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Abstract

Automated agents for electricity markets, social networks,
and other distributed networks must repeatedly interact with
other intelligent agents, often without observing associates’
actions or payoffs (i.e., minimal information). Given this re-
ality, our goal is to create algorithms that learn effectively
in repeated games played with minimal information. As in
other applications of machine learning, the success of a learn-
ing algorithm in repeated games depends on its learning bias.
To better understand what learning biases are most success-
ful, we analyze the learning biases of previously published
multi-agent learning (MAL) algorithms. We then describe a
new algorithm that adapts a successful learning bias from the
literature to minimal information environments. Finally, we
compare the performance of this algorithm with ten other al-
gorithms in repeated games played with minimal information.

Introduction

Large-scale distributed networks, such as new-age electric-
ity markets and social networking sites, are becoming in-
creasingly reliant on automated agents. To be successful,
these automated agents must repeatedly interact with other
intelligent agents. Such situations can be modeled as re-
peated games played with minimal information, wherein the
actions and payoffs of associates are unobservable. Given
the uncertainty present in these environments, it is impor-
tant that multi-agent learning (MAL) algorithms be devel-
oped that can learn effectively in these games.

MAL in repeated games has been the subject of many
research papers over the past couple of decades (Shoham,
Powers, and Grenager 2007; Hoen et al. 2006). Many of
these papers articulate a particular goal (such as best re-
sponse, Nash equilibrium, and no regret) for MAL, and then
derive an algorithm to begin to achieve that goal. Rather than
articulate a new vision for MAL, we focus instead on the
means that have been used by algorithm designers to realize
their goals. That is, we focus on the set of assumptions, rep-
resentations, and rules that algorithms encode to determine
a strategy from experience. These assumptions, representa-
tions, and rules form an algorithm’s learning bias. Thus, in
this paper, we seek to determine what learning biases are
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most likely to produce behavior that yields high payoffs in
repeated matrix games played with minimal information.

To determine what learning biases are most successful in
repeated games played with minimal information, we dis-
sect the learning biases encoded by a set of previously pub-
lished MAL algorithms. We then create a new algorithm by
adapting a successful learning bias to minimal information
environments. We then compare the performance of this al-
gorithm with ten other algorithms in a large number of re-
peated matrix games played with minimal information.

Learning Bias in Multi-agent Learning

The learning bias of an MAL algorithm consists of the set
of assumptions, representations, and rules it uses to define
its strategy space, model representations, and strategy selec-
tion rules. In this section, we identify and discuss the design
decisions made in some existing MAL algorithms.

Strategy Space

In a repeated game, a strategy consists of a probability distri-
bution over the agent’s action set for each state of the world.
Thus, to define the algorithm’s strategy space, an MAL al-
gorithm designer must define a set of possible probability
distributions and the states of the world.

Probability distributions Essentially three different
kinds of probability distributions have been encoded by
designers of MAL algorithms. First, some algorithms
choose actions from the set of all pure and mixed strategies.
Second, some algorithms encode only pure strategies. This
simplifying decision precludes the algorithm from fulfilling
certain goals (such as Nash equilibrium), but can help the
agent react quickly to changes in the environment. Third,
some algorithms encode a few mixed strategies in addition
to all pure strategies.

States of the world A strategy defines an agent’s behav-
ior over the world states defined by the algorithm designer.
Since agents play the same game in each round of a repeated
matrix game, many designers of MAL algorithms have as-
sumed a single world state. We refer to this state represen-
tation as stateless. This limiting assumption means that the
agent’s strategy consists of a single probability distribution
over its actions, which can preclude the agent from reason-
ing about how its current actions affect its future payoffs.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial IntelligenceProceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

650



Table 1: Assumptions, representations, and rules encoded by algorithms in repeated matrix games.

Algorithm

Probability State Rep- Belief Reward Strategy
Distributions resentation Priors Models Representation Selection Rules

Mixed

+
Pure

Pure

only

Pure +
Some

Mixed

State-

less

Recur-

rent

State

Opti-

mistic

Rand-

om

Oppo-

nent

Strat.

Own

Strat.

Util-

ity

Imm.

