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Abstract

We study the problem of designing auctions for agents who
incur a cost if they choose to learn about their own preferences.
We reformulate the revelation principle for use with such de-
liberative agents. Then we characterize the set of single-good
auctions giving rise to dominant strategies for deliberative
agents whose values are independent and private. Interest-
ingly, this set of dominant-strategy mechanisms is exactly the
set of sequential posted-price auctions, a class of mechanisms
that has received much recent attention.

Introduction

We consider the problem of designing auctions for settings in
which bidders have to pay a cost to learn about their prefer-
ences, and hence can face tradeoffs between the cost and accu-
racy of their preference information. Such bidders are called
deliberative agents, and have featured in a wide variety of
auction models. For example, costly deliberation can model
solving a hard computational problem to discover the optimal
use for a good (Cavallo and Parkes 2008), making an R & D
investment to decrease the cost of fulfilling a contract in a
procurement auction (Tan 1992), or even just “thinking hard”
(Rasmusen 2006). There is an extensive body of work show-
ing that when deliberative agents bid in common auctions,
surprising and often undesirable outcomes can result (see e.g.
(Bergemann and Valimaki 2002; Larson and Sandholm 2001;
Persico 2000; Thompson and Leyton-Brown 2007)). Other
work has identified new mechanisms—based on optimal
search algorithms (Cremer, Spiegel, and Zheng 2003; Larson
2006) or derived from VCG (Bergemann and Valimaki 2002;
Cavallo and Parkes 2008)—that do exhibit desirable behavior
with deliberative agents, but only in Bayes-Nash equilibrium
implementations.

It is most desirable to design auctions that give rise to
dominant strategies. For example, such auctions are robust
to irrational behavior by a subset of the agents, and do not
require coordination to equilibrium. Such auctions also do
not require agents to have common knowledge of the setting.
One line of work has investigated the extension to deliberative
settings of auction mechanisms that have dominant strategies
in standard settings, where indeed such mechanisms are often
equivalent to each other. It has been shown that second-price
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auctions (Sandholm 2000), Japanese auctions (Compte and
Jehiel 2001), and English auctions with proxies (Rasmusen
2006) are all inequivalent in deliberative settings, and that
none of them gives rise to dominant strategies.

A more comprehensive approach to the investigation of
dominant-strategy auctions in deliberative settings is to char-
acterize the space of dominant-strategy mechanisms, rather
than checking individual mechanisms to see whether they
maintain dominant strategies. In this vein, Larson and Sand-
holm (Larson and Sandholm 2004a; 2005) examined the
space of dominant-strategy implementable mechanisms un-
der four assumptions (defined below). They obtained the
following negative result.
Theorem 1 (Dominant strategy impossibility (Larson
and Sandholm 2004a)). There does not exist any mecha-
nism that is strategic deliberation-proof, strategy-dependent,
non-misleading, and preference-formation independent in
dominant-strategy equilibrium across all possible quasi-
linear deliberative-agent settings.

We now formally define the four properties upon which
Theorem 1 depends, since they play a role in what follows.
We begin with an issue that has not yet featured in our dis-
cussion, nor indeed in most of the related work that we have
discussed. In some models, agents can deliberate about oth-
ers’ valuations as well as about their own; doing so is termed
strategic deliberation. When such deliberations are possible,
we might want to guarantee that in equilibrium, strategic
deliberations do not occur.
Definition 2 (Strategic deliberation-proofness). In equi-
librium, no agent deliberates to learn about another agent’s
preferences.

The second property is a weakening of so-called consumer
sovereignty (Feigenbaum et al. 2003): each agent must be
able to affect the mechanism at least sometimes.
Definition 3 (Strategy dependence). For each agent i there
exists some pair of strategy profiles s′, s′′ that differ only in
i’s strategy and that produce different outcomes.

