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Abstract

Equilibrium computation in games is currently consid-
ered one of the most challenging issues in AI. In this
paper, we provide, to the best of our knowledge, the first
algorithm to compute a Selten’s extensive–form perfect
equilibrium (EFPE) with two–player games. EFPE re-
fines the Nash equilibrium requiring the equilibrium to
be robust to slight perturbations of both players’ behav-
ioral strategies. Our result puts the computation of an
EFPE into the PPAD class, leaving open the question
whether or not the problem is hard. Finally, we exper-
imentally evaluate the computational time spent to find
an EFPE and some relaxations of EFPE.

Introduction

The interaction among intelligent rational agents is elegantly
captured by non–cooperative game theory (Fudenberg and
Tirole 1991) that provides models and solution concepts,
but leaves open the problem to compute an equilibrium.
This problem is instead central in the computer science
community. Prominent theoretical and experimental results
have been recently pursued in equilibrium computation, es-
pecially (but not exclusively) for finding a Nash equilib-
rium (NE) in two–player general–sum strategic–form games
and in extensive–form zero–sum games. We cite the best
known results. Computing an exact NE (Daskalakis, Mehta,
and Papadimitriou 2009) and approximating it (Chen, Deng,
and Teng 2006) are PPAD–complete problems; an NE of
strategic–form games can be computed by algorithms based
on linear complementarity programming (Lemke and How-
son 1964), static (Porter, Nudelman, and Shoham 2004) and
local–search based (Ceppi et al. 2010) support–enumeration,
and mixed–integer linear programming (Sandholm, Gilpin,
and Conitzer 2005). Extensive–form games can be repre-
sented by the sequence form (Koller, Megiddo, and von
Stengel 1996) that is exponentially smaller than the nor-
mal form and with zero–sum games abstractions can be used
both with information loss (Gilpin, Sandholm, and Sørensen
2007) and without information loss (Gilpin and Sandholm
2007); gradient based algorithms (Hoda et al. 2010) are
demonstrated to be very efficient to find approximate solu-
tions.
Copyright © 2011, Association for the Advancement of Artificial
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The problem of solving two–player general–sum
extensive–form games has received less attention and
appears as the “natural next issue of the agenda” according
to (von Stengel 2007). The use of sequence form and the
inadequateness of the concept of NE with extensive–form
games (sequential rationality of the strategies is not granted)
make the algorithms for the strategic form non–directly
applicable. Appropriate solutions concepts are: subgame
perfect equilibrium (SPE) when information is perfect and
sequential equilibrium (SE), quasi–perfect equilibrium
(QPE), and extensive–form perfect equilibrium (EFPE)
when information is imperfect. (Due to reason of space
we omit normal–form refinements.) There are three main
computational results: an NE can be computed (with
sequence form) by using the Lemke algorithm (LA) (Koller,
Megiddo, and von Stengel 1996); a more efficient variation
is presented in (von Stengel, van den Elzen, and Talman
2002); a QPE can be computed by using the LA with
symbolic perturbation (Miltersen and Sørensen 2010) and
this problem is in the PPAD class, but it is not known
whether the problem is hard. No significative experimental
results are provided in the literature.

In this paper, we develop the first algorithm to compute
an EFPE with two–player games. This concept refines NE
requiring the equilibrium to be robust w.r.t slight perturba-
tions of all the agents, while QPE takes into account only
the opponents’ perturbations. Although an EFPE can include
weakly dominated strategies and, due to this reason, can
be considered less appealing than QPE (Mertens 1995), in
many practical applications an agent cannot perfectly con-
trol its own strategy and then she will play an EFPE. The
fact that an EFPE is not merely a refinement of QPE, the set
of QPEs and EFPEs being disjoint for some game instances,
strengthens the need for ad–hoc algorithms to compute an
EFPE. Finally, EFPE computation can pave the way to the
study of situations (currently mostly unexplored) where an
agent incurs costs in controlling its strategy (van Damme
1991). We improve the state of the art as follows.

• To find an EFPE, we extend the work presented in (Mil-
tersen and Sørensen 2010) providing a linear complemen-
tarity programming formulation (satisfied by a wide class
of EFPEs) where the perturbation is uniform (the same for
both players) and we modify the LA to solve it showing
that is computationally expensive.
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• To overcome this problem, we provide an alternative lin-
ear complementary formulation (satisfied by a restricted
but non–empty class of EFPE) where the perturbation is
non–uniform (the two players having different perturba-
tions) and we show that in this case the LA does not re-
quire additional computational effort w.r.t. to that required
in (Miltersen and Sørensen 2010).