Reward

Imm. +
Future

Reward

Grad-

ient

Ascent

Best

Re-

sponse

Maxi-

min

Satis-

ficing

Teach-

ing

*WPL (Abdallah and
Lesser 2008) � � � � � � �
Hyper-Q � � � � � � �(Tesauro 2004)
FP (Fudenberg and
Levine 1998) � � ? ? � � �
sFP (Fudenberg and
Levine 1998) � � ? ? � � �
Nash-Q (Hu and
Wellman 1998) � � � � � �
**Q-learning (Sand-
holm and Crites 1996) � � � � � �
*WoLF-PHC (Bowling
and Veloso 2002) � � � � � � �
*GIGA-WoLF
(Bowling 2005) � � � � � � �
*Exp3 � � � � � �(Auer et al. 1995)
Minimax-Q � � � � � �(Littman 1994)
M-Qubed (Crandall
and Goodrich 2011) � � � � � � �
*Satisficing (Stimpson
and Goodrich 2003) � � � � � � �
Tit-for-tat � � � �(Axelrod 1984)
Godfather � � � � �(Littman and Stone 2001)
Bully � � � � �(Littman and Stone 2001)

* The algorithm can be used in games played with minimal information.
** The cited version of the algorithm cannot be used in games played with minimal information, but other versions of the algorithm can.
? Specification of priors is left to the implementation.

Alternately, an agent can use information from previ-
ous rounds to define its state. This has been called recur-
rent state (Moody et al. 2004). For example, Tit-for-tat de-
fines world state by its associate’s previous action (Axelrod
1984). Similarly, learning algorithms have used the previ-
ous actions of all agents (called joint actions) to define state
(Sandholm and Crites 1996; Crandall and Goodrich 2011;
Bouzy and Metivier 2010). However, it is not possible to de-
fine state with associates’ previous actions in games played
with minimal information.

Table 1 (cols. 2-6) summarizes the strategy spaces en-
coded by a representative set of algorithms in matrix games.
Many of these algorithms encode all mixed and pure strate-
gies while using a stateless representation of the world.

Model Representation

An MAL algorithm designer must also specify the algo-
rithm’s belief models, reward representation, and initial pa-
rameter settings (i.e., priors).

Belief models Most learning algorithms utilize mathemat-
ical structures, updated after each time step, to form the
agent’s beliefs about the world. These models typically fit
into three categories: opponent strategy models, own strat-
egy models, and utility models. Opponent models refer to
beliefs about the behaviors of associates, which the agent
uses to compute expected rewards. For example, FP models
the empirical distribution of opponents strategies. From this
model, it estimates the expected reward for taking each ac-
tion. Most algorithms that use opponent models cannot be

used in games played with minimal information since the
behavior of associates is not directly observable.

Some algorithms use mathematical structures that explic-
itly model their own strategies. Such models allow the agent
to reflect on the success of its current strategy. For exam-
ple, to determine its strategy at time t + 1, GIGA-WoLF
remembers and compares its current mixed strategy xt with
the mixed strategy zt, which changes more slowly than xt.

Utility models, the most popular form of belief model for
the algorithms shown in Table 1, estimate the reward the
agent will received for executing a particular strategy in a
given state. Perhaps the most prominent example of an algo-
rithm that uses a utility model is Q-learning, which seeks to
learn the Q-value of each state-action pair.

Reward representation MAL algorithms usually con-
sider two forms of rewards: immediate rewards and future
rewards. Algorithms that encode only immediate rewards
update the agent’s model estimates using only the immediate
reward received in that time period. Algorithms that encode
future rewards combine the immediate reward with some es-
timate of the payoffs the agent will receive in the future.

Priors While initial parameter settings (or priors) are
sometimes unimportant in single-agent learning (e.g.,
(Watkins and Dayan 1992)), they can be very important in
multi-agent domains. Despite their importance, many de-
scriptions of MAL algorithms give little thought to priors.
Rather, information about the priors is often (1) not speci-
fied, (2) set to some fixed value (such as 0), or (3) initialized
randomly. We refer to such priors as random.
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However, some algorithms are specific about priors.
These algorithms often set priors optimistically to promote
behavior that is likely to be profitable (such as coopera-
tion). For example, tit-for-tat sets the initial state of the
world to cooperate, which essentially gives associates the
benefit of the doubt. Similarly, M-Qubed and the satisficing
learning algorithm rely on high initial Q-values and aspira-
tions (Crandall and Goodrich 2011; Stimpson and Goodrich
2003). This biases these algorithms toward solutions that
produce higher long-term payoffs.

