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Abstract

Attacker-defender Stackelberg games have become a popular
game-theoretic approach for security with deployments for
LAX Police, the FAMS and the TSA. Unfortunately, most of
the existing solution approaches do not model two key uncer-
tainties of the real-world: there may be noise in the defender’s
execution of the suggested mixed strategy and/or the observa-
tions made by an attacker can be noisy. In this paper, we pro-
vide a framework to model these uncertainties, and demon-
strate that previous strategies perform poorly in such uncer-
tain settings. We also provide RECON, a novel algorithm that
computes strategies for the defender that are robust to such
uncertainties, and provide heuristics that further improve RE-
CON’s efficiency.

Introduction

The use of game-theoretic concepts has allowed security
forces to exert maximum leverage with limited resources.
Indeed, game-theoretic scheduling softwares have been as-
sisting the LAX police, the Federal Air Marshals service,
and are under consideration by the TSA (Jain et al. 2010).
They have been studied for patrolling (Agmon et al. 2008;
Basilico, Gatti, and Amigoni 2009) and routing in net-
works (Kodialam and Lakshman 2003).At the backbone of
these applications are attacker-defender Stackelberg games.
The solution concept is to compute a strong Stackelberg
equilibrium (SSE) (von Stengel and Zamir 2004; Conitzer
and Sandholm 2006); specifically, the optimal mixed strat-
egy for the defender. It is then assumed that the defender per-
fectly executes her SSE strategy and the attacker perfectly
observes the strategy before choosing his action.

Unfortunately, in the real-world, execution and observa-
tion is not perfect due to unforeseen circumstances and/or
human errors. For example, a canine unit protecting a termi-
nal at LAX may be urgently called off to another assignment
or alternatively a new unit could become available. Simi-
larly, the attacker’s observations can be noisy: he may oc-
casionally not observe an officer patrolling a target, or mis-
take a passing car as a security patrol. Thus, in real-world
deployments, the defender may have a noisy execution and
the attacker’s observations may be even more noisy. A naı̈ve
defender strategy can be arbitrarily bad in such uncertain
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domains, and thus, it is important to develop risk-averse so-
lution techniques that can be used by deployed security sys-
tems like ARMOR and IRIS (Jain et al. 2010).

This paper models execution and observation uncertainty,
and presents efficient solution techniques to compute risk-
averse defender strategies. Previous work has failed to pro-
vide such efficient solution algorithms. While the COBRA
algorithm (Pita et al. 2010) focuses on human subjects’ in-
ference when faced with limited observations of defender
strategies, it does not consider errors in such observations.
In contrast, Yin et. al (2010) consider the limiting case
where an attacker has no observations and thus investigate
the equivalence of Stackelberg vs Nash equilibria. Even ear-
lier investigations have emphasized the value of commit-
ment to mixed strategies in Stackelberg games in the pres-
ence of noise (van Damme and Hurkens 1997). Outside of
Stackelberg games, models for execution uncertainty have
been separately developed (Archibald and Shoham 2009).
Our research complements these efforts by providing a uni-
fied efficient algorithm that addresses both execution and
observation uncertainties; in this way it also complements
other research that addresses payoff uncertainties in such
games (Jain et al. 2010).

This paper provides three key contributions: (1) We pro-
vide RECON, a mixed-integer linear program that computes
the risk-averse strategy for the defender in domains with ex-
ecution and observation uncertainty. RECON assumes that
nature chooses noise to maximally reduce defenders utility,
and RECON maximizes against this worst case. (2) We pro-
vide two novel heuristics that speed up the computation of
RECON by orders of magnitude. (3) We present experimen-
tal results that demonstrate the superiority of RECON in un-
certain domains where existing algorithms perform poorly.