• We prove that computing an EFPE is into the PPAD class,
our algorithm being a path–following, but we leave open
the question whether or not the problem is hard.

• We provide, to the best of our knowledge, the first experi-
mental analysis, in terms of computational time, memory,
and numerical stability, of algorithms computing NE re-
finements (QPE and EFPE) in extensive–form games.

Extensive–Form Games

A perfect–information extensive–form game (Fudenberg
and Tirole 1991) is a tuple (N,A,V, T, ι, ρ, χ, u), where: N
is the set of agents, A is the set of actions, V is the set of
decision nodes, T is the set of terminal nodes, ι ∶ V → N is
the function that specifies the agent that acts at a given de-
cision node, ρ ∶ V → ℘(A) returns the actions available
to agent ι(w) at decision node w, χ ∶ V × A → V ∪ T
assigns the next (decision or terminal) node to each pair
composed of a decision node w and an action a available
at w, and u = (u1, . . . , un) is the set of agents’ utility
functions where ui ∶ T → R. An extensive–form game is
with imperfect information when an action of some agent is
not perfectly observable by the opponents. Formally, it is a
tuple (N,A,V, T, ι, ρ, χ, u, I) where (N,A,V, T, ι, ρ, χ, u)
is a perfect–information extensive–form game and I =
(I1, . . . , In) with Ii = (Ii,1, . . . , Ii,ki) is a partition of set
Vi = {w ∈ V ∶ ι(w) = i} with the property ρ(w) = ρ(w′)
whenever there exists a j for which w,w′ ∈ Ii,j . The sets Ii,j
are called information sets. We focus on games with perfect
recall (Fudenberg and Tirole 1991) where each agent recalls
all the own previous actions and those of the opponents.

In our work we consider only behavioral strategies, i.e.,
the strategies in which each agent’s (potentially probabilis-
tic) choice at each information set is made independently of
the choices at other nodes. Essentially, a behavioral strategy
σi assigns each information set h ∈ Ii a probability distribu-
tion over the actions available at h. From here on, we shall
refer to “behavioral strategies” simply as “strategies”.

We call μ = {μi ∶ i ∈ N} the beliefs of the agents, spec-
ifying (for every information set) what strategies an agent
believes that the opponents will do. An SE (that is the “nat-
ural” extension of the SPE to situations with imperfect in-
formation) is an assessment (σ,μ) such that for all i ∈ N
strategy σi is sequentially optimal with respect to μi (in the
sense of backward induction), and there exists a perturbed
(fully mixed) strategy profile σ(ε) with limε→0 σ(ε) = σ
and the limit of the sequence of beliefs derived from σ(ε)
by using the Bayes rule converges to μ. QPE and EFPE
pose more severe constraints. A QPE is a strategy profile σ
such that there exists a perturbed strategy profile σ(ε), with
limε→0 σ(ε) = σ, that for all i ∈ N strategy σi is optimal with
respect to σ−i(ε) for all ε ∈ [0, ε0] with some ε0 > 0. A QPE

Figure 1: (L1,∗) is the unique EFPE; (L1,∗), (R1L2,∗)
are QPEs; (L1,∗), (R1L2,∗), (R1R2, l) are SEs.

Figure 2: N is nature (1/2 is a probability); G and B are out-
comes: both players prefer G to B. (O,mr), (MR,o) are
EFPEs; (MR,mr) is the unique QPE.