Table 1 (cols. 7–13) categorizes the priors, belief models,
and reward representations of the representative algorithms.
Most of these algorithms use random priors with immediate
rewards. Interestingly, this combination often corresponds to
the use of mixed strategies and a stateless representation of
the world. Only two algorithms (Godfather and M-Qubed)
encode both optimistic priors and future rewards.

Strategy Selection

An algorithm typically uses its model estimates to determine
which strategy to play from its strategy space. Table 1 lists
the five types of strategy selection rules:

• The gradient ascent strategy rule selects a new strategy
by nudging its previous strategy up the reward gradient.
The algorithms that encode this strategy rule in Table 1 all
define their strategy spaces with mixed strategies defined
in a single world state.

• The best response strategy rule selects the strategy from
its strategy space with the highest expected utility with
respect to current belief models. Note that this does not
guarantee that the agent actually plays a best response to
associates’ strategies since belief models may be in error.

• The maximin strategy rule consists of playing the max-
imin strategy, the strategy that maximizes its minimum
possible expected payoff. This strategy selection rule is
difficult to implement in minimal information environ-
ments since computing the maximin strategy requires
knowledge of the agent’s payoff matrix, which the agent
can only constructe if associates’ actions are observable.

• The satisficing strategy rule repeats the strategy used in
the previous round when the previous payoff meets some
aspiration level. While perhaps the least popular strat-
egy rule, it is effective in some repeated matrix games
(Karandikar et al. 1998; Stimpson and Goodrich 2003).

• Teaching strategy rules are designed to elicit desired be-
havior from associates. For example, tit-for-tat recipro-
cates defection and cooperation in the prisoners’ dilemma
to make cooperation more profitable to its associate than
defection. To implement teaching strategies, an agent typ-
ically must observe its associates’ payoffs and actions.
This limits the use of teaching strategies in games played
with minimal information.

Most of the algorithms in Table 1 use either best response
or gradient ascent strategy rules. An algorithm can poten-
tially use multiple strategy rules. For example, M-Qubed en-
codes both best response and maximin strategy rules.

Summary of Learning Biases

We make two observations about the learning biases en-
coded by our representative set of algorithms (Table 1).
First, few of the algorithms can be used in minimal informa-
tion environments. Many of the algorithms that do qualify
(1) select strategies from among all probability distributions
(pure and mixed), (2) encode a stateless representation of
the world, (3) use random priors, and (4) use either a best
response or gradient ascent strategy selection rule. We call
this learning bias the rational learning bias, since these al-
gorithms aspire to game-theoretic ideals.

Second, recent empirical studies have highlighted the ro-
bustness of M-Qubed (Bouzy and Metivier 2010; Crandall
and Goodrich 2011). However, M-Qubed requires knowl-
edge of associates’ actions, so it cannot be used in games
played with minimal information. Given the success of M-
Qubed, it is desirable to find an algorithm that encodes a
similar learning bias, but that can be used in minimal infor-
mation environments. We now present such an algorithm.

A New Algorithm

M-Qubed is a reinforcement learning algorithm that uses
optimistic priors, encodes state from the previous joint ac-
tion(s) played in the game, and balances best response and
maximin strategy selection rules. However, because it re-
quires knowledge of associates’ actions to encode its state
and implement its maximin strategy rule, it cannot be used
in games played with minimal information.

R-lopars (reinforcement learning with optimistic priors
and action-reward state) utilizes a similar learning bias to
M-Qubed, but it does not require knowledge of associates’
actions. Specifically, R-lopars is identical to M-Qubed with
two important differences. First, R-lopars does not include
the maximin strategy in its strategy space. Second, rather
than use the previous joint actions to encode recurrent state,
R-lopars uses the combination of its previous action and its
previous reward rt−1

i to encode its state. Since rt−1
i depends

on the joint actions of the agents, this state representation is
similar to the one encoded by M-Qubed, except that it does
not encode the maximin strategy selection rule.