Third, the following definition can be understood as a
weakening of truthfulness.
Definition 4 (Non-misleadingness). In equilibrium, no
agent reports an (expected) valuation that the other agents be-
lieve is impossible. In particular, no agent reports a valuation
that is greater than his highest possible valuation.
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It is worth discussing why Larson and Sandholm required
non-misleadingness rather than truthfulness, which can usu-
ally be achieved without restriction via the revelation prin-
ciple. In deliberative-agent settings, an agent’s knowledge
about his own preferences depends on which deliberations he
has performed, which can depend in turn on what information
the mechanism reveals to the agent. In such settings, Larson
and Sandholm argued, direct mechanisms are not without
loss of generality—the agent cannot decide whether to delib-
erate without knowing what information will be revealed by
the mechanism, which can depend in turn on other agents’
declarations—and so the standard revelation principle cannot
be applied (Larson and Sandholm 2005).

Our final property, preference-formation independence, is
conceptually related to “detail-freeness” (Wilson 1987).

Definition 5 (Preference-formation independence). The
mechanism is not involved in the process by which agents
form their preferences and requires no knowledge of the
details of that process.

An auction that only solicits bids from agents with easy-to-
compute valuations is not preference-formation independent.
An agent reducing uncertainty about his own preferences is
understood as a kind of “preference formation.”

In the literature, Theorem 1 has been understood as
very discouraging news about the applicability of dominant-
strategy mechanisms to deliberative settings. It is indeed very
natural to want an auction mechanism to be strategy depen-
dent, non-misleading and preference-formation independent.
On the other hand, it is not inevitable that agents will be
able to deliberate about each other’s valuations. We thus
consider it important to understand the extent to which Lar-
son and Sandholm’s negative result continues to hold when
strategic deliberation is impossible. We believe this to be an
open question: none of the positive results of which we are
aware identifies a dominant-strategy auction, while Theorem
1 is the most relevant negative result, and its proof depends
critically on the possibility of strategic deliberation.

Our paper makes two key contributions. First, we show
that it is possible to recover the revelation principle in a use-
ful sense, although it is indeed true in deliberative settings
that not every multistage mechanism is strategically equiva-
lent to some direct mechanism. Second, leveraging our first
result, we characterize dominant-strategy mechanisms for
the specific case of independent-private-value (IPV) auction
settings in agents can deliberate only about their own valua-
tions. Specifically, we show every dominant strategy truthful
auction must implement the same social choice function as
some sequential posted-price auction.

We note that our second result may be interesting even be-
yond the literature on deliberation, because it adds to a recent
accumulation of arguments in favor of sequential posted-
price auctions. Not only do similar auctions appear often
in practice, but posted-price mechanisms have been shown
to have good properties in terms of revenue and efficiency
(e.g., (Blumrosen and Holenstein 2008; Chawla et al. 2010;
Kleinberg and Leighton 2003; Shakkottai et al. 2008)) while
limiting information revelation (e.g., (Sandholm and Gilpin
2006)). Our work is the first to study sequential posted-price
auctions for deliberative agents, and to show that they also
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Figure 1: (Adapted from (Larson 2006)) In a deliberative
setting, instead of an epistemic type, each agent has his own
black-box information source. Information asymmetry arises
through agents’ interactions with their information sources.

have (uniquely) good properties in such settings.

Model

We now present a formal model of deliberative-agent settings.
Instead of knowing all his private information before he acts,
each agent starts with no private information, but has a black-
box information source that he can query at non-negative cost
to receive new information.1 Such a model is illustrated in
Figure 1. Observe that such a model differs from a standard
epistemic-type Bayesian game in which agents are (perfectly)
aware of their own types; instead, it has more in common
with the standard common-value auction model in which
agents are imperfectly informed about their own valuations.

The key to a deliberative-agent setting is the availability
of deliberation actions.
Definition 6 (Deliberation). A deliberation is an action by
which an agent queries his black-box information source and
observes the response, allowing him to update his beliefs
about all agents’ realized valuations.

Throughout we assume that bidders have independent pri-
vate values (IPV). Independence is the standard assumption
that the joint value distribution is a product of individual
value distributions. In the context of deliberative agents,
privacy means that strategic deliberation is impossible.
Definition 7 (Privacy). In a deliberative setting where val-
ues are private, no agent’s value depends on another agent’s
signal; when an agent deliberates, he can only update his
beliefs about his own value.