Background and Notation

A Stackelberg security game is a game between two play-
ers: a defender and an attacker. The defender wishes to de-
ploy up to γ security resources to protect a set of targets T
from the attacker. Each player has a set of pure strategies:
the defender can cover a set of targets, and the attacker can
attack one target. The payoffs for each player depend on the
target attacked, and whether or not the attack was success-
ful. Uu

d (ti) and U c
d(ti) represent the utilities for the defender

when ti, the target attacked, was uncovered and covered re-
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spectively. The attacker’s utilities are denoted similarly by
U c
a(ti) and Uu

a (ti). We use ΔUd(ti) = U c
d(ti) − Uu

d (ti) to
denote the difference between defender’s covered and un-
covered utilities. Similarly, ΔUa(ti) = Uu

a (ti) − U c
a(ti).

A key property of security games is that ΔUd(ti) > 0 and
ΔUa(ti) > 0. Example payoffs for a game with two targets,
t1 and t2, and one resource are given in Table 1.

Target U c
d(ti) Uu

d (ti) U c
a(ti) Uu

a (ti)
t1 10 0 -1 1
t2 0 -10 -1 1

Table 1: Example game with two targets

A strategy profile 〈x, ti〉 for this game is a mixed strat-
egy x for the defender, and the attacked target ti. The mixed
strategy x = 〈xi〉 is a vector of probabilities of defender
coverage over all targets (Yin et al. 2010), such that the
sum total of coverage is not more than the number of avail-
able resources γ. For example, a mixed strategy for the de-
fender can be .25 coverage on t1 and .75 coverage on t2.
We allow yi, the defender’s actual coverage on ti, to vary
from the intended coverage xi by the amount αi, that is,
|yi − xi| ≤ αi. Thus, if we set α1 = 0.1, it would mean
that 0.15 ≤ y1 ≤ 0.35. Additionally, we assume that the at-
tacker wouldn’t necessarily observe the actual implemented
mixed strategy of the defender; instead the attacker’s per-
ceived coverage for ti, denoted by zi, can vary by βi from
the implemented coverage yi. Therefore, |zi − yi| ≤ βi.
Thus, in our example, if y1 was 0.3 and β1 was set to 0.05,
then 0.25 ≤ z1 ≤ 0.35. Table 2 summarizes the notation
used in this paper.

For example, at LAX, ARMOR might generate a schedule
for two canines to patrol Terminals 1, 2, 3, 4 with probabili-
ties of 0.2, 0.8, 0.5, 0.5 respectively. However, a last-minute
cargo inspection may require a canine unit to be called away
from, say, Terminal 2 in its particular patrol, or an extra ca-
nine unit may become available by chance and get sent to
Terminal 3. Additionally, an attacker may fail to observe a
canine patrol on a terminal, or he may mistake an officer
walking across as engaged in a patrol. Since each target is
patrolled and observed independently, we assume that both
execution and observation noise are independent per target.

Again, consider the example in Table 1, suppose the de-
fender has one resource. The SSE strategy for the defender
would be protecting t1 and t2 with 0.5 probability each,
making them indifferent for the attacker. The attacker breaks
ties in defender’s favor and chooses t1 to attack, giving the
defender an expected utility of 5. This SSE strategy is not
robust to any noise – by deducting an infinitesimal amount
of coverage probability from t2, the attacker’s best response
changes to t2, reducing the defender’s expected utility to
−5. We compute a risk-averse strategy, which provides the
defender the maximum worst-case expected utility. For ex-
ample, assuming no execution error and 0.1 observational
uncertainty (α = 0 and β = 0.1), the optimal risk-averse
defender strategy is to protect t1 with 0.4 − ε probability
and t2 with 0.6 + ε probability so that even in the worst-
case, the attacker would choose t1, giving the defender an

Variable Definition
T Set of targets

Uu
d (ti) Defender’s payoff if target ti is uncovered

U c
d(ti) Defender’s payoff if target ti is covered

Uu
a (ti) Attacker’s payoff if target ti is uncovered

U c
a(ti) Attacker’s payoff if target ti is covered
γ Number of defender resources
xi Defender’s intended coverage of target ti
yi Defender’s actual coverage of target ti
zi Attacker’s observed coverage of target ti