Formally, let Ai be the set of actions available to player
i, ati ∈ Ai be the action played by player i at time t, and rti
be the payoff received by player i after playing its action in
time t. Then, player i’s state sti ∈ S (S is the set of states)
at time t is sti = (at−1

i , rt−1
i ). Given the state sti, player i

selects ati from the probability distribution πi(s
t
i) given by

πi(s
t
i) ←

{
π∗i (s

t
i) if s∗ ∈ SPrev

(1− εti)π
∗
i (s

t
i) + εtiχi otherwise (1)

where SPrev is the set of states visited in the last |S| episodes
(we assume S is finite), s∗ is the highest global Q-value
given by s∗ = argmax(s∈S,a∈Ai) Qi(s, a)), χi denotes the
uniform probability distribution over the action set Ai, εti is
the exploration rate, and π∗i (s

t
i) is the agent’s best response

strategy with respect to its Q-values:

π∗i (s
t
i) ← argmax

a∈Ai

Qi(s
t
i, a). (2)
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Table 2: Learning biases of the learning algorithms used in our study. κt(s) is the number of times state s has been visited
before time t, and κt(s, a) is the number of times action a has been taken in s before time t.

Algorithm
Probability

Distributions

State

Representation

Strategy

Selection
Prior

Reward

Representation
Parameter Values and Explanations

S-alg(1)

Pure
strategies +
random

Recurrent state: Satisficing
Optimistic
(high αt

i )
Immediate
reward

α0
i = rmax

i , λ = 0.99, ω = 1, E = (50, 100]; αt
i denotes the aspiration

level at time t. State is a boolean value determined by the inequality αt
i ≤ rtαt

i ≤ rt−1?

S-alg(2)

Pure
strategies +
random

Recurrent state: Satisficing
Optimistic
(high αt

i )
Immediate
reward

α0
i = rmax

i , λ = 0.997, ω = 2, E = (50, 100]; μt
i is player i’s running

average payoff. State is a boolean value determined by the inequality αt
i ≤ μt

i
αt
i ≤ μt

i?

QL(0)
Pure
strategies Stateless Best

response
Random
(Q-values)

Immediate
reward

∀s, a, Q(s, a) = rand

(
0,

rmax
i
1−γ

)
, α = 1

10+κt(s,a)/100
, γ = 0.95,

ε-greedy exploration, ε = 1
10+κt(s,a)/1000

QL(1)
Pure
strategies

Recurrent state:

at−1
i

Best
response

Random
(Q-values)

Imm. +
future
rewards

∀s, a, Q(s, a) = rand

(
0,

rmax
i
1−γ

)
, α = 1

10+κt(s,a)/100
, γ = 0.95,

ε-greedy exploration, ε = 1
10+κt(s,a)/1000

QL(2)
Pure
strategies

Recurrent state:

at−1
i , at−2

i

Best
response

Random
(Q-values)

Imm. +
future
rewards

∀s, a, Q(s, a) = rand

(
0,

rmax
i
1−γ

)
, α = 1

10+κt(s,a)/100
, γ = 0.95,

ε-greedy exploration, ε = 1
10+κt(s,a) 1000

QL-OP
Pure
strategies

Recurrent state:

at−1
i

Best
response

Optimistic
(high
Q-values)

Imm. +
future
rewards

∀s, a, Q(s, a) =
rmax
i
1−γ

, α = 1
10+κt(s,a) 100

, γ = 0.95, ε-greedy

exploration, ε = 1
10+κt(s,a)/1000

R-lopars
Pure
strategies

Recurrent state:

at−1
i , rt−1

i

Best
response

Optimistic
(high
Q-values)

Imm. +
future
rewards

∀s, a, Q(s, a) =
rmax
i
1−γ

, α = 0.1, γ = 0.95, εti = 1
10+κt(s,a)/1000

,

E = (50, 100]

GIGA-WoLF

Mixed +
pure
strategies

Stateless Gradient
ascent

Random
(mixed
strategy)

Immediate
reward

ηi = 0.02, α = 0.1 (used to update rt); we added 1% exploration, random
mixed strategy for initial policy

WPL

Mixed +
pure
strategies

Stateless Gradient
ascent

Random
(mixed
strategy)

Immediate
reward

ηi = 0.02, α = 0.1; we added 1% exploration, random mixed strategy for initial
policy

WoLF-PHC

Mixed +
pure
strategies

Stateless Gradient
ascent

Random
(mixed
strategy)

Immediate
reward

α = 1
100+t/10000

, δ = δw = 1
20000+t

, δl = 4δw , ∀s, a,

Q(s, a) = rand

(
0,

rmax
i
1−γ

)
, ε-greedy with 5% exploration, random mixed

strategy for initial policy

Exp3

Mixed +
pure
strategies

Stateless Gradient
ascent

Random
(mixed
strategy)

Immediate
reward

ηi = λ
|Ai| (|Ai| is the number of actions for player i), gi = 300000

Like M-Qubed, R-lopars uses an on-policy Q-update after
each time step:

Qi(s
t
i, a

t
i) ← (1− α)Qi(s

t
i, a

t
i) + α[rti + γVi(s

t+1
i )] (3)

where α ∈ (0, 1) is the learning rate, γ ∈ (0, 1] is the dis-
count factor, and

Vi(s) =
∑
a∈Ai

πt
i(s, a)Q(s, a) (4)

R-lopars is summarized in Algorithm 1. R-lopars plays
randomly for the first E episodes, during which time it esti-
mates its highest payoff rmax

i . It then initializes its Q-values
optimistically to its highest possible value given rmax

i , and
then learns and acts using Eqs. (1)–(4).

Experimental Setup

To evaluate the effectiveness of R-lopars and other learn-
ing biases in games played with minimal information, we
conducted a large empirical study. We now discuss the al-
gorithms, games, and measurement techniques used in this
study. Results of the study are presented in the next section.

Algorithms

Table 2 summarizes the algorithms included in our study
along with the learning biases they encode. We selected
these algorithms using two rules. First, only algorithms that

Algorithm 1 R-lopars
rmax
i = −∞
∀s ∈ S, πi(s) ← χi

for t = 1 to E do
select at

i according to πi(s
t
i)

observe rti
st+1
i ← (at

i, r
t
i)

rmax
i ← max(rmax

i , rti)
end for
set α and γ

∀s ∈ S, a ∈ Ai, Qi(s,a) ← rmax
i
1−γ

repeat
t ← t+ 1
Select at

i according to πi(s
t
i)

Observe rti
st+1
i ← (at

i, r
t
i)

Update Qi(s
t
i, a

t
i) according to Eq. (3)

Update πi(s
t
i) according to Eq. (1)

until Game Over

did not require knowledge of associate’s actions and pay-
offs were selected. Second, we selected algorithms to rep-
resent a range of goals and learning biases, while seeking
to adequately represent popular learning biases (such as the
rational learning bias). Where possible, we tried to use the
parameter values used in the published literature.
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Table 3: Selected games, scaled to payoffs between 0 and 1.

(a) Common Interest
c d

a 1.00, 1.00 0.00, 0.00
b 0.00, 0.00 0.50, 0.50

(b) Coordination
c d

a 1.00, 0.50 0.00, 0.00
b 0.00, 0.00 0.50, 1.00

(c) Stag hunt
c d

a 1.00, 1.00 0.00, 0.75
b 0.75, 0.00 0.50, 0.50

(d) Tricky Game
c d

a 0.00, 1.00 1.00, 0.67
b 0.33, 0.00 0.67, 0.33

(e) Prisoners’ Dilemma
c d

a 0.60, 0.60 0.00, 1.00
b 1.00, 0.00 0.20, 0.20

(f) Battle of the Sexes
c d

a 0.00, 0.00 0.67, 1.00
b 1.00, 0.67 0.33, 0.33

(g) Chicken
c d

a 0.84, 0.84 0.33, 1.00
b 1.00, 0.33 0.00, 0.00

(h) Security Game
c d

a 0.84, 0.33 0.84, 0.00
b 0.00, 1.00 1.00, 0.67

(i) Offset Game
c d

a 0.00, 0.00 0.00, 1.00
b 1.00, 0.00 0.00, 0.00

(j) Matching Pennies
c d

a 1.00, 0.00 0.00, 1.00
b 0.00, 1.00 1.00, 0.00

(k) Shapley’s Game
d e f

a 0.0, 0.0 1.0, 0.0 0.0, 1.0
b 0.0, 1.0 0.0, 0.0 1.0, 0.0
c 1.0, 0.0 0.0, 1.0 0.0, 0.0

(l) Rock, Paper, Scissors
d e f

a 0.5, 0.5 1.0, 0.0 0.0, 1.0
b 0.0, 1.0 0.5, 0.5 1.0, 0.0
c 1.0, 0.0 0.0, 1.0 0.5, 0.5

In addition to R-lopars, the algorithms used in the study
included four algorithms that encode the rational learning
bias (GIGA-WoLF, Exp3, WPL, and WoLF-PHC), two ver-
sions of satisficing learning (S-alg(1) and S-alg(2)), and five
distinct Q-learning algorithms that do not require knowledge
of associates’ payoffs and actions.

