) and STV (sta-
tive). This means that one has to put sums of mixed atoms
(say, a sum of an atom in EV and one in STV) arbitrar-
ily into either EV or STV. Although this suffices for show-
ing consistency, it could be considered conceptually wrong.
Concrete refinements of DOLCE’s perdurants can make pre-
cise which sums are considered events and statives respec-
tively, and most such refinements of perdurants that largely
follow linguistic criteria give such a complete classification.
However, this comprises an artificial restriction as, indeed,
an ontologist might decide that certain sums of an event and
a stative should neither be classified as an event, nor as a
stative. Alternatively, DOLCE could refrain from postulating
arbitrary sums of perdurants.

The architectural design is summed up in the architec-
tural specification PARTHOOD MODEL in Fig. 8. It actu-
ally corresponds to the lower-most branching PARTHOODM
of the refinement tree in Fig. 2. The notation TEMPO-
RARY PARTHOOD WITH S �→ SC renames sort s in TEM-
PORARY PARTHOOD appropriately. The notation

free type ASO ::= sort SC | sort SAG

is CASL’s shorthand for the first-order sentence expressing
that ASO is the disjoint union of SC and SAG.

arch spec PARTHOOD MODEL =
units TM : TIME MEREOLOGY;
TP SC : TEMPORARY PARTHOOD ETERNAL[sort SC]

given TM;
TP SAG : TEMPORARY PARTHOOD ETERNAL[sort SAG]

given TM;
TP NASO :

{TEMPORARY PARTHOOD with s �→ NASO
and ONESIDE GENERIC DEPENDENCE

with s1 �→ NASO, s2 �→ SC
} given TP SC;

TP APO :
{TEMPORARY PARTHOOD ETERNAL[sort APO]
and ONESIDE GENERIC DEPENDENCE

with s1 �→ SAG, s2 �→ APO } given TP SAG;
TP F : TEMPORARY PARTHOOD ETERNAL[sort F]

given TM;
TP NAPO :

{TEMPORARY PARTHOOD with s �→ NAPO
and ONESIDE GENERIC DEPENDENCE

with s1 �→ F, s2 �→ NAPO } given TP F;
TP ASO :

{TEMPORARY PARTHOOD NO with s �→ ASO
and free type ASO ::= sort SC | sort SAG
} given TP SC, TP SAG;

. . .
TP NPOB :

{TP NOSUM ETERNAL[sort NPOB]
and free type NPOB ::= sort SOB | sort MOB
} given TP SOB, TP MOB;

TP M : {TEMPORARY PARTHOOD with s �→ M}
given TP POB;

TP NPED :
{TP NOSUM ETERNAL[sort NPED]
and sort NPOB < NPED
} given TP NPOB;

TP PED :
{TP NOSUM ETERNAL[sort PED]
and free type PED ::= sort POB | sort M | sort F
} given TP M;

TP ED :
{TEMPORARY PARTHOOD with s �→ ED
and esort AS

free type ED ::= sort PED | sort NPED | sort AS
} given TP PED, TP NPED;

. . .
CEP PD :

{{CLASSICAL EXTENSIONAL PARTHOOD and sort s}
with s �→ PD
then free type PD ::= sort EV | sort STV
} given TP ED, EV, STV;

PARTICIP : PARTICIPATION given CEP PD;
MEREOLOGY AND TEMPORALPARTPD :

MEREOLOGY AND TEMPORALPART given PARTICIP
result MEREOLOGY AND TEMPORALPARTPD

end

Figure 8: Architectural specification for mereology.

Strengthening Specifications

Another lesson learned from the subtle interactions intro-
duced by the specification DEPENDENCE is a follows: some-
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NPED: n1 , n2 , n3           n1 + n2 = n3
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n1 + n3

n2 + n3

p1 + p2 + n3

p1 + p2 + n1 + n2 + n3

p1 + n3

p1 + n1 + n2

Figure 7: Reduced powerset construction for the temporal sum on sort ED.

times, in induction proofs, it is necessary to strengthen the
inductive theorem in order to prove it. While this sounds
paradoxically at first sight, the reason becomes clear when
considering that strengthening the theorem also strength-
ens the inductive hypothesis. Likewise, by strengthening the
specification DEPENDENCE, we could rely on stronger as-
sumptions for the interpretation of DEPENDENCE for vari-
ous subconcepts when extending it to a superconcept. (This,
of course, is an instance of the above mentioned abstraction
barrier.) This can be made formal as follows. Call an archi-
tectural specification exactly matching if for all unit appli-
cations F [A], if A : SP , then F : SP → SP1 for some
SP1. That is, specifications of formal parameter and actual
parameter match exactly.
Theorem 1. Let ASP be an exactly matching architectural
specification, and SP , SP ′ be structured specifications such
that SP ′ |= SP (where |= means logical entailment, i.e.
every model of SP ′ is also a model of SP ). Let ASP ′ be
obtained by replacing every occurrence of specification SP
in ASP by SP ′. Then the consistency of ASP ′ implies that
of ASP .