ΔUd(ti) ΔUd(ti) = U c
d(ti)− Uu

d (ti)
ΔUa(ti) ΔUa(ti) = Uu

a (ti)− U c
a(ti)

Di(xi) Defender’s expected utility for target ti
Di(xi) = Uu

d (ti) + ΔUd(ti)xi

Ai(xi) Attacker’s expected utility for target ti
Ai(xi) = Uu

a (ti)−ΔUa(ti)xi

αi Maximum execution error for target ti
βi Maximum observation error for target ti

Table 2: Notation

expected utility of 4. Finding the optimal risk-averse strat-
egy for large games remains difficult, as it is essentially a
bi-level programming problem (Bard 2006).

Problem Statement

The objective is to find the optimal risk-averse strategy x,
maximizing the worst-case defender utility, U∗

d (x) (Con-
straint (1) and (2)). Given a fixed maximum execution and
observation noise, α and β respectively, U∗

d (x) is computed
by the minimization problem from Constraint (3) to (6).

max
x

U∗
d (x) (1)

s.t.
∑
ti∈T

xi ≤ γ, 0 ≤ xi ≤ 1 (2)

U∗
d (x) = min

y,z,tj
Dj(yj) (3)

s.t. tj ∈ argmax
ti∈T

Ai(zi) (4)

− αi ≤ yi − xi ≤ αi, 0 ≤ yi ≤ 1 (5)
− βi ≤ zi − yi ≤ βi, 0 ≤ zi ≤ 1 (6)

The overall problem is a bi-level programming problem.
For a fixed defender strategy x, the second-level problem
from Constraint (3) to (6) computes the worst-case de-
fender’s executed coverage y, the attacker’s observed cov-
erage z, and the target attacked tj . 〈y, z, tj〉 is chosen such
that the defender’s expected utility Dj(yj) (see Table 2) is
minimized, given that the attacker maximizes his believed
utility1 Aj(zj) (Constraint (4)). This robust optimization is
similar in spirit to Aghassi and Bertsimas (2006), although
that is in the context of simultaneous move games.

This also highlights the need to separately model both ex-
ecution and observation noise. Indeed a problem with un-

1The attacker’s believed utility is computed using the strategy
observed by the attacker, and it may not be achieved, since z can
be different from y, which can be different from x.
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certainty defined as 〈α,β〉 is different from a problem with
〈α′ = 0,β′ = α + β〉 (or vice-versa), since the defender
utility is different in the two problems. Other key properties
of our approach include the solution of the above problem is
an SSE if α = β = 0. Furthermore, a MAXIMIN strategy is
obtained when β = 1 with α = 0, since z can be arbitrary.
Finally, α = 1 implies that the execution of the defender is
independent of x and thus, any feasible x is optimal.

Approach

We present RECON, Risk-averse Execution Considering
Observational Noise, a mixed-integer linear programming
(MILP) formulation to compute the risk-averse defender
strategy in the presence of execution and observation noise.
It encodes the necessary and sufficient conditions of the
second-level problem (Constraint (4)) as linear constraints.
The intuition behind these constraints is to identify S(x), the
best-response action set for the attacker given a strategy x,
and then break ties against the defender. Additionally, RE-
CON represents the variables y and z in terms of the vari-
able x – it reduces the bi-level optimization problem to a
single-level optimization problem. We first define the term
inducible target and then the associated necessary/sufficient
conditions of the second level problem.
Definition 1. We say a target tj is weakly inducible by a
mixed strategy x if there exists a strategy z with 0 ≤ zi ≤ 1
and |zi−xi| ≤ αi+βi for all ti ∈ T , such that tj is the best
response to z for the attacker, i.e., tj = argmaxti∈T Ai(zi).