Our black-box information-source model is extremely gen-
eral and expressive, but has the drawback that its full de-
scription is complex and notation heavy. We present such a
general model in an appendix; all of our results in this paper
hold under that model with the same proofs.

In this section we present a much simpler, special case of
that model. All of our results also hold (albeit with more
limited implications) under the simpler model, which we call
the single-step deliberative setting.

The single-step deliberative setting is like a standard IPV
auction setting (e.g. from (Myerson 1981)), except that
agents have to decide whether or not to deliberate. Each

1We can handle the case where agents do start with private infor-
mation with a zero-cost deliberation that reveals this information.
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bidder starts out knowing only the common prior over his
valuation. There is only a single deliberation action available,
and after it is performed an agent knows his exact valuation.
Definition 8 (Single-step deliberative setting). The single-
step deliberative setting is a 4-tuple 〈N, f, V, c〉. N is a set
of agents. f is a vector of valuation distributions: fi is the
commonly-known prior over i’s valuation, with domain Vi;
V =

∏
i Vi. c is a cost vector, where ci is a strictly positive

amount that i must pay to discover his true valuation.
In a single-step deliberative setting, an agent’s utility depends
on his valuation vi, whether or not he wins (wi = 1 if he
wins and 0 otherwise), his total transfers ti, and whether
or not he performed a deliberation (di = 1 if he did and 0
otherwise). We assume that utility is quasilinear and that
there are no externalities: ui(vi, wi, ti, di) = wivi − ti −
dici. We further assume that the entire setting is common
knowledge. Finally, we make two technical assumptions: (1)
the auction is deterministic, and (2) losers make no payments.

Any combination of a deliberative setting and a mechanism
induces an imperfect-information extensive-form game with
chance nodes. The game begins with a move by nature: each
agent’s valuation vi is drawn according to distribution fi.
The agents then interact with the mechanism in a standard
extensive-form game. However, any time the mechanism
asks an agent to bid, he has the option of deliberating first.

Revelation principle

The revelation principle is a classical tool for understanding
the space of possible mechanisms that meet given criteria.
Essentially, it says that without loss of generality we can
restrict our attention to direct, truthful mechanisms (Myerson
1981). This spares us the complexity of reasoning about indi-
rect mechanisms such as multistage auctions. As described
above, Larson and Sandholm showed that this argument does
not work in deliberative settings: deliberation is an inherently
multistage process, and considering only direct mechanisms
is restrictive (Larson and Sandholm 2005).

Here we show that it is still possible to obtain a kind of
revelation principle for deliberative agents. The key idea is
to restrict the space of mechanisms not to direct mechanisms,
but to a larger space, dynamically-direct mechanisms. These
are multistage mechanisms that only interact with the agents
by requesting that they perform specific deliberations, and
asking them to report the results.
Definition 9 (Dynamically direct mechanism). In a dy-
namically direct mechanism, every message from the auc-
tioneer specifies a deliberation for the bidder to perform, and
every reply must be an observation that could result from that
deliberation.
Definition 10 (Truthfulness). A strategy is truthful if it spec-
ifies performing all requested deliberations and truthfully
reporting the resulting observations. A dynamically direct
mechanism is truthful if truthfulness is a dominant strategy.
Definition 11 (Social choice function). A social choice
function is denoted by (χ, p) where χ maps from (true, poten-
tially unknown) preferences to distributions over allocations
(χ : V �→ Δ(N ∪∅)) and p is an n-element vector, with each
pi : V �→ ΔR serving as i’s payment function.
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Figure 2: In a dynamically direct auction, agents act as inter-
mediaries between their information sources and proxies.

Note that the domain of each function is V , the set of pos-
sible valuation profiles. This means that we might expect that
pooling social choice functions will often arise. For example,
if in equilibrium some agent i never deliberates, then the
social choice function cannot depend on i’s true preferences.
When deliberation can give noisy signals (as is possible in
the general setting, though not in the model proposed in the
previous section), then even a deterministic mechanism can
implement randomized social choice functions. This explains
why Definition 11 maps to distributions over outcomes, even
though we only consider deterministic mechanisms.