Note that the replacement of SP by SP ′ affects both
argument positions (this can be compared to inductive hy-
potheses) and results positions (this can be compared to in-
ductive steps) of parametrised units.

An example is again TEMPORARY PARTHOOD, or more
precisely, its subtheory TP NOSUM. We have strengthened
this specification to TP NOSUM ETERNAL, which requires
that the binary predicate PRE(x, t) (‘temporal presence’)
is universally true on one selected ‘eternal object’. This
is needed in order to deal with specific dependence (SD),
which is defined as follows:
pred SD(x : MOB; y : APO)

⇔ (∃ t : T • PRE(x, t))
∧ ∀ t : T • PRE(x, t) ⇒ PRE(y, t);

SD introduces dependencies between different sorts, here
MOB and APO, regarding temporal presence. Intuitively,
SD(x, y) implies that y is present at more time points t than
x. Introducing eternal objects here is a technical device that

allows to have greater control in the concrete model con-
struction, i.e. the definitional introduction of the sort MOB
and the predicate SD, and is employed for the theories of
DEPENDENCE as well as TEMPORARY PARTHOOD. Given
the eternal object in APO we can give the following defini-
tions:

∀x : MOB; y : APO.SD(x, y) ⇐⇒ ∀t : T.PRE(y, t)
∀x : MOB; t : T.PRE(x, t) ⇐⇒ true

Here, MOB as a new sort can be locally instantiated with
e.g. a singleton or n-element universe, and the definitions
shown will be part of the theory T ′′ in the corresponding
conservativity triangle as depicted in Fig. 1. These defini-
tions now make the conservativity and theory interpreta-
tion claims that need to be established easily verifiable by
a reasoner such as SPASS. We have introduced a total of 10
eternal objects to make the relative consistency proofs go
through, namely on the sorts SC, SAG, F, APO, NPED,
NAPO, M, SAG, PED, PD. The existence of the eternal
PED and NPED objects is however already implied by e.g.
APO and SAG objects, given the taxonomy.

Putting Things Together

Altogether, the resulting architectural specification consists
of 38 units, one (of ‘Time Mereology’, which is the mere-
ology of the time-line T ) unparametrised (a model could be
found directly by a model finder), the others parametrised—
that is, 37 conservativity statements had to be proved. More-
over, the specification involves 18 amalgamations, the cor-
responding (non-trivial, due to the presence of subsorting)
amalgamability checks can automatically be checked by
HETS. HETS can also automatically discharge some of the
proof obligations yielded by the conservativity triangles by
purely structural reasoning, e.g. in the case a theory, instan-
tiated with different subsorts, has to be repeatedly verified
on a certain finite model. An example is given by an n-point
model for temporary parthood.

We stress that the choice of the details of the models can
be made independently for each of the 38 cases. This leads
to a plethora of models for DOLCE, obtained by combining
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suitable independent local decisions concerning the inter-
pretation of individual concepts. However, note that some-
times the local decision can be quite constrained; e.g. for
ED, which by an axiom of DOLCE always has to be inter-
preted as the disjoint union of PED, NPED and AS, the
interpretations of PED and NPED are already given, and
only AS is newly interpreted (see Fig. 7).6

Summary and Outlook

We have argued that the problem of establishing consis-
tency for complex first-order theories is currently beyond the
scope of standard automated reasoning techniques. More-
over, even if consistency can be established by providing a
‘trivial’ model, in ontology engineering this is often of rather
limited use as the existence of models variously instantiating
parts of the foundational signature has to be established.

We have proposed a methodology based on architectural
specification that breaks down difficult consistency proofs
into (a) small and easy consistency proofs, (b) (manageable)
proofs of conservativity of theory extensions, and (c) auto-
mated proofs of amalgamability of ‘partial’ models.

The main difficulty here is the design of an appropriate
architectural specification. Once this is achieved, the tech-
nique allows to automate consistency proofs that cannot be
obtained by ‘standard’ means to a high degree. Furthermore,
it is suited in particular to analyse the fine-structure of pos-
sible models for complex first-order theories, namely by al-
lowing to locally modify parts of a (global) model without
affecting overall consistency.

While proving consistency in this way, we have encoun-
tered a problem which could be considered a design flaw in
DOLCE by some since it restricts possible refinements; im-
portantly, such issues would probably not have been found
with monolithic methods since they do not affect consis-
tency. Future work includes studying the fine-structure of
the DOLCE models that can be thus obtained, and applying
the technique to other foundational ontologies (like SUMO)
as well as complex first-order theories in general.
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