is an SE requiring also optimality w.r.t. slight perturbations
of the opponents’ strategies. An EFPE is a strategy profile σ
such that there exists a perturbed strategy profile σ(ε), with
limε→0 σ(ε) = σ, that for all i ∈ N strategy σi is optimal
with respect to σ(ε) for all ε ∈ [0, ε0] with some ε0 > 0. An
EFPE is an SE requiring also optimality w.r.t perturbations
of the opponents’ and own strategies.
Example 1 Consider the game represented in Fig. 1. The
SPEs are: (L1,∗), (R1L2,∗), (R1R2, l). They are SEs, the
game being with perfect information. Suppose σ2 = l. When
agent 1 accounts for ε perturbations over agent 2’s strat-
egy (i.e., σ2 = r is played with a probability of ε), we have
E[u1(R1R2)] = 1 − ε < 1 = E[u1(R1L2)] = E[u1(L1)]
and therefore only (L1,∗), (R1L2,∗) are QPEs (where
E[ui(s)] is the expected utility of agent i from making strat-
egy s). When agent 1 accounts for ε perturbations also over
her own strategy, we have E[u1(R1)] = 1 − ε + ε(1 − ε) <
1 = E[u1(L1)] and therefore only (L1,∗) is an EFPE.
Surprisingly, the sets of EFPEs and of QPEs can be disjoint
as shown in Example 2, see also (Mertens 1995).
Example 2 Consider the game represented in Fig. 2, where
two agents choose who will be the agent (i.e., ‘me’ or the
‘other’) that will take a decision (i.e., ‘R’/‘r’ or ‘W’/‘w’).
The game presents a chance node. (O,mr) and (MR,o)
are EFPEs, and (MR,mr) is the unique QPE.
The efficient computation of an NE and its refinements is
based on the sequence form (Koller, Megiddo, and von Sten-
gel 1996). It represents a game as a pair composed of a bi-
matrix and a set of linear constraints where: each agent’s
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actions are (terminal and non–terminal) sequences q of her
actions in the game tree (e.g., in Fig. 1, q = R1 is a non–
terminal, while q = R1R2 is terminal); given a profile of
sequences specifying a sequence per player, if it leads to
a terminal node, then the agents’ payoffs are their utilities
over such a node, otherwise the payoffs are null; and, called
q′ = q∣a the sequence obtained by extending q with action
a (e.g., in Fig. 1, q′ = R1R2 with q = R1 and a = R2), the
probability of sequence q is equal to the sum of the probabil-
ities of the sequences q′ that extend it. Once a game is solved
in sequence form, the behavioral strategies can be easily de-
rived.

Called xi the probability vector of the strategy of agent i,
the sequence form constraints can be formulated as Fixi = fi
where Fi is a matrix and fi is a vector. Called Ui the utility
matrix of agent i and vi the dual variables expressing the
expected utility for each information set, the (mixed) linear
complementarity program for finding an NE is:

Fixi = fi ∀i ∈ {1,2} (1)

F
T
i vi −Uix−i− ≥ 0 ∀i ∈ {1,2} (2)

xi ≥ 0 ∀i ∈ {1,2} (3)

x
T
i ⋅ (F

T
i vi −Uix−i) = 0 ∀i ∈ {1,2} (4)

Example 3 Consider the game depicted in Fig. 2. The
sequences are {∅,O,M,MR,MW} for agent 1 and
{∅, o,m,mr,mw} for agent 2. We have (with abuse of no-
tation we use G and B as payoffs, where G > B):

Ui =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 G 0 G B

0 0 0 G
2

B
2

0 G G
2

0 0

0 B B
2

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
−1 1 1 0 0
0 0 −1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

fi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The mathematical program (1)–(4) can be solved with
LA (Koller, Megiddo, and von Stengel 1996). This algo-
rithm is a simplex–like algorithm, effectively represented by
a tableau, that, starting from a non–complementary basic so-
lution, finds a complementary basic solution by changing the
set of basic variables by a sequence of complementary pivot-
ing steps. The complementary pivoting rule prescribes that
at each step the entering variable is the complementary of
the previous leaving variable and the leaving variable is de-
termined by the minimum ratio test where ties are broken
lexicographycally (von Stengel 2007).

Computation of NE Refinements through

Perturbed Games
In order to compute refinements of NE based on the idea
of perfection, we need to introduce a symbolic perturbation,
defined on ε, over the strategies. The result is an ε–perturbed
game in which there is a strictly positive lower bound (as
function of ε) on the probability with which each strategy
is played. Following (Miltersen and Sørensen 2010), to find
a QPE we can construct a game in which the perturbation
over the probability with which a sequence q is played is
ε∣q∣+1 where ∣q∣ is the length of q. Formally, sequence ∅ has
a length equal to zero and any other sequence has a length
equal to the number of actions it contains. We call li(ε) the
perturbation vector such that xi ≥ li(ε). An NE of such a
game is a QPE of the original non–perturbed game.