Games

We evaluated the algorithms in the twelve two-player ma-
trix games shown in Table 3. These games include constant-
sum, common-interest, and conflicting-interest games. Most
of these games have been studied repeatedly in the litera-
ture, as they test algorithms’ abilities to compete, share prof-
its, and bound losses. We also evaluated the algorithms in
three sets of two-player randomly generated matrix games
with between two and five actions. These random games
consisted of 200 constant-sum games, 200 common-interest
games, and 200 conflicting-interest games, respectively.

Evaluation

We conducted two kinds of tournaments for each ma-
trix game. First, we conducted round-robin tournaments in
which each algorithm was paired with every other algorithm
and itself. Each pairing consisted of a repeated game lasting
300,000 rounds. An algorithm’s performance was measured
as its average payoff per round when paired with each of the
11 algorithms (averaged over 50 trials each).

Table 4: Summary of results for the selected games.
Game Average Round-Robin Payoffs Population after 1000 Generations

Common
Interest Game

1. Exp3 0.981 1. S-alg(2) 63.2%
2. S-alg(2) 0.972 2. S-alg(1) 36.8%
3. QL-OP 0.971

Coordination
Game

1. GIGA-WoLF 0.866 1. QL(0) 90.5%
2. QL(0) 0.805 2. GIGA-WoLF 9.0%
3. QL(1) 0.797 3. QL(2) 0.5%

Stag hunt
1. QL-OP 0.782 1. S-alg(2) 61.1%
2. S-alg(1) 0.772 2. S-alg(1) 38.9%
3. S-alg(2) 0.770

Security Game
1. R-lopars 0.623
2. S-alg(1) 0.617 1. R-lopars 100%
3. S-alg(2) 0.607

Tricky Game
1. R-lopars 0.760 1. R-lopars 59.6%
2. QL(2) 0.671 2. S-alg(1) 20.9%
3. S-alg(2) 0.669 1. S-alg(2) 19.6%

Offset Game
1. R-lopars 0.244
2. GIGA-WoLF 0.193 1. GIGA-WoLF 100%
3. QL(0) 0.158

Prisoners’
Dilemma

1. S-alg(2) 0.361
2. R-lopars 0.360 1. R-lopars 100%
3. S-alg(1) 0.358

Battle of the
Sexes

1. GIGA-WoLF 0.918 1. GIGA-WoLF 58.6%
2. QL(0) 0.880 2. QL(0) 41.2%
3. QL-OP 0.863 3. R-lopars 0.2%

Chicken
1. S-alg(2) 0.830 1. S-alg(2) 63.4%
2. Exp3 0.810 2. S-alg(1) 36.6%
3. S-alg(1) 0.766

Shapley’s
Game

1. R-lopars 0.517
2. QL-OP 0.462 1. R-lopars 100%
3. QL(2) 0.460

Matching
Pennies

1. S-alg(2) 0.587 1. WPL* 71.4%
2. R-lopars 0.547 2. WoLF-PHC* 11.1%
3. QL(2) 0.526 3. QL(2)* 9.9%

Rock, Paper,
Scissors

1. R-lopars 0.584 1. WPL* 54.7%
2. QL-OP 0.529 2. WoLF-PHC* 37.8%
3. QL(1) 0.529 3. R-lopars* 7.0%

Average

1. R-lopars 0.633 1. R-lopars 31.0%
2. S-alg(2) 0.598 2. S-alg(2) 17.4%
3. QL-OP 0.597 3. GIGA-WoLF 14.0%
4. QL(2) 0.590 4. S-alg(1) 11.1%
5. QL(1) 0.583 5. QL(0) 10.9%
6. S-alg(1) 0.563 6. WPL 10.5%
7. WPL 0.554 7. WoLF-PHC 4.1%
8. GIGA-WoLF 0.552 8. QL(2) 0.9%
9. QL(0) 0.546 9. Exp3 0.2%
10. Exp3 0.540 T10. QL(1) 0.0%
11. WoLF-PHC 0.531 T10. QL-OP 0.0%

* No convergence – average share over 50,000 generations given.

We also conducted evolutionary tournaments in which a
large population of agents, each employing one of the 11
algorithms, was evolved over a series of generations accord-
ing to the algorithms’ fitnesses. Fitness was determined by
randomly pairing each agent in the population with another
agent in a 300,000-round repeated game. Initially, each algