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Abstract

We address the problem of transferring information learned
from experiments to a different environment, in which only
passive observations can be collected. We introduce a for-
mal representation called “selection diagrams” for express-
ing knowledge about differences and commonalities between
environments and, using this representation, we derive proce-
dures for deciding whether effects in the target environment
can be inferred from experiments conducted elsewhere. When
the answer is affirmative, the procedures identify the set of ex-
periments and observations that need be conducted to license
the transport. We further discuss how transportability analy-
sis can guide the transfer of knowledge in non-experimental
learning to minimize re-measurement cost and improve pre-
diction power.

Introduction: Threats vs. Assumptions

Science is about generalization; conclusions that are ob-
tained in a laboratory setting are transported and applied
elsewhere, in an environment that differs in many aspects
from that of the laboratory.

If the target environment is arbitrary, or drastically differ-
ent from the study environment nothing can be learned from
the latter. However, the fact that most experiments are con-
ducted with the intention of applying the results elsewhere
means that we usually deem the target environment suffi-
ciently similar to the study environment to justify the trans-
port of experimental results or their ramifications.

Remarkably, the conditions that permit such transport
have not received systematic formal treatment. The stan-
dard literature on this topic, falling under rubrics such as
“quasi-experiments,” “meta analysis,” and “external valid-
ity,” consists primarily of “threats,” namely, verbal narratives
of what can go wrong when we try to transport results from
one study to another (e.g., [Shadish, Cook, and Campbell,
2002, chapter 3]). In contrast, we seek to establish “licensing
assumptions,” namely, formal conditions under which the
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transport of results across diverse environments is licensed
from first principles.

The machine learning literature, on the other hand, while
seriously concerned about discrepancies between train-
ing and test environments [Daume III and Marcu, 2006;
Storkey, 20091, has focused almost exclusively on predic-
tive, or classification tasks as opposed to effect-learning
tasks. Moreover, even in classification tasks, machine learn-
ing researchers have rarely allowed apriori causal knowl-
edge to guide the learning process and, as a result, have not
sought theoretical guarantees in the form of sufficient con-
ditions under which discrepancies between the training and
test environments can be circumvented, or necessary con-
ditions without which bias will persist regardless of sam-
ple size. This paper establishes such conditions (see sec-
tion on “Transportability across Observational domains™)
and thus informs researchers on what can be gained by
domain-specific knowledge when available, and what could
explain why transfer-learning algorithms fail to converge or
perform.

Transportability analysis requires a formal language
within which the notion of “environment” is given pre-
cise characterization, and differences among environments
can be encoded and analyzed. The advent of causal dia-
grams [Pearl, 1995; Spirtes, Glymour, and Scheines, 2000;
Pearl, 2009; Koller and Friedman, 2009] provides such a lan-
guage and renders the formalization of transportability pos-
sible. Using this language, this paper offers a precise defini-
tion for the notion of transportability and establishes formal
conditions that, if held true, would permit us to transport re-
sults across domains, environments, or populations.

Motivating Examples

To motivate our discussion and to demonstrate some of the
subtle questions that transportability entails, we will con-
sider three simple examples, graphically depicted in Fig. 1.
The examples invoke the familiar domain of clinical trials,
yet the issues raised pertain to any learning environment that
can be characterized by the structure of the data-generating
model. For example, a robot trained by a simulator should
be able to transport causal knowledge acquired in training to
challenges of a new environment, in which experiments are
costly or infeasible.
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Figure 1: Causal diagrams depicting Examples 1-3. In (a) Z represents “age.” In (b) Z represents “linguistic skills” while age
(hollow circle) is unmeasured. In (c) Z represents a biological marker situated between the treatment (X ) and a disease (Y).

Example 1 We conduct a randomized trial in Los Angeles
(LA) and estimate the causal effect of treatment X on out-
come Y for every age group Z = z as depicted in Fig.
1(a). We now wish to generalize the results to the population
of New York City (NYC), but we find that the distribution
P(z,y, z) in LA is different from the one in NYC (call the
latter P*(x,y, 2)). In particular, the average age in NYC is
significantly higher than that in LA. How are we to estimate
the causal effect of X on'Y in NYC, denoted P*(y|do(z)).!