Additionally, we define the upper and lower bounds on
the utility the attacker may believe to obtain for the strategy
profile 〈x, ti〉. These bounds will then be used to determine
the best response set of the attacker.
Definition 2. For the strategy profile 〈x, ti〉, the upper
bound of attacker’s believed utility is given by A+

i (xi),
which would be reached when the attacker’s observed cov-
erage of ti reaches the lower bound max{0, xi − αi − βi}.

A+
i (xi) = min{Uu

a (ti), Ai(xi − αi − βi)} (7)

Similarly, we denote the lower bound of attacker’s believed
utility of attacking target ti by A−

i (xi), which is reached
when the attacker’s observed coverage probability on ti
reaches the upper bound min{1, xi + αi + βi}.

A−
i (xi) = max{U c

a(ti), Ai(xi + αi + βi)} (8)

Lemma 1. A target tj is weakly inducible by x if and only
if A+

j (xj) ≥ maxti∈T A−
i (xi).

Proof. If tj is weakly inducible, consider z such that tj =
argmaxti∈T Ai(zi). Since zj ≥ max{0, xj −αj −βj} and
for all ti �= tj , zi ≤ min{1, xi + αi + βi}, we have:

A+
j (xj) = min{Uu

a (tj), Aj(xj − αj − βj)} ≥ Aj(zj)

≥Ai(zi) ≥ max{U c
a(ti), Ai(xi + αi + βi)} = A−

i (xi).

On the other hand, if A+
j (xj) ≥ A−

i (xi) for all ti ∈ T , we
can let zj = max{0, xi−αj−βj} and zi = min{1, xi+αi+
βi} for all ti �= tj , which satisfies tj = argmaxti∈T Ai(zi).
This implies tj is weakly inducible.

We also define D−
i (xi), the lower bound on the defender’s

expected utility for the strategy profile 〈x, ti〉. This lower
bound is used to determine the defender’s worst-case ex-
pected utility.
Definition 3. For the strategy profile 〈x, ti〉, D−

i (xi) is
achieved when the defender’s implemented coverage on ti
reaches the lower bound max{0, xi − αi}, and is given by:

D−
i (xi) = max{Uu

d (ti), Di(xi − αi)} (9)

Lemma 2. Let S(x) be the set of all targets that are weakly
inducible by x, then U∗

d (x) = minti∈S(x) D
−
i (xi).

Proof. A target not in S(x) cannot be attacked, since it is not
the best response of the attacker for any feasible z. Addition-
ally, for any target ti in S(x), the minimum utility of the de-
fender is D−

i (xi). Therefore, U∗
d (x) ≥ minti∈S(x) D

−
i (xi).

Additionally, we prove U∗
d (x) ≤ minti∈S(x) D

−
i (xi) by

showing there exist 〈y, z, tj〉 satisfying Constraint (4) to (6)
with Dj(yj) = minti∈S(x) D

−
i (xi). To this end, we choose

tj = argminti∈S(x) D
−
i (xi), yj = max{0, xj − αj},

zj = max{0, xj−αj−βj}, and yi = min{1, xi+αi}, zi =
min{1, xi + αi + βi} for all ti �= tj . y and z satisfy Con-
straint (5) and (6) by construction. And since tj is weakly
inducible, we have for all ti �= tj , Aj(zj) = A+

j (xj) ≥
A−

i (xi) = Ai(zi), implying tj = argmaxti∈T Ai(zi).

Lemma (1) and (2) are the necessary and sufficient con-
ditions for the second level optimization problem, reducing
the bi-level optimization problem into a single level MILP.

RECON MILP

Now we present the MILP formulation for RECON. It max-
imizes the defender utility, denoted as vd. va represents the
highest lower-bound on the believed utility of the attacker
(A+

i (xi)), given in Constraint (11). The binary variable qi is
1 if the target ti is weakly inducible; it is 0 otherwise. Con-
straint (12) says that qi = 1 if A+

i (xi) ≥ va (ε is a small pos-
itive constant which ensures that qi = 1 when A+

i (xi) = va)
and together with Constraint (11), encodes Lemma 1. The
constraint that qi = 0 if A+

i (xi) < va could be added to
RECON, however, it is redundant since the defender wants
to set qi = 0 in order to maximize vd. Constraint (13) says
that the defender utility vd is less than D−

i (xi) for all in-
ducible targets, thereby implementing Lemma 2. Constraint
(14) ensures that the allocated resources are no more than
the number of available resources γ, maintaining feasibility.

max
x,q,vd,va

vd (10)

s.t. va = max
ti∈T

A−
i (xi) (11)

A+
i (xi) ≤ va + qiM − ε (12)

vd ≤ D−
i (xi) + (1− qi)M (13)∑

i

xi ≤ γ (14)

xi ∈ [0, 1] (15)
qi ∈ {0, 1} (16)

760



The max function in Constraint (11) can be formulated
using |T | binary variables, {hi}, in the following manner:

A−
i (xi) ≤ va ≤ A−

i (xi) + (1− hi)M (17)∑
ti∈T

hi = 1, hi ∈ {0, 1} (18)

The min operation in A+
i (xi) is also implemented similarly.

For example, Equation (7) can be encoded as:
Uu
a (ti)− (1− νi)M ≤ A+

i ≤ Uu
a (ti)

Ai(xi − αi − βi)− νiM ≤ A+
i ≤ Ai(xi − αi − βi)

νi ∈ {0, 1}
We omit the details for expanding A−

i (xi) and D−
i (xi), they

can be encoded in a similar fashion.

Speeding up

As described above, RECON uses a MILP formulation to
compute the risk-averse strategy for the defender. Integer
variables increase the complexity of the linear programming
problem; indeed solving integer programs is NP-hard. MILP
solvers internally use branch-and-bound to evaluate inte-
ger assignments. Availability of good lower bounds implies
that less combinations of integer assignments (branch-and-
bound nodes) need to be evaluated. This is the intuition be-
hind speeding up the execution of RECON. We provide two
methods, a-RECON and i-RECON, to generate lower bounds.

a-RECON: a-RECON solves a restricted version of RE-
CON. This restricted version has lower number of integer
variables, and thus generates solutions faster. It replaces
A+

i (xi) by Ai(xi − αi − βi) and D−
i (xi) by Di(xi − αi),

thereby rewriting Constraints (12) and (13) as follows:
Ai(xi − αi − βi) ≤ va + qiM − ε (19)
vd ≤ Di(xi − αi) + (1− qi)M (20)

a-RECON is indeed more restricted – the LHS of Constraint
(19) in a-RECON is no less than the LHS of Constraint (12)
in RECON; and the RHS of Constraint (20) is no greater
than the RHS of Constraint (13) in a-RECON. Therefore, any
solution generated by a-RECON is feasible in RECON, and
acts as a lower bound. We do not restrict A−

i (xi) since the
RHS of Constraint (17) is non-trivial for only one target.

i-RECON: i-RECON uses an iterative method to obtain
monotonically increasing lower bounds v(k)

d of RECON. Us-
ing the insight that Constraint (19) is binding only when
qi = 0, and (20) when qi = 1, i-RECON rewrites Constraints
(19) and (20) as follows:

xi ≥
{
τa,i(va) =

Uu
a (ti)−va+ε
ΔUa(ti)

+ αi + βi if qi = 0

τd,i(vd) =
vd−Uu

d (ti)
ΔUd(ti)

+ αi if qi = 1
(21)

which says that qi = 0 implies xi ≥ τa,i(va) and qi = 1
implies xi ≥ τd,i(vd).2 Constraint (21) is equivalent to:

xi ≥ min{τd,i(vd), τa,i(va)}
= τd,i(vd) + min{0, τa,i(va)− τd,i(vd)} (22)

2This is not equivalent to the unconditional equation
xi ≥ max{τa,i(va), τd,i(vd)}.

Algorithm 1: Pseudo code of i-RECON

1 k = 0, v(0)

d = v(0)
a = −∞;

2 while |v(k+1)
a − v(k)

a | ≤ η and |v(k+1)

d − v(k)

d | ≤ η do

3 v(k+1)
a = Solve(A-LP (v(k)

d , v(k)
a ));

4 v(k+1)

d = Solve(D-LP (v(k)

d , v(k)
a ));

5 k = k + 1;
6 end

The equivalence between Constraint (21) and (22) can be
verified as follows: 〈x, vd, va〉 from any feasible solution
〈x,q, vd, va〉 of (21) is trivially feasible in (22). On the other
hand, given a feasible solution 〈x, vd, va〉 to Constraint (22),
we choose qi = 1 if xi ≥ τd,i(vd) and 0 otherwise, and thus
obtain a feasible solution to Constraint (21). Hence, we ob-
tain an equivalent problem of a-RECON by replacing Con-
straints (12) and (13) by (22). In the kth iteration, i-RECON
substitutes τd,i(vd)− τa,i(va) by a constant, Δτ (k)

i , restrict-
ing Constraint (22). This value is updated in every iteration
while maintaining a restriction of Constraint (22). Such a
substitution reduces Constraint (22) to a linear constraint,
implying that i-RECON performs a polynomial-time compu-
tation in every iteration.3

Observe that τd,i(vd) is increasing in vd where as τa,i(va)
is decreasing in va (refer Constraint (21)), and hence
τd,i(vd)− τa,i(va) is increasing in both vd and va. i-RECON

generates an increasing sequence of {Δτ (k)

i = τd,i(v
(k)

d ) −
τa,i(v

(k)
a )} by finding increasing sequences of v(k)

d and v(k)
a .

As we will show later, substituting τd,i(vd) − τa,i(va)
with {Δτ (k)

i } in Constraint (22) guarantees correctness.
Since a higher value of Δτ (k)

i implies a lower value of
min{0,−Δτ (k)

i }, a weaker restriction is imposed by Con-
straint (22), leading to a better lower bound v(k+1)

d .
Given v(k)

d and v(k)
a , i-RECON uses D-LP to compute the

v
(k+1)
d , and A-LP to compute v

(k+1)
a . The pseudo-code for

i-RECON is given in Algorithm 1. D-LP is the following
maximization linear program, which returns the solution
vector 〈x, vd, v̂a〉, such that vd is the desired lower bound.

max
x,vd,v̂a

vd

s.t. Constraint(11), (14) and (15)

xi ≥ τd,i(vd) + min{0,−Δτ (k)

i } (23)

vd ≥ v(k)

d ; v̂a ≥ v(k)

a (24)

Constraint (24) is added to D-LP to ensure that we get a
monotonically increasing solution in every iteration. Simi-
larly, given v(k)

d and v(k)
a , A-LP is the following minimization

problem. It minimizes va to guarantee that Constraint (23)
in D-LP remains a restriction to Constraint (22) for the next
iteration, ensuring D-LP always provides a lower bound of
RECON. More details are in Proposition 1 which proves the

3While the formulation has integer variables from Constraint
(11), it can be considered as 2|T | LPs since there are only 2|T |
distinct combinations of integer assignments.
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correctness of i-RECON.

min
x,vd,va

va

s.t. Constraint (11), (14) and (15)

xi ≥ τa,i(va) + min{Δτ (k)

i , 0} (25)

va ≥ v(k)

a (26)

Proposition 1. Both D-LP and A-LP are feasible and
bounded for every iteration k until i-RECON converges.