Theorem 12 (Revelation principle for deliberative
agents). In any deliberative setting, for any mechanism M
with dominant strategy equilibrium s, there exists a dynam-
ically direct, truthful mechanism MD that implements the
same social choice function as M .

Proof Sketch.2 Construct a mechanism MD where each bid-
der i reports to a proxy that plays si, but uses bidder i as the
information source. (See Figure 2.) Any way of misreporting
to a proxy corresponds to some deviating strategy s′i in M .
Because si dominates all s′i, truthfulness must be a dominant
strategy in MD.

Dynamically direct mechanisms are impractical: in order
to tell each agent when and how to deliberate, they must
encode complete knowledge of how the agents deliberate and
the associated costs. In other words, they violate Larson and
Sandholm’s desideratum of preference-formation indepen-
dence. Nevertheless, they constitute a useful analytic tool

2We note that existing revelation principles for dynamic mech-
anisms use similar proof techniques; however, none can be di-
rectly applied to yield our result. Myerson (1986) gave a dynamic
revelation principle for communication equilibria (a correlated-
equilibrium-like solution concept for extensive-form games). How-
ever, in his model, the mechanism does not control the outcome and
cannot impose payments. More recently, a similar technique has
been used in dynamic mechanism design (e.g., Pavan, Segal, and
Toikka 2008). However, these results assume that the mechanism
chooses an allocation at each time step, and that agents’ private
information can change only as a result of that allocation.
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for characterizing the set of social choice functions that can
be implemented in deliberative settings. Observe that every
preference-formation-independent mechanism also has some
dynamically direct analogue; thus, using our revelation prin-
ciple to characterize a space of mechanisms does not mean
giving up on preference-formation independence.

Auction Design

We now turn to the question of which mechanisms give rise
to dominant strategies for IPV deliberative agents. We begin
by defining sequential posted-price auctions.
Definition 13 (Sequential posted-price (SPP) auction). A
sequential posted-price auction is a multistage auction in
which at every stage, the auctioneer makes a posted-price,
take-it-or-leave-it offer to a single agent. The agent can
either accept the offer, in which case he immediately wins the
good and pays the posted price, or reject the offer, in which
case he does not interact with the auctioneer again and does
not win the good.

We can now present our main result, that dominant strategy
auctions in IPV deliberative settings are characterized by
sequential posted-price auctions.
Theorem 14 (Characterization). In deliberative auction
settings with independent, private values, the set of auctions
with dominant strategies is characterized by the set of se-
quential posted-price auctions, as follows:

1. Every SPP auction has a dominant strategy equilibrium in
every IPV deliberative-agent setting;

2. There exist IPV deliberative-agent settings in which the
only dominant-strategy implementable social choice func-
tions are those implemented by SPP auctions.

Remark. Intuitively, the fact that all SPP auctions offer dom-
inant strategies follows from the IPV auction model: an agent
is indifferent to what happened before he received an offer
(because values are independent and private, he cannot learn
anything from the timing of his selection) and is indifferent to
what happens after he rejects (because he has no externalities).
The argument that SPP auctions are necessary for dominant
strategies is more involved, but essentially revolves around
the concept of value of information. If deliberation is part
of an agent’s dominant strategy, then the value of the infor-
mation gained must always outweigh its cost. We show that
there exist settings in which agents deliberate in dominant
strategies only when they receive posted-price offers.

Proof. Part 1: Every sequential posted-price auction has a
dominant strategy equilibrium in every setting.

In any given SPP auction, each bidder i can only receive
an offer with one specific price pi, though whether or not i
receives an offer at all can depend on other agents’ strategies.
Consider the one-player SPP auction in which a deliberative
agent i is offered posted price pi. As there are no other agents,
trivially i has a dominant strategy in this auction.3 Let us call

3Note that this dominant strategy can be extremely complex. For
example, under the preference model given in the appendix, it can
involve conditional, multistage deliberation policies. See Larson
and Sandholm (2004b) for how to construct such a deliberation
policy using an MDP representation of the one-player game.

that dominant strategy si.
Now we argue that si is also a dominant strategy for i

in any multi-player SPP auction in which the offer i can
receive has price pi. Let s−i be an arbitrary strategy profile
for the other agents N \ {i}. If agent i does not receive an
offer, he cannot influence the outcome; in this case, si is
trivially a best response. Because the agents’ valuations are
independent and private, other bidders cannot learn anything
about i’s value through their own deliberations. Therefore, i
cannot infer anything about his own value from the fact that
he receives an offer. Because i has no externalities, he does
not care which agent (if any) will win the auction in the event
that he loses. Thus, i faces the same strategic situation every
time he receives a given offer pi, regardless of which agents
have received offers before him, the amounts of those offers,
and the deliberations performed by those agents. Agent i also
thus faces the same strategic situation as in the one-player
SPP auction, and so si is still a dominant strategy for i.

Part 2: There exist settings in which the only dominant-
strategy implementable social choice functions are those
implemented by sequential posted-price auctions.

If a mechanism implements some social choice function
(χ, p) in dominant strategy equilibrium, by Theorem 12 (the
revelation principle) some other dynamically direct mech-
anism M implements (χ, p) in truthful dominant strategy
equilibrium. Thus, without loss of generality we consider
only truthful, dynamically direct mechanisms. We consider
a single-step deliberative setting in which each agent i has
only two possible valuations (vLi and vHi ).

The rest of the proof proceeds in five steps.
Step 1 (Information Availability): The outcome chosen by
the mechanism is completely determined by the types of the
agents who deliberate.

Because M is deterministic, because the agents’ strategies
are deterministic (by dominance), and because the observa-
tion of every deliberation is deterministic (by the single-step
setting), the social choice function must map to determin-
istic outcomes (χ : V �→ N ∪ ∅ and each pi : V �→ R).
Let δi(v) = 1 if i deliberates in equilibrium and δi(v) = 0
otherwise. Observe that if an agent i does not deliberate
(δi(v) = 0) then χ, p and δ cannot depend on his type. This
is because the dynamically direct mechanism will not ask i
to report vi (the mechanism is truthful) and so the mecha-
nism cannot condition on vi when choosing the outcome or
when instructing another agent j �= i to deliberate. If only
a subset S ⊂ N of agents deliberates given type profile v
(i ∈ S iff δi(v) = 1), then the outcome does not depend
on the types of the other agents N \ S. (χ(v) = χ(vS , ∗),
pj(v) = pj(vS , ∗) and δj(v) = δj(vS , ∗), where ∗ refers to
any possible types of the agents who were not explicitly listed.
Thus, e.g., the proposition “δj(v) = δj(vi, ∗)” is shorthand
for “∀v′−i, δj(v) = δj(vi, v

′
−i).”)

Step 2 (Influence): An agent i only deliberates when do-
ing so makes the difference between winning and losing
(∀i, ∀v−i, δi(vi, v−i) = 1 implies χ(vLi , v−i) �= i and
χ(vHi , v−i) = i.)

Assume for contradiction that for some v−i, i deliberates
(δi(vi, v−i) = 1) and either (1) always wins (χ(vLi , v−i) =
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χ(vHi , v−i) = i); (2) always loses (χ(vLi , v−i) �= i and
χ(vHi , v−i) �= i); or (3) wins with the low type and loses
with the high type (χ(vLi , v−i) = i and χ(vHi , v−i) �= i).
In case (3), truthfulness is not a dominant strategy: if
pi(v

L
i , v−i) ≤ vLi then whenever i has the high type, he

prefers to misreport that he has the low type (winning and
paying pi(v

L
i , v−i) ≤ vLi < vHi ) instead of reporting hon-

estly (losing and paying nothing); if pi(vLi , v−i) > vLi then
whenever i has the low type, he prefers to misreport that he
has the high type (losing and paying nothing) rather than
reporting honestly (winning and paying more than his value).
Thus, assume that we are in case (1) or (2). If i’s price de-
pends on his reported type (pi(v−i, v

L
i ) �= pi(v−i, v

H
i )), then

i always strictly prefers not to deliberate and to report the
type that minimizes pi. Otherwise, i strictly prefers not to de-
liberate (reporting arbitrarily), obtaining the same allocation
and payment but avoiding the cost of deliberation.