Example 4 Consider Fig. 2, li(ε) = [ε, ε2, ε2, ε3, ε3].
By introducing li(ε), the mathematical program (1)–(4) can
be written as:

Fix̃i = fi −Fili(ε) ∀i ∈ {1,2} (5)

F
T
i vi −Uix̃−i −Uil−i(ε) ≥ 0 ∀i ∈ {1,2} (6)

x̃i ≥ 0 ∀i ∈ {1,2} (7)

x̃
T
i ⋅ (F

T
i vi −U1x̃−i −U1l−i(ε)) = 0 ∀i ∈ {1,2} (8)

where x̃i = xi−li(ε). The above program can be solved by a
variant of LA in which perturbation is symbolic and it only
affects the minimum ratio test.

Finding an EFPE in Uniform ε–Perturbed Games

Now, we construct a sequence of ε–perturbed games and the
EFPE is the limit of equilibria of the sequence of games.
Consider the program (5)–(8): although both agents’ strate-
gies are perturbed, the reason why such a program does not
lead to an EFPE is that in the constraints that assure each
agent to play her best response, i.e. (6), no agent takes into
account her own perturbation. More precisely, call E[ui(q)]
the utility expected from playing sequence q, defined as
e(q)TUix−i, where e(q) is a vector in which there is one
in position of q and zero elsewhere. For each sequence q of
agent i such that q = q′∣a and a is played at h, there exists
a constraint (6) that assures that E[ui(q)] plus the utility
of the information sets reachable by q is not larger that the
expected utility of agent i at information set h, i.e., vi(h).

Example 5 Consider the information sets of agent 1 in
Fig. 2. For 1.1, constraints (6) can be written as v1(1.1) −
E[u1(O)] ≥ 0 and v1(1.1) − v1(1.2) − E[u1(M)] ≥ 0.
It can be easily seen that v1(1.2) takes into account per-
turbations only over agent 2’s strategy. Indeed, by con-
straints (6) we have v1(1.2) − E[u1(MR)] ≥ 0 and
v1(1.2) − E[u1(MW )] ≥ 0 and constraints (8) force
v1(1.2) = E[u1(MR)] = G(x̃(o)+ ε2)+ 1/2G(x̃(m)+ ε2).

In order to allow each agent to take into account perturba-
tions over her own strategy, we modify constraints (6) by in-
troducing an additional perturbation. Exactly, we need that:
for each sequence q of agent i such that q = q′∣a and a is
played at h, there exists a variant of constraints (6) assuring
that the expected utility of agent i at information set h (i.e.,
vi(h)) is not smaller than the sum of the following terms:

• (1 − (nh − 1)ε)E[ui(q)], where nh is the number of ac-
tions available at h,

• (1−(nh−1)ε)multiplied by the expected utility (captured
by vi) of the information sets reachable by q,

• the sum of ε multiplied by E[ui(r)] plus the expected
utility of the information sets reachable by r for every r =
r′∣a with a played at h except q.

Example 6 Consider the information sets of agent 1 in
the game depicted in Fig. 2. We need that v1(1.1) − (1 −
ε)E[u1(O)] − εE[u1(M)] − εv1(1.2) ≥ 0 and v1(1.1) −
(1 − ε)v1(1.2) − (1 − ε)E[u1(M)] − εE[u1(O)] ≥ 0, and
that v1(1.2)−(1−ε)E[u1(MR)]−εE[u1(MW )] ≥ 0 and
v1(1.2) − (1 − ε)E[u1(MW )] − εE[u1(MW )] ≥ 0.
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To distinguish the perturbation introduced to compute a QPE
from the one introduced by us to compute an EFPE, we call
li primal perturbation, being defined on the primal vari-
ables, i.e., xi; we call our perturbation dual perturbation,
being defined on the dual constraints of xi. What we obtain
is an ε–perturbed game with primal and dual perturbation,
whose NEs are, by definition of the EFPE concept, EFPEs
of the original non–perturbed game.
Example 7 Consider information set 1.1 in the game de-
picted in Fig. 2. Suppose that agent 2’s strategy prescribes
to play mr. The constraint corresponding to q = O is
v1(1.1) ≥ G + (2G +B)ε + (3/2B − 1/2G)ε2, while the con-
straint corresponding to q = M is v1(1.1) ≥ G + (3/2G +
B)ε+(3/2Bε2 − 1/2)ε2. By lexicographic order, we have that
q = O provides a larger expected utility than q =M and thus
q = O is a best response to mr. It can be easily observed
that q = mr is a best response to O and then (O,mr) is
an NE of the perturbed game and an EFPE of the original
non–perturbed game. The same holds for (MR,o).
The above perturbation can be captured in the formulation
by redefining matrices Ui and Fi. We call Ui(ε) and Fi(ε)
the new matrices. We denote by Ui(q) and Ui(ε, q) the row
vectors corresponding to sequence q, by Fi(q) and Fi(ε, q)
the column vectors corresponding to sequence q, and by q ∈
h if q = q′∣a where a is played at h. We have: Ui(ε, q) =
(1 − (nh − 1)ε)Ui(q) + ε∑q′∶q′∈h,q∈hUi(q

′) and Fi(ε, q) =
(1−(nh−1)ε)Fi(q)+∑q′∶q′∈hq∈h Fi(q

′) (we recall that nh is
the number of sequences q ∈ h). The formulation for finding
an EFPE is:

constraints (5) and (7)

Fi(ε)
T
vi −Ui(ε)x̃−i −Ui(ε)l−i(ε) ≥ 0 ∀i ∈ {1,2} (9)

x̃
T
i ⋅ (Fi(ε)

T
vi −Ui(ε)x̃−i −Ui(ε)l−i(ε)) = 0 ∀i ∈ {1,2} (10)

Example 8 For the game in Fig. 2, matrix Ui(ε) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 (1 − ε)G 0 (1 − ε)G + εG
2

(1 − ε)B + εB
2

0 εG 0 (1 − ε)G
2
+ εG (1 − ε)B

2
+ εB

0 (1 − ε)G + εB (1 − ε)G
2
+ εB

2
0 0

0 (1 − ε)B + εG (1 − ε)B
2
+ εG

2
0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Fi(ε) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
−1 1 1 0 0
0 −ε −(1 − ε) 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Notice that the above constraints are not satisfied by all the
EFPEs, but exclusively by the EFPEs in which each be-
havioral strategy has the same perturbation ε; the same is
in (Miltersen and Sørensen 2010) for finding QPEs.

The program (5), (7), (9), (10) cannot be directly solved
by the LA, but it can be appropriately modified. In particu-
lar, the peculiarity of the program for finding an EFPE (with
respect to the program for finding a QPE) is that the sym-
bolic perturbation is multiplied by the variables. To address
it, the LA must be modified as follows.

Tableau representation. Each element of the tableau is a
polynomial in ε. In order to represent it, we need that each
element of the tableau is a vector reporting the coefficients
of the corresponding polynomial. Notice that, in the initial
tableau, the coefficients of the variables (Fi(ε) and Ui(ε))
are polynomial with a degree smaller than or equal to one,

whereas the degree of the polynomials related to the pertur-
bation over the constants can have degree larger than one.
The vectors we use to represent the polynomial must be dy-
namic since the degree of the polynomials can rise during
the pivoting steps.

Pivoting. The classical pivoting step requires one to divide
elements in tableau. In our case, the elements are polynomial
in ε and their division may not be done since their remainder
may be non–zero. In order to overcome this problem, integer
pivoting (von Stengel 2007) can be used.1 It can be easily
observed that at each step of the integer pivoting the degrees
of the polynomials rises by one.

The algorithm is complete, being granted to terminate
always; the proof is the same of (Miltersen and Sørensen
2010). In addition, since the above algorithm is a path–
following algorithm, computing an EFPE is in the PPAD
class, but it is not known whether the problem is hard.

Finding an EFPE in Non–Uniform ε–Perturbed
Games

The algorithm described in the previous section is not effi-
cient because the pivoting step requires multiplications and
divisions between polynomials in ε whose length (in terms
of number of coefficients) rises with the number of pivoting
steps. This is because the dual perturbation is multiplicative
instead of being additive (as it is the primal one) w.r.t. the
variables. By considering a different (non–uniform) pertur-
bation it is possible to formulate the problem in such a way
that the dual symbolic perturbation is additive w.r.t. the vari-
ables and therefore only the constants are polynomials in ε.
In order to use an additive dual perturbation, we need to re-
define the primal and dual perturbations.

Primal perturbation redefinition. The basic idea here is to
force different primal perturbations, in terms of degrees of ε,
to the two agents. Call li the length of the longest sequence
of agent i. When both agents have the same perturbation ε
over the behavioral strategies, in li(ε) the minimum degree
of ε is 1 and the maximum one is li + 1. Now, we assume
that the perturbation of one agent, say agent 1, over all her
strategies has a lower degree than the perturbation of the op-
ponent, say agent 2 (the study of the reverse case is analo-
gous). An NE of the associated perturbed game keeps to be
an EFPE of the original non–perturbed game. We can rede-
fine the perturbations over the strategies as, called l′i(ε) the
new perturbations, l′1(ε) = l1(ε) and l′2(ε) = ε

l1+1l2(ε).
Example 9 Consider Fig. 2: l′1(ε) = [ε, ε

2, ε2, ε3, ε3] and
l′2(ε) = [ε

4, ε5, ε5, ε6, ε6].
Dual perturbation redefinition. Consider constraints (9). For
consistency, the redefinition of the primal perturbation af-
fects also U2(ε) and F2(ε): all the terms in ε are multi-
plied by εl1+1. After this redefinition, it can be easily ob-

1Call ai,j an element of the tableau, and i′ and j′ the pivot
row and column, respectively, such that ai′,j′ is the pivot. Integer
pivoting works as follows. To eliminate all the coefficients in the
pivot column, multiply each row i ≠ i′ by ai′,j′ and subtract it
from row i′ multiplied by ai,j′ . Then, divide each row i ≠ i′ by the
pivot at the previous step. This last step requires division between
polynomials and can be done as described in (Barnard 2008).
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served that the primal and the dual perturbations have “non–
overlapping” degrees of ε, i.e., in constraints (9) when i = 1
the largest degree of the dual perturbation is smaller than the
smallest degree of U1(ε)l

′
2(ε), and the reverse when i = 2.

Therefore, primal and dual perturbations can be treated sep-
arately. Finally, it can be easily observed that, limiting to the
dual perturbation, there always exists an EFPE when agent i
breaks ties by preferring the outcome such that the agent i’s
sequence leading to it is the shortest (i.e., when the possible
trembles of agent i are minimized).
Example 10 Consider agent 1 in Fig. 2: if O and MR
provide the same expected utility, there is an EFPE where
agent 1 prefers O.
The dual perturbation can be easily defined as a malus that
is minimum for the dual constraints corresponding to the
smallest sequence and is maximum in correspondence of
the longest sequence. We denote the dual (additive) pertur-
bation by ri(ε). Called ri(ε, q) the element of ri(ε) cor-
responding to sequence q, we have r1(ε, q) = −

εl1+2

l1(ε,q)
and

r2(ε, q) = −
εl1+l2+3

l2(ε,q)

Example 11 Consider Fig. 2: r1(ε) = −[ε
3, ε2, ε2, ε1, ε1]

and r2(ε) = −[ε
6, ε5, ε5, ε4, ε4].

The formulation for finding an EFPE is:

constraints (5) and (7)

F
T
i vi −Uix̃−i + ri(ε) −Uil

′

−i(ε) ≥ 0 (11)

x̃
T
i ⋅ (F

T
i vi + ri(ε) −Uix̃−i −Uil

′

−i(ε)) = 0 (12)

The above program can be solved with the Lemke’s algo-
rithm as in (Miltersen and Sørensen 2010) and it is granted
to terminate. Notice that fixing the agent 1’s perturbation de-
gree higher than the agent 2’s can lead to different solutions.
Example 12 Consider Fig. 2. Only (O,mr) is an NE of the
above perturbed game. We have E[u1(O)] = G−ε

2−ε6(G−
B), E[u1(M)] = 1/2G − ε2 − 1/2ε6(G −B) + v1(1.2), and
v1(1.2) = E[u1(MR)] = 1/2G − ε + ε5G. It can be ob-
served that O is the agent 1’s best response to mr. Fur-
thermore, it can be observed that when the perturbation of
agent 1 has a lower degree of the perturbation of agent 2,
(MR,o) is not an NE of the above perturbed game. In or-
der for (MR,o) to be an NE (of the above perturbed game)
we need to make that the agent 2’s perturbation has a degree
lower than agent 1’s.

Experimental Evaluation

We implement in C language the algorithm to find an NE, its
variation to find a QPE, and our non–uniform ε–perturbed
variation to find an EFPE (about our uniform ε–perturbed
variation to find EFPE we provide some consideration be-
low). For each algorithm we develop four implementations:
either based on the original LA (denoted by L1) or based
on (von Stengel, van den Elzen, and Talman 2002) (denoted
by L2) and with either floating point or integer variables with
arbitrary numerical precision. Furthermore, to improve effi-
ciency, we take explicitly only the inverse of the basis and

we apply pivoting only on it, whereas for the remaining por-
tion of the tableau a sparse representation is used. The al-
gorithms were executed on a 2.00 GHz 4 GB RAM UNIX
computer.

We develop a random generator of extensive–form in-
stances, no generator being currently available. The param-
eters are: tree depth l, tree branching b, tree information set
density ρ ∈ [0,1] where ρ = 0 means that all the information
sets contain a single decision node (i.e., the game is with
perfect information), while ρ = 1 means that all the infor-
mation sets contain the maximum set of decision nodes (i.e.,
the game is equivalent to a strategic–form game). The agent
who plays at level l′ is randomly chosen. Payoffs are gener-
ated uniformly from 0 to 100.

Our first experimental analysis is directed on the use of
floating points vs. integer variables. The LA and its varia-
tions are well known to suffer from numerical stability. (Due
to numerical approximation with floating point variables the
whole pivot column may have non–positive coefficients and
the pivoting stops without finding any equilibrium.) We eval-
uate our algorithms with 100 game instances with parame-
ters ρ ∈ [0,1], l ∈ {2,4} and b ∈ {2,3}. For all the game
instances, all the floating point implementations (L1 and L2)
terminate without finding equilibria. We obtain the same re-
sult with integer variables. This shows that only arbitrary
precision variables can be used.

For all the possible combinations of the following values
of the parameters ρ ∈ {0.0,0.5,0.8}, l ∈ {2, . . . ,12}, b ∈
{2,3,4}, we generate five game instances and we apply our
algorithms with arbitrary numerical precision. In Tab. 1 we
report the averages of the most significant results: the size of
the instances in terms of number of agents’ information sets
(∣Hi∣) and of agents’ sequences (∣Si∣), the number of pivoting
steps (p.s.) and the computational time for all the possible
algorithm configurations. Non–terminate executions are due
to deadline (30 m) expiration.

L2 always outperforms L1 both in terms of computational
time and in number of pivoting steps. This is because both
the number of variables in L1 is larger than those in L2 and
L2 is more efficient in the search. The computational time
and number of pivoting steps for computing a NE and its re-
finements QPE and EFPE differ for no more than 8% with
both L1 and L2. Anyway, the equilibria found by the al-
gorithms are usually different: L1–NE, L1–QPE, L1–EFPE
find different equilibria in the 80% of the cases, while L2–
NE, L2–QPE, L2–EFPE always find the same equilibria. It
is worth remarking that as ρ increases the number of ∣Si∣ and
∣Hi∣ decreases and the problem becomes easier.

On the basis of the above results we can estimate the com-
putational time to solve our uniform ε–perturbed formula-
tion for finding an EFPE. Tableau elements being polynomi-
als in ε, the number of operations per pivoting step rises lin-
early in the number of pivoting steps, say s, and it is reason-
able to expect that s is of the same magnitude of the number
of pivoting steps, say s′, for the non–uniform ε–perturbed
formulation. Therefore, we expect that the ratio between the
computational time for the uniform ε–perturbed formulation
and that for the uniform one goes asymptotically with O(s′).
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ρ b l ∣H1 ∣ ∣H2 ∣ ∣S1 ∣ ∣S2 ∣ L1-NE L1-QPE L1-EFPE L2-NE L2-QPE L2-EFPE
p.s. time [s] p.s. time [s] p.s. time [s] p.s. time [s] p.s. time [s] p.s. time [s]

0.0 2 8 118 138 237 276 502 17.96 505 18.32 512 18.65 158 3.20 158 3.39 158 3.19
0.0 2 9 271 241 543 482 1040 146.25 1041 147.60 1049 149.00 153 12.22 153 12.18 153 12.16
0.0 2 10 457 567 915 1134 2040 1142.22 2068 1175.74 2037 1152.14 220 69.18 220 68.91 220 68.75
0.0 2 11 1177 871 2354 1743 – – – – – – 360 443.69 360 442.68 360 441.63
0.0 3 5 67 54 202 163 253 3.28 259 3.45 253 3.38 120 1.00 120 1.00 120 1.00
0.0 3 6 254 111 762 333 699 77.56 761 92.59 700 79.27 209 15.16 209 15.09 209 16.53
0.0 3 7 758 336 2274 1008 – – – – – – 290 183.51 290 182.66 290 182.46
0.0 4 5 125 217 498 869 672 94.54 692 98.94 690 99.79 279 27.55 279 27.46 279 27.53
0.0 4 6 421 945 1682 3781 – – – – – – 758 1155.66 758 1194.11 758 1153.84
0.0 5 5 559 222 2796 1111 1356 1305.60 1388 1349.54 1311 1278.20 292 211.85 292 211.61 292 210.91

0.5 2 8 116 62 232 125 276 5.10 288 5.45 285 5.42 87 0.85 87 0.85 87 0.84
0.5 2 9 157 194 315 389 461 31.83 487 36.05 478 32.60 115 4.35 115 4.33 115 4.33
0.5 2 10 357 332 715 665 1070 268.88 1117 282.00 1104 280.63 268 38.94 268 38.78 268 38.86
0.5 2 11 751 502 1503 1005 – – – – – – 293 141.24 293 140.83 293 140.50
0.5 3 6 135 83 405 250 330 14.10 352 15.20 344 15.65 114 3.31 114 3.30 114 3.30
0.5 3 7 108 564 324 1693 986 370.64 1021 386.67 967 363.85 146 37.36 146 34.77 146 35.68
0.5 3 8 1152 773 3456 2320 – – – – – – 243 456.83 243 455.80 243 454.72
0.5 4 5 116 97 465 387 320 19.07 315 19.33 324 19.71 97 4.10 97 4.10 97 4.11
0.5 4 6 254 564 1017 2255 1015 797.55 1095 871.46 1090 869.06 150 85.37 150 85.17 150 85.16
0.5 5 5 486 110 2427 547 990 795.46 1088 853.23 1003 820.85 697 477.23 697 478.35 697 476.15

0.8 2 9 138 74 277 149 251 8.79 275 10.17 266 10.12 60 0.76 60 0.76 60 0.76
0.8 2 10 135 322 271 644 685 93.87 682 109.58 668 93.69 132 9.91 132 9.88 132 9.87
0.8 2 11 299 476 599 953 1096 455.30 1124 473.59 1100 462.78 165 42.46 165 42.28 165 42.21
0.8 2 12 621 1070 1243 2141 – – – – – – 275 280.86 275 265.73 275 265.49
0.8 3 6 112 60 336 180 310 10.13 309 10.35 304 10.31 66 1.10 66 1.10 66 1.09
0.8 3 7 279 106 838 319 451 79.27 465 83.59 462 83.62 53 4.51 53 4.50 53 4.50
0.8 3 8 597 398 1790 1193 1253 1023.35 1251 1028.51 1242 1019.76 130 82.74 130 82.20 130 82.23
0.8 4 5 100 24 401 94 187 4.50 202 4.96 202 5.05 50 0.76 50 0.76 50 0.77
0.8 4 6 114 354 456 1416 725 215.23 746 224.22 724 215.58 149 31.73 149 31.58 149 37.87
0.8 5 5 120 95 601 474 287 24.40 297 25.95 288 25.06 56 3.39 56 3.37 56 3.36

Table 1: Experimental results. We denote by ‘L1’ the Lemke algorithm, by ‘L2’ the variation proposed in (von Stengel, van den
Elzen, and Talman 2002), by ‘–’ algorithm non–terminations due to deadline expiration (30 m).

Concluding Remarks

Developing algorithms for general–sum extensive–form
games is one of the next issue of the equilibrium computa-
tion agenda. The concept of EFPE is particularly interesting
since it captures the situation wherein every agent accounts
for possible trembles of her own and opponents’ strategies.
We provide the first algorithm to compute an EFPE. The al-
gorithm is based on linear complementarity programming.
Furthermore, we provide the first experimental analysis of
algorithms to find NE refinements (QPE and EFPE) with
extensive–form games showing numerical limitations and
comparing computational times.

In future, we will extend our algorithms to the situations
in which agents are more than two and/or can have costs
in controlling their strategies, and to find extensive–form
proper equilibria (van Damme 1991).
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