Proof. A-LP is bounded for every iteration because va ≥
maxti∈T U c

a(ti) by Constraint (11). We prove the rest of
the proposition using induction. First we establish that both
D-LP and A-LP are feasible and bounded in the first iter-
ation. In the first iteration, D-LP is feasible for any value
of xi ≥ 0 when vd = minti∈T {Uu

d (ti) − αiΔUd(ti)}
(from Constraint (21)), and it is bounded since τd,i(vd) ≤
xi ≤ 1 for all ti ∈ T . In the same way, for A-LP, Con-
straint (25) becomes xi ≥ −∞ in the first iteration. Thus,
va = maxti∈T A−

i (xi) > −∞ is a feasible solution.
Assuming that D-LP and A-LP are feasible and bounded

for iterations 1, 2, . . . , k, we now show that they remain
bounded and feasible in iteration k + 1. Firstly, D-LP is
bounded in the k + 1th iteration since τd,i(vd) ≤ 1 −
min{0,−Δτ (k)

i } for all ti ∈ T . D-LP is feasible because
the solution from the kth iteration, 〈x(k), v(k)

d , v̂(k)
a 〉, remains

feasible. To see this, observe that since τ (k)

d,i is increasing and
τ (k)

a,i is decreasing with k, thus we have Δτ (k)

i ≥ Δτ (k−1)

i .
Hence min{0,−Δτ (k−1)

i } ≥ min{0,−Δτ (k)

i }, implying
that 〈x(k), v(k)

d 〉 satisfies Constraint (23). Moreover, Con-
straints (11), (14), (15) and (24) are trivially satisfied.

Similarly, A-LP is also feasible in the k + 1th iteration
since 〈x(k+1), v(k+1)

d , v̂(k+1)
a 〉, the solution returned by D-LP

in the k + 1th iteration, satisfies all the constraints of A-LP.
Firstly, Constraints (11), (14), (15) and (26) are trivially sat-
isfied. Secondly, Constraint (25) is also satisfied since:

τd,i(v
(k+1)

d )− τa,i(v̂
(k+1)

a ) ≥ Δτ (k)

i . (27)

x(k+1)

i ≥ τd,i(v
(k+1)

d ) + min{0,−Δτ (k)

i } from (23)

= min{τd,i(v(k+1)

d ), τd,i(v
(k+1)

d )−Δτ (k)

i }
≥ min{τd,i(v(k+1)

d ), τa,i(v̂
(k+1)

a )} from (27)

= τa,i(v̂
(k+1)

a ) + min{τd,i(v(k+1)

d )− τa,i(v̂
(k+1)

a ), 0}
≥ τa,i(v̂

(k+1)

a ) + min{Δτ (k)

i , 0} from (27)

Similarly, we can show that 〈x(k+1), v(k+1)

d , v̂(k+1)
a 〉 is a fea-

sible solution of a-RECON for any k using inequality (27),
and hence, v(k+1)

d is a lower bound of RECON. Additionally,
since the sequence {v(k)

d } is bounded and monotonically in-
creasing, we can conclude that it converges.

Experimental Results

We provide two sets of experimental results: (1) we compare
the solution quality of RECON, ERASER, and COBRA under
uncertainty: ERASER (Jain et al. 2010) is used to compute
the SSE solution, where as COBRA (Pita et al. 2010) is one
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(a) Quality with α = β = 0.01.
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(b) Quality with α = β = 0.1.
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(c) Quality of previous work in
the presence of noise.
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(e) Runtime of RECON with
α = β = 0.01.
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(f) Runtime of RECON with
α = β = 0.1.

Figure 1: Experimental results.

of the latest algorithms that addresses attacker’s observa-
tional error.4 (2) We provide the runtime results of RECON,
showing the effectiveness of the two heuristics a-RECON
and i-RECON. In all test instances, we set the number of de-
fender resources to 20% of the number of targets. Payoffs
U c
d(ti) and Uu

a (ti) are chosen uniformly randomly from 1 to
10 while Uu

d (ti) and U c
a(ti) are chosen uniformly randomly

from −10 to −1. The results were obtained using CPLEX on
a standard 2.8GHz machine with 2GB main memory, and
averaged over 39 trials. All comparison results are statisti-
cally significant under t-test (p < 0.05).
Measuring robustness of a given strategy: Given a de-
fender mixed strategy x, a maximum execution error α, and
a maximum possible observation error β, the worst-case de-
fender utility is computed using the second-level optimiza-
tion problem given in Constraints (3) to (6). Figure 1(a) and

4The bounded rationality parameter ε in COBRA is set to 2 as
suggested by Pita et. al (2010). The bias parameter α is set to 1
since our experiments are not tested against human subjects.
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Figure 1(b) presents the comparisons between the worst-
case utilities of RECON, ERASER and COBRA under two
uncertainty settings – low uncertainty (α = β = 0.01) and
high uncertainty (α = β = 0.1). Also, MAXIMIN utility
is provided as a benchmark. Here x-axis shows the number
of targets and y-axis shows the defender’s worst-case utility.
RECON significantly outperforms MAXIMIN, ERASER and
COBRA in both uncertainty settings. For example, in high
uncertainty setting, for 80 targets, RECON on average pro-
vides a worst-case utility of −0.7, significantly better than
MAXIMIN (−4.1), ERASER (−8.0) and COBRA (−8.4).

Next, in Figure 1(c), we present the ideal defender utilities
of ERASER and COBRA assuming no execution and obser-
vational uncertainties, comparing to their worst-case utilities
(computed as described above). Again, x-axis is the number
of targets and y-axis is the defender’s worst-case utility. As
we can see, ERASER is not robust – even 0.01 noise reduces
the solution quality significantly. For instance, for 80 targets
with low uncertainty, ERASER on average has a worst-case
utility of −7.0 as opposed to an ideal utility of 2.9. Similarly,
COBRA is not robust to large amount of noise (0.1) although
it is robust when noise is low (0.01). Again, for 80 targets,
COBRA on average has an ideal utility of 1.2, however, its
worst-case utility drops to −7.0 in high uncertainty setting.

Finally, in Figure 1(d), we show the quality of RECON
with increasing noise from α = β = 0 to α = β = 0.15.
The x-axis shows the amount of noise while the y-axis shows
the defender’s utility returned by RECON. The three lines
represent 20, 40, and 60 targets respectively. As we can see,
while ERASER and COBRA cannot adapt to noise even when
bounds on noise are known a-priori, RECON is more robust
and provides significantly higher defender utility.

Runtime results of RECON: Figures 1(e) and 1(f) show
the runtime results of the three variants of RECON— RE-
CON without any lower bounds, and with lower bounds pro-
vided by a-RECON and i-RECON respectively. The x-axis
shows the number of targets and the y-axis (in logarithmic
scale) shows the total runtime in seconds. Both a-RECON
and i-RECON heuristics help reduce the total runtime signif-
icantly in both uncertainty settings – the speedup is of orders
of magnitude in games with large number of targets. For in-
stance, for cases with 80 targets and high uncertainty, RE-
CON without heuristic lower bounds takes 3, 948 seconds,
whereas RECON with a-RECON lower bound takes a total
runtime of 52 seconds and RECON with i-RECON lower
bound takes a total runtime of 22 seconds.

Conclusions

Game-theoretic scheduling assistants are now being used
daily to schedule checkpoints, patrols and other security ac-
tivities by agencies such as LAX police, FAMS and the TSA.
Augmenting the game-theoretic framework to handle the
fundamental challenge of uncertainty is pivotal to increase
the value of such scheduling assistants. In this paper, we
have presented RECON, a new model that computes risk-
averse strategies for the defender in the presence of execu-
tion and observation uncertainty. Our experimental results
show that RECON is robust to such noise where the per-

formance of existing algorithms can be arbitrarily bad. Ad-
ditionally, we have provided two heuristics, a-RECON and
i-RECON, that further speed up the performance of RECON.
This research complements other research focused on han-
dling other types of uncertainty such as in payoff and deci-
sion making (Kiekintveld, Tambe, and Marecki 2010), and
could ultimately be part of a single unified robust algorithm.
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