If we can assume that age-specific effects P(y|do(z), Z =
z) are invariant across cities , the overall causal effect in

NYC should be
Z P(y|do(z

P*(y|do(x)

This transport formula combines experimental results ob-
tained in LA, P(y|do(z), z), with observational aspects of
NYC population, P*(z), to obtain an experimental claim
P*(y|do(x)) about NYC.

Our first task in this paper will be to explicate the assump-
tions that renders this extrapolation valid. We ask, for exam-
ple, what must we assume about other confounding variables
beside age, both latent and observed, for Eq. (1) to be valid,
or, would the same transport formula hold if Z was not age,
but some proxy for age, say, language proficiency. More in-
tricate yet, what if Z stood for an X -dependent variable, say
hyper-tension level, that stands between X and Y'? Let us
examine the proxy issue first.

P(z) (&)

Example 2 Let the variable Z in Example 1 stand for sub-
Jects language skills, which correlates with age (not mea-
sured) (see Fig. 1(b)). Given the observed disparity P(z) #
P*(z), how are we to estimate the causal effect P*(y|do(z))
in NYC from the z-specific causal effect P(y|do(z), z) esti-
mated in LA?

If the two cities enjoy identical age distributions and NYC
residents acquire linguistic skills at a younger age, then,
since Z has no effect whatsoever on X and Y, the inequal-
ity P(z) # P*(z) can be ignored and, intuitively, the proper

'The do(x) notation [Pearl, 1995; 2009] interprets P(y|do(x))

as the probability of outcomes Y = y in a randomized experi-
ment where the treatment variables X take on values X = =x.
P(yldo(z), z) is logically equivalent to P(Y, = y|Z, = z2)

in counterfactual notation. Likewise, the diagrams used in this
paper should be interpreted as parsimonious encoding of func-
tional relations [Pearl, 2009, p. 101], where every bi-directed arc
X «----» Y stands for a set of latent variables affecting X and Y.
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transport formula should be

P*(yldo(x)) = P(y|do(x)) @)
If, on the other hand, the conditional probabilities P(z|age)
and P*(z|age) are the same in both cities, and the inequality
P(z) # P*(z) reflects genuine age differences, Eq. (2) is no
longer valid, since the age difference may be a critical factor
in determining how people react to X. We see, therefore,
that the transport formula depends on the causal context in
which distributional differences are embedded.

This example also demonstrates why the invariance of Z-
specific causal effects should not be taken for granted. While
justified in Example 1, with Z = age, it fails in Example 2, in
which Z was equated with “language skills.” Indeed, using
Fig. 1(b) for guidance, the Z-specific effect of X on Y in

NYC is given by'
Z P(y|do(x

P*(yldo(a ), age) P* (agel2)(3)
age

Thus, if the two populations differ in the relation between
age and skill, i.e.,P(age|z) # P*(age|z) the skill-specific
causal effect would differ as well.

Example 3 Examine the case where Z is a X -dependent
variable, say a disease bio-marker as shown in Fig. I(c). As-
sume further that the disparity P(z) # P*(2) is discovered
in each level of X and that, again, both the average and the
z-specific causal effect P(y|do(x),z) are estimated in the
LA experiment, for all levels of X and Z. Can we, based
on information given, estimate the average causal effect in
NYC?

Here, Eq. (1) is wrong for two reasons. First, as in the
case of age-proxy, it matters whether the disparity in P(z)
represents differences in susceptibility to X or differences in
propensity to receiving X . In the latter case, Eq. (2) would
be valid, while in the former, more information is needed.
Second, the overall causal effect is no longer a simple aver-
age of the z-speciﬁc causal effects but is given by

P (y|do(x ZP* (yldo(z), 2) P* (z]do(x)) (4)

which reduces to (1) only in the special case where Z is
unaffected by X, as is the case in Fig. 1(a). We shall see
(Theorem 3 below) that the correct transport formula is

P*(y|do(x) ZP yldo(x), z) P*(z]x)

which calls for weighting the z-specific effects by P*(z|x),
to be estimated in the target environment.

(&)



Formalizing Transportability
Selection Diagrams and Selection Variables

The examples above demonstrate that transportability is a
causal, not statistical notion, requiring knowledge of the
mechanisms, or processes, through which differences come
about. To witness, every probability distribution P(x,y, z)
that is compatible with the process of Fig. 1(b) is also com-
patible with that of Fig. 1(a) and, yet, the two processes dic-
tate different transport formulas. Thus, to represent formally
the differences between domains we must resort to a rep-
resentation in which the causal mechanisms are explicitly
encoded and in which domain differences are represented as
local modifications of those mechanisms.

To this end, we will use causal diagrams augmented with a
set, S, of “selection variables,” where each member of S cor-
responds to a mechanism by which the two domains differ,
and switching between the two domains will be represented
by conditioning on different values of these .S variables.

Formally, if P(v|do(x)) stands for the distribution of a set
V' of variables in the experimental study (with X random-
ized) then we designate by P*(v|do(x)) the distribution of
V' if we were to conduct the study on population II* instead
of II. We now attribute the difference between the two to the
action of a set S of selection variables, and write?

P*(v|do(x)) = P(v|do(x), s™).

Of equal importance is the absence of an S variable pointing
to Y in Fig. 2(a), which encodes the assumption that age-
specific effects are invariant across the two populations.

The variables in S represent exogenous conditions that
determine the values of the variables to which they point.3

For example, the age disparity P(z) # P*(z) discussed
in Example 1 will be represented by the inequality P(z) #
P(z|s) where S stands for all factors determining age dif-
ferences between NYC and LA.

This graphical representation, which we will call “selec-
tion diagrams” can also represent structural differences be-
tween the two domains. For example, if the causal diagram
of the study population contains an arrow between X and
Y, and the one for the target population contains no such
arrow, the selection diagram will be X — Y <« S where
the role of variable S is to disable the arrow X — Y when
S = s* (ie., P(y|x,s*) = P(y|z’, s*) for all ') and rein-
state it when S = s.* Our analysis will apply therefore to all
factors by which domains may differ or that may “threaten”
the transport of conclusions between domains, studies, pop-
ulations, locations or environments.

% Alternatively, one can represent the two populations’ distribu-
tions by P(v|do(z), s), and P(v|do(x),s"), respectively. The re-
sults, however, will be the same, since only the location of .S enters
the analysis.

3Elsewhere, we analyze S variables representing selection of
units into the study pool [Bareinboim and Pearl, 2011]; there, the
arrows will be pointing towards S.

“Pearl [1995; 2009, p. 71] and [Dawid, 2002], for example, use
conditioning on auxiliary variables to switch between experimen-
tal and observational studies. [Dawid, 2002] further uses such vari-
ables to represent changes in parameters of probability distribu-
tions.
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For clarity, we will represent the .S variables by squares,
as in Fig. 2, which uses selection diagrams to encode the
three examples discussed above. In particular, Fig. 2(a) and
2(b) represent, respectively, two different mechanisms re-
sponsible for the observed disparity P(z) # P*(z). The
first (Fig. 2(a)) dictates transport formula (1) while the sec-
ond (Fig. 2(b)) calls for direct, unadjusted transport (2).

In the extreme case, we could add selection nodes to all
variables, which means that we have no reason to believe
that the two domains share any mechanism in common, and
this, of course would inhibit any exchange of conclusions
between the two. Conversely, absence of a selection node
pointing to a variable, say Z, represents an assumption of
invariance: the local mechanism that assigns values to Z is
the same in both domains.

Transportability: Definitions and Examples

Using selection diagrams as the basic representational lan-
guage, and harnessing the concepts of intervention, do-
calculus® and identifiability [Pearl, 2009, p. 77] we give the
notion of transportability a formal definition.

Definition 1 (Transportability)

Given two domains, denoted 11 and 11*, characterized by
probability distributions P and P*, and causal diagrams
G and G*, respectively, a causal relation R is said to be
transportable from 11 to 11* if R(II) is estimable from the
set I of interventions on 11, and R(II*) is identified from
P, P* I, G, and G*.

Definition | provides a declarative characterization of trans-
portability which, in theory, requires one to demonstrate
the non-existence of two competing models, agreeing on
{P, P*,I,G,G"}, and disagreeing on R(IT*). Such demon-
strations are extremely cumbersome for reasonably sized
models, and we seek therefore procedural criteria which,
given the pair (G, G*) will decide the transportability of
any given relation directly from the structures of GG and G*.
Such criteria will be developed in the sequel by breaking
down a complex relation RR into more elementary relations
whose transportability can immediately be recognized. We
will formalize the structure of this procedure in Theorem 1,
followed by Definitions 2 and 3 below, which will identify
two special cases where transportability is immediately rec-
ognizable.

Theorem 1 Let D be the selection diagram characterizing
IT and IT*, and S a set of selection variables in D. The re-
lation R = P(y|do(z), z) is transportable from 11 to T1* if
and only if the expression P(y|do(z), z, s) is reducible, us-
ing the rules of do-calculus, to an expression in which S
appears only as a conditioning variable in do-free terms.

Proof:

(@if part): Every relation satisfying the condition of The-
orem | can be written as an algebraic combination of two
kinds of terms, those that involve S and those that do not.
The formers can be written as P* terms and are estimable,

>The three rules of do-calculus are defined in Appendix 1 and
illustrated in graphical details in [Pearl, 2009, p. 87].
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Figure 2: Selection diagrams depicting Examples 1-3. In (a) the two populations differ in age distributions. In (b) the popula-
tions differs in how Z depends on age (an unmeasured variable, represented by the hollow circle) and the age distributions are
the same. In (c) the populations differ in how Z depends on X.

therefore, from observations on II*, as required by Def-
inition 1. All other terms, especially those involving do-
operators, do not contain S; they are experimentally iden-
tifiable therefore in II.

(only if part): If R is transportable, its transport formula T’
must satisfy the condition of Theorem 1, and that means that
R = T is a valid equality in do-calculus. Moreover, since
do-calculus is complete [Shpitser and Pearl, 20061, every
valid equality can be obtained by a finite application of the
three rules of the calculus. This proves the Theorem. O

Definition 2 (Direct Transportability)
A causal relation R is said to be directly transportable from
II o I1*, if R(IT*) = R(II).

The equality R(IT*) = R(IT) means that R retains its valid-
ity without adjustment, as in Eq. (2). A graphical test for
direct transportability of P(y|do(z)) follows immediately
from do-calculus and reads: (S L Y[X)g;i.e., X blocks
all paths from S to Y once we remove all arrows pointing
to X. Indeed, such condition would allow us to eliminate S
from the do-expression, and write:

R(II") = P(yldo(z),s) = P(y|do(x)) = R(II)

Example 4 Figure 4(a) represents a simple example of di-
rect transportability. Indeed, since S merely changes the
mechanism by which the value X = x is selected (some-
times called “treatment assignment mechanism”), it does
not change any causal effect of X [Pearl, 2009, pp. 72-73].

Definition 3 (Trivial Transportability)
A causal relation R is said to be trivially transportable from
11 to T1*, if R(I1*) is identifiable from (G*, P*).

This criterion amounts to ordinary (nonparametric) identifi-
ability of causal relations using graphs [Pearl, 2009, p. 77].
It permits us to estimate R(II*) directly from passive obser-
vations on II*, un-aided by causal information from II.

Example 5 Let R be the causal effect P(y|do(x)) and let
the selection diagram be X — Y < S, then R is trivially
transportable, since R(IT*) = P*(y|x).

Example 6 Let R be the causal effect P(y|do(z)) and let
the selection diagram of 11 and 11" be X — Y + S,
with X and Y confounded as in Fig. 4(b), then R is not
transportable, because P*(y|do(x)) = P(y|do(x), s) can-
not be decomposed into s-free or do-free expressions using
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(b)

Figure 3: Selection diagrams illustrating S-admissibility.
(a) has no S-admissible set while in (b), W is S-admissible.

do-calculus. This is the smallest graph for which the causal
effect is non-transportable.

Transportability of Causal Effects: A
Graphical Criterion

We now state and prove two theorems that permit us to de-
cide algorithmically, given a selection diagram, whether a
relation is transportable between two domains, and what the
transport formula should be.

Theorem 2 Let D be the selection diagram characterizing
IT and 11*, and S the set of selection variables in D. The
z-specific causal effect P(y|do(x), z) is transportable from
Il to IT* if Z d-separates Y from S in the X-manipulated
version of D, that is, Z satisfies (Y 1L S|Z)p_.

Proof:

P*(yldo(x), z) = P(yldo(x), z, 5)

From Rule-1 of do-calculus [Pearl, 2009, p. 85] we have:
P(y|do(z), z, s) P(y|do(x),z) whenever Z satisfies
(Y 1L S|Z) in D+. This proves Theorem 2. O

Definition 4 (S-admissibility)
A set T of variables satisfying (Y 1L S|T') in D+ will be
called S-admissible.

Corollary 1 The average causal effect P(y|do(x)) is trans-
portable from 11 to 11" if there exists a set Z of observed
pre-treatment covariates that is S-admissible. Moreover, the
transport formula is given by the weighting of Eq. (1).
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Figure 4: Selection diagrams illustrating transportability. The causal effect P(y|do(z)) is (trivially) transportable in (c) but
not in (b) and (f). It is transportable in (a), (d), and (e) (see Corollary 2 and Example 9).

Proof:

P (yldo(x)) P(yldo(z), s)

Z P(y|do(z), z, s)P(z|do(x), s)

> Pyldo(x), ) P(z]s)

(using S-admissibility and
Rule-3 of do-calculus)

> P(y|do(x), z)P*(2) (6)

O

Example 7 The causal effect is transportable in Fig. 2(a),
since Z is S-admissible, and directly transportable in Fig.
2(b) and 4(a), where the empty set is S-admissible. It is also
transportable in Fig. 3(b), where W is S-admissible, but not
in Fig. 3(a) where no S-admissible set exists.

Contrasting the diagrams in Figs. 2(a) and 3(a), we wit-
ness again the crucial role of causal knowledge in facilitating
transportability. These two diagrams are statistically indis-
tinguishable, yet the former is transportable, while the latter
is not.

Corollary 2 Any S variable that is pointing directly into X
as in Fig. 4(a), or that is d-connected to 'Y only through X
can be ignored.

Proof: This follows from the fact that the empty set is S-
admissible relative to any such S variable. Conceptually,
the corollary reflects the understanding that differences in
propensity to receive treatment do not hinder the transporta-
bility of treatment effects; the randomization used in the ex-
perimental study washes away such differences. O

We now generalize Theorem 2 to cases involving X-
dependent Z variables, as in Fig. 2(c).

Theorem 3 The causal effect P(y|do(z)) is transportable
from 11 to 11" if any one of the following conditions holds

1.
2.

P(y|do(x)) is trivially transportable

There exists a set of covariates, Z (possibly affected by X )
such that Z is S-admissible and for which P(z|do(z)) is

transportable
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Figure 5: Selection diagram in which the causal effect is
shown to be transportable in two iterations of Theorem 3.

3. There exists a set of covariates, W that satisfy (X 1L
Y|W, S)p and for which P(w|do(z)) is transportable.

Proof:
1. Condition (1) entails transportability.
2. If condition (2) holds, it implies
P*(yldo(x)) = P(yldo(x), s) ©)
= Plyldo(x), 2, 5)P(z]do(x),5) (8)

= ZP(y|do(:v),z)P*(z|dO(£C)) )

We now note that the transportability of P(z|do(z))
should reduce P*(z|do(x)) to a combination of do-
free and star-free expressions, thus rendering P(y|do(z))
transportable.

3. If condition (3) holds, it implies
P*(yldo(x)) =P(y|do(x), ) (10)
= P(y|do(x), w, s)P(w|do(z), 5)

(11)

=Y P(ylw, s)P*(w]do(x)) (12)
(by Rule-3 of do-calculus)

(13)

= P*(ylw)P* (w|do(x))



Again, the transportability of P(w|do(z)) should reduce
P*(wl|do(x)) to a combination of do-free and star-free ex-
pressions, thus rendering P(y|do(x)) transportable. This
proves Theorem 3. O

Remark.

The test entailed by Theorem 3 is recursive, since the trans-
portability of one causal effect depends on that of another.
However, given that the diagram is finite and feedback-free,
the sets Z and W needed in conditions 2 and 3 would be-
come closer and closer to X, and the iterative process will
terminate after a finite number of steps. Still, Theorem 3 is
not complete, as shown in [Pearl and Bareinboim, 2011].

Example 8 Applying Theorem 3 to Fig. 2(c), we conclude
that R = P(y|do(x)) is trivially transportable, for it is iden-
tifiable in II* through the front-door criterion [Pearl, 2009].
R is likewise (trivially) transportable in Fig. 4(c) (by the
back-door criterion). R is not transportable however in Fig.
3(a), where no S-admissible set exists.

Example 9 Fig. 4(d) requires that we invoke both condi-
tions of Theorem 3, iteratively, and yields transport formula

(derived in Appendix 2):
ZP y|do(x) ZP wldo(x))P* (z|w)
(14

The first two factors on the right are estimable in the exper-
imental domain, and the third in the observational domain.
Surprisingly, the joint effect P(y,w, z|do(x)) need not be
estimated in the experiment; a decomposition that results in
improved estimation power.

P*(y|do(x)

A similar analysis applies to Fig. 4(e). The model of
Fig. 4(f) however does not allow for the transportability of
P(y|do(x)) because there is no S-admissible set in the dia-
gram and condition 3 of Theorem 3 cannot be invoked.

Example 10 Fig. 5 represents a more challenging selection
diagram, which requires several iterations to discern trans-
portability, and yields (derived in Appendix 2):

P*(y|do(x ZP y|do(x ZP* z|w)
ZP wldo(x), t)P*(t)
t

The main power of this formula is to guide the learning
agent in deciding what measurements need be taken in each
domain. It asserts, for example, that variables U and V' need
not be measured, that the WW-specific causal effects need not
be learned in the experiment and only the conditional prob-
abilities P*(z|w) and P*(t) need be learned in the target
domain.

5)

Transportability Across Observational
Domains
Our analysis thus far assumed that transport is needed from
experimental learning because R, the relation of interest, is

causal and cannot be identified solely from passive obser-
vations in the target domain. In this section we demonstrate
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that transporting purely observational findings can be bene-
ficial as well, albeit for different reasons.

Assume we conduct an elaborate observational study in
LA, involving dozens of variables and thousands of sam-
ples, aiming to learn some statistical relation, R(P) (say a
conditional distribution for prediction or classification). We
now wish to estimate the same relation R(P*) in NYC. The
question arises whether it is necessary to repeat the study
from scratch or, in case the disparity between the two do-
mains is localized, if we can leverage what we learned in
LA, supplement it with a less elaborate study in NYC and
combine the results to yield an informed estimate of R(P*).

In complex models, the savings gained by focusing on
only a small subset of variables in P* can be enormous,
because any reduction in the number of measured variables
translates into substantial reduction in the number of sam-
ples needed to achieve a given level of prediction accuracy.
This is especially true in non-parametric models, where esti-
mation efficiency deteriorates significantly with the number
of variables involved.

An examination of the transport formulas derived in this
paper (e.g., Egs. ((14) or (15)) reveals that the methods de-
veloped for transporting causal relations are applicable to
statistical relations as well, albeit with some modification.
Consider Eq. (14) and its associated diagram in Fig. 4(d). If
the target relation R = P*(y|do(z)) was expressed, not in
terms of the do(x) operator, but as a conditional probability
R(P*) =3 .P*(y|z, ¢)P*(c) where C'is a sufficient set of
covariates, the right hand side of (14) reveals that P*(z|w)
is the only relation that need to be re-estimated at the target
domain; all the other terms in that expression are estimable
at the source environment, using C, X, Z, W and Y.

These considerations motivate a slightly different defini-
tion of transportability, tailored to non-experimental learn-
ing, which emphasizes narrowing the scope of observations
rather than identification per se.

Definition 5 (Observational Transportability)

Given two domains, 11 and 11*, characterized by probabil-
ity distributions P and P*, and causal diagrams G and G*,
respectively, a statistical relation R(P) is said to be obser-
vationally transportable from II to IT* over V* if R(P*) is
identified from P, P*(V*), G, and G*. where P*(V*) is the

marginal distribution of P* over a subset of variables V*.

This definition requires that the relation transferred be re-
constructed from data obtained in the old learning domain,
plus observations conducted on a subset VV* of variables in
the new domain. In the example above, R(P) was shown to
be observationally transportable over V* = {Z, W}, while
in the example of Fig. 5, we have V* = {Z, W, T} (from
Eq. (19)).

The transportability challenge presented by Definition 5
resembles in many ways the challenge of domain adap-
tation in machine learning [Daume IIT and Marcu, 2006;
Storkey, 2009], in which data from two different distribu-
tions are available and the goal is to maximize predictive ac-
curacy in the target domain based on the two data sets. The
difference is that transportability assumes the availability of
a selection diagram, while in domain adaptation, differences
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Figure 6: (a) Selection diagram in which relasuring X or
Y, or, alternatively, by measuring only X and Zs. (b) The
diagram resulting from marginalizing over Z1.

need to be learned from the data itself.

Note that, despite the purely statistical nature of the task, a
causal selection diagram is still needed to identify the mech-
anisms by which the two domains differ. The probabilities P
and P*, being descriptive, cannot convey information about
the locality of the mechanism that accounts for their differ-
ences. In Fig. 5, for example, changes in S’ will propagate to
the entire probability P(¢,u,x,w,y) and could not be dis-
tinguished from changes in an S-node that points, say, at W
or at Y. Moreover P and P* can be deceptively identical,
and hide profound differences in mechanisms. A typical ex-
ample is the structural differences between two statistically-
indistinguishable models.

While selection diagrams are still an essential tool for
formulating differences among domains, the mechanics of
solving observational transportability problems is somewhat
different. Since the transported relations are not cast in do-
expressions, the do-calculus is no longer helpful, and we
must rely mainly on the conditional independencies encoded
in the selection diagram.

An example of this mechanics will be illustrated through
the selection diagram of Fig. 6. Assume that, after learn-
ing P(z,y, 21, 22) in the source environment, one is inter-
ested in classifying X from observations on Y in the target
environment. If hand labeling data in the new domain is a
costly enterprise, we may ask whether we can learn the de-
sired classifier P*(x|y) without taking any measurement of
X or Y in the new domain. Formally, this amounts to ask-
ing whether P(x|y) is transportable over V* = {Z1, Z5}.
The answer is of course positive, since, given the selec-
tion diagram of Fig. 6, the conditional probability P(z1]z2)
is the only factor that changes in the Markovian factor-
ization of P. Therefore, we can simply re-learn P*(z1|z22)
and compute our target relation P*(z|y) from the factoriza-
tion P* (z,, 21, 22) = P(ylz,2)P(a|21)P(22) P* (21]22),
with all but the last factor transportable from the source en-
vironment.

We see that the conditional independencies embedded in
the diagram have the capacity to narrow the scope V* of
variables that need be measured, so as to minimize measure-
ment cost and sample variability. For example, if Z; is multi-
dimensional or more costly to measure than X, R = P(x|y)
can be transported over V* = {Z5, X }. This can be seen by
ignoring (or marginalizing over) Z;, which yields the dia-
gram of Fig. 6(b).

Remarkably, the transport of certain relations across dis-
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parate domains can sometimes be accomplished with no
re-measurements whatsoever, thus exhibiting “direct trans-
portability” (Definition 2). The selection diagram of Fig.
6(a), for example, permits the transport of the relation

R =" P(yla,21)P(z) (16)

over the null set V* = {}. This becomes evident from the
fact that Z5 can replace Z; in R’ [Pearl and Paz, 2010] and,
using the independencies (S L Y|X,Z5) and (S 1L Z)
shown in the diagram, the transported relation becomes s-
free:

R(P*) = Y Plylz,2)P(z) (17)

While a systematic analysis of observational transportability
is beyond the scope of this paper, Definition 5 offers a for-
mal characterization of this ubiquitous class of information
transfer problems, and identifies the basic elements needed
for their solution.

Conclusions

Given judgmental assessments of how target domains may
differ from those under study, the paper offers a formal rep-
resentational language for making these assessments pre-
cise and for deciding whether causal relations in the target
domain can be inferred from experiments conducted else-
where. When such inference is possible, the criteria pro-
vided by Theorems 1-3 yield transport formulae, namely,
principled ways of modifying the learned relations so as to
account for differences in the domains. These formulae en-
able the learner to select the essential measurements in both
the experimental and observational domains, and thus mini-
mize measurement costs and sample variability.

Extending these results to observational studies, we
showed that there is also benefit in transporting statistical
findings from one domain to another in that it enables learn-
ers to avoid repeated measurements that are not absolutely
necessary for reconstructing the relation of interest. Proce-
dures for deciding whether such reconstruction is feasible
when certain re-measurements are forbidden were demon-
strated on several examples.

Our analysis is based on the assumption that the learner
is in possession of sufficient knowledge to determine, at
least qualitatively, where two domains may differ. In prac-
tice, such knowledge may only be partially available and, as
is the case in every mathematical exercise, the benefit of the
analysis lies primarily in understanding what knowledge is
needed for the task to succeed and how sensitive conclusions
are to knowledge that we do not possess.
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Appendix 1

The do-calculus [Pearl, 1995] consists of three rules that per-
mit us to transform expressions involving do-operators into
other expressions of this type, whenever certain conditions
hold in the causal diagram G. (See footnote 1 for semantics.)

We consider a DAG G in which each child-parent fam-
ily represents a deterministic function x; = f;(pa;, €;),i =
1,...,n, where pa; are the parents of variables X; in G,
and €;,7 = 1,...,n are arbitrarily distributed random dis-
turbances, representing background factors that the investi-
gator chooses not to include in the analysis.

Let X, Y, and Z be arbitrary disjoint sets of nodes
in a causal DAG G. An expression of the type E =
P(y|do(z), z) is said to be compatible with G if the inter-
ventional distribution described by E can be generated by
parameterizing the graph with a set of functions f; and a set
of distributions of ¢;,,2 = 1,...,n

We denote by G the graph obtained by deleting from
G all arrows pointing to nodes in X. Likewise, we denote
by G'x the graph obtained by deleting from G all arrows
emerging from nodes in X . To represent the deletion of both
incoming and outgoing arrows, we use the notation G+ ,.

The following three rules are valid for every interven-
tional distribution compatible with G.
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Rule 1 (Insertion/deletion of observations):
P(y|do(x), z,w) = P(y|do(x), w)

if (Y AL Z|X, W)ay

Rule 2 (Action/observation exchange):
P(y|do(x), do(z),w) = P(y|do(x), z, w)
if (V 1L Z|X, Weey

Rule 3 (Insertion/deletion of actions):
P(y|do(z), do(z), w) = P(y|do(z), w)
if (Y 1L Z|X, W)GW’
where Z (W) is the set of Z-nodes that are not ancestors of
any W-node in G.

The do-calculus was proven to be complete [Shpitser and
Pearl, 2006], in the sense that if an equality cannot be estab-
lished by repeated application of these three rules, it is not
valid.

Appendix 2

Derivation of the transport formula for the causal effect in
the model of Fig. 4(d) (Eq. (14)),

P*(y|do(x)) = P(y|do(x), s)

= > P(yldo(x),s, z) P(z|do(x), s)

= >_.P(yldo(z), z) P(z|do(x), s)

(2nd cond. of thm. 2, S-admissibility of Z for CE(X,Y))
— ¥, P(yldo(a), 2) X2, P(zldo(a), w,5) P(wdo(a), 5
= 3. Plyldo(2), 2) X, P(z|w, $) P(uldo(z), 5

(3rd cond. of thm. 2, (X 1L Z|S,W))

= 2. Pyldo(x),2) 32, P(z|lw, s)P(w|do(x))

(2nd cond. of thm. 2, S-admissibility of {} for CE(X,W))
= 3. P(yldo(z), 2) X, P () Plwldo())  (18)
Derivation of the transport formula for Fig. 5 (Eq. (15)),
P*(yldo(z)) = P(y|do(z), s, s")

=" _P(yldo(z),s, s, z)P(z|do(x), s, s")

= . P(yldo(z), z)P(z|do(z), s, s")

(2nd cond. of thm. 2, S-admissibility of Z for CE(X, Z))

= 3, P(yldo(2),2) 52, Plzldo(x). 5,5/, w) P(wldo(x), 5, ')

— ¥ _P(yldo(w),2) T, P(zls, s w) P(wldo(a). 5.5
(3rd cond. of thm. 2, (X 1L Z|S, S, W))
= P(yldo(z),2) >, P(z]s,s",w)

> P(wldo(x), s, s',t)P(t|do(x), s, s")
= P(yldo(z),2) >, P(z|s, s, w)

> P(wldo(x),t)P(t|do(x), s, s")
(2nd cond. of thm. 2, S-admissibility of T for CE(X, W))
= P(yldo(z),2) >, P(z]s,s",w)

21 P(wldo(x), t) P(t]s, s")
(1st cond. of thm. 2; do-calculus (3rd), (X LLT[S,5")¢ )
= 2. Pyldo(z), 2) 32, P~ (z|w))_, P(wl|do(z), ) P* (t)

(19)