Step 3 (Base case): If the outcome is not constant, then
there exists some designated agent (without loss of gen-
erality, agent 1) who always wins when he has the high
valuation, regardless of the valuations of the other agents
(∃v, v′, χ(v) �= χ(v′) implies that ∃i, χ(vHi , ∗) = i).

Let vH denote the type profile (vH1 , . . . , vHn ) in which ev-
ery agent has the high type. If given vH , agent 1 deliberates
(δ1(vH) = 1) then, by influence, 1 must win (χ(H) = 1).
Because 1 wins even when all the other agents also have
the high type, by influence he must be the only agent to
deliberate (χ(vH) = 1 implies ∀j �=1δj(v

H) = 0). By infor-
mation availability, the allocation must not depend on the
non-deliberating agents’ types (χ(vH1 , ∗) = 1).

Step 4 (Induction step): When every agent in {1, . . . , k}
has the low valuation, either the auction terminates
(χ(vL1 , . . . , v

L
k , ∗) = ∅), or some designated agent (with-

out loss of generality, agent k + 1) wins whenever he has
the high valuation, regardless of the valuations of agents
{k + 2, . . . , n} (χ(v1,L , . . . , vLk , v

H
k+1, ∗) = k + 1).

Let vLH denote the type profile (vL1 , . . . , v
L
k , v

H
k+1, . . . ,

vHn ) in which all agents from 1 up to k have the low type,
and all agents from k + 1 up to n have the high type. As
in Step 3, under vLH if some agent (assume k + 1) in
{k + 1, . . . , n} deliberates then, by influence, he must win
(χ(vLH) = k + 1) and must be the only agent in that group
to deliberate. By influence, the losing agents with high types
({k + 2, . . . , n}) do not deliberate. By information availabil-
ity, the allocation must be the same regardless of their types
(χ(v1,L , . . . , vLk , v

H
k+1, ∗) = k + 1).

If none of the agents in {k + 1, . . . , n} deliberates given
vLH , then the auction can choose any outcome in which no
bidder from {1, . . . , k} wins. Allocating the good to an agent
i ≤ k who already received an offer would violate influence:
when the other agents report according to vLH , i would be
asked to deliberate even though he always wins.

Step 5 (Necessity): Dynamically direct mechanism M imple-
ments the same social choice function as some SPP auction.

If M asks no agent to deliberate, then the auctioneer can-
not condition on any agent’s preferences. In this case, be-
cause M is deterministic, it must yield a constant outcome

(∀v, v′, χ(v) = χ(v′)). M thus implements the same social
choice function as a degenerate SPP auction that makes no
offers and either always awards the good to some agent j or
never awards the good.

Otherwise, by the argument in Steps 3 and 4, at each stage,
a single designated agent is asked to deliberate, and that
agent wins iff he reports the high valuation. By the influence
property, we know that no further agents deliberate after
some agent has reported the high valuation. Because of this,
the price that agent pays must be a constant (it cannot vary
depending on the deliberations of any other agents, because
the earlier-ordered agents all must reveal low types for i to
be queried, and because none of the later-ordered agents
deliberate; it cannot vary depending on i’s own deliberation,
because he only wins when he reveals the high type). M
therefore implements the same social choice function as an
SPP that makes offers to the agents in ascending order, with
each agent i being offered price pi(v

H
i , vL−i).

We now relate our result to Larson and Sandholm’s impos-
sibility result (Theorem 1). We find that, in IPV settings, SPP
auctions have dominant strategies and satisfy all of Larson
and Sandholm’s desiderata except for strategic-deliberation
proofness (which doesn’t apply to IPV settings).
Corollary 15. SPP auctions are strategy dependent,
non-misleading, and preference-formation independent in
dominant-strategy equilibrium in IPV auction settings.

Proof. Any SPP auction, provided that it does not halt until
an offer is accepted or all the agents have rejected offers,
is strategy-dependent: each bidder can affect the outcome
by accepting or rejecting his offer. All SPP auctions are
preference-formation independent: the auctioneer does not
specify how the agents should deliberate, and does not need to
condition the rules of the auction on details of the setting. All
SPP auctions are non-misleading: in equilibrium, no agent
would never accept an offer that exceeds his valuation.

Conclusions

This paper studied the problem of designing auctions for
deliberative agents without strategic deliberation, a setting in
which the classical revelation principle does not apply and no
(non-trivial) dominant strategy auctions had been identified.
We (1) gave a novel reformulation of the revelation principle
which applies even in the presence of dynamic information
gathering, and (2) leveraged this result to characterize the set
of dominant strategy auctions in IPV settings, showing that
this set is precisely the sequential posted price auctions.

We foresee three strands of future work. First, we aim
to investigate the application of SPP auctions to (non-IPV)
settings with strategic deliberation. Second, we are inter-
ested in investigating whether a randomized auction could
guarantee a sufficiently high expected value of information
to yield dominant strategies in expectation without being
an SPP auction. Third, we aim to design SPP auctions
that maximize revenue or social welfare in deliberative set-
tings, leveraging recent positive results that use SPP auc-
tions to maximize these quantities in non-deliberative settings
(e.g. (Blumrosen and Holenstein 2008; Chawla et al. 2010;
Sandholm, Conitzer, and Boutilier 2005)).
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Appendix: Extended model

The single-step deliberative model used in the body of the pa-
per is expressive enough to describe interesting settings, e.g.,
in which indirect mechanisms can implement social choice
functions that cannot be implemented by direct mechanisms,
and in which SPP auctions are the unique dominant strategy
auction design. However, our positive results (Theorem 12
and Theorem 14 Part 1) apply to a much broader class of
settings. In this expanded model, deliberation (1) can yield
noisy signals; (2) can be a multistage process in which a bid-
der gets progressively more information about his valuation;
and (3) can change an bidder’s valuation (e.g., if he is running
an anytime optimization algorithm to identify a policy for
using the good, finding a better feasible solution increases
the value that he can derive from the good).
Definition 16 (General deliberative Setting). A general de-
liberative setting is a 8-tuple 〈N,X,O, V, f,D, c, P 〉.
• N is a set of agents numbered 1, . . . , n.
• O is a set of possible observations an agent can make.

O is the set of all finite-length vectors of observations,
including the zero-length vector, denoted 〈〉.

• V is a set of possible valuation-function profiles. Every
element v ∈ V is a n-length vector of valuation functions
(one per agent). Each valuation function vi has the form
vi : O �→ R, where vi(oi) is i’s value for winning the
good given that he has made observations oi.

• f : V �→ R is the prior probability distribution over
valuation-function profiles. Agents get their asymmetric
information only by deliberating, so an agent who does
not deliberate knows nothing about his own preferences
beyond this prior.

• D is a set of deliberations. Every d ∈ D is a function
d : Vi �→ ΔO, where ΔS denotes the set of probability
distributions over set S. D is the set of all finite-length
vectors of deliberations, including the zero-length vector,
denoted 〈〉.

• c is a vector of n cost functions. ci : D �→ R is the
cost i must pay to perform the set of deliberations D.
Every cost function ci(·) is non-decreasing; thus, agents
cannot reduce their total deliberation costs by increasing
the number of deliberations they perform. We assume that
ci(〈〉) = 0: the cost of not deliberating is zero.

• P is a vector of n functions specifying the agents’ possible
deliberation actions. Pi : D ×O �→ 2D is set of deliber-
ations i is capable of performing, given the deliberations
he has previously performed and his observations.
In a general deliberative setting, an agent’s utility de-

pends on his valuation function vi, whether or not he wins
(wi = 1 if he wins and 0 otherwise), his total transfers
ti, the deliberations he has performed di and the observa-
tions he has made oi. We assume that utility is quasilinear:
ui(vi, wi, ti, di, oi) = wivi(oi)− ti− ci(di). (Note that this
expression is slightly different from the one given earlier
in the paper; in particular, an agent’s utility can depend on
what observations he has made.) As before, we assume that
the entire setting is common knowledge, that the auction is
deterministic, and that losers make no payments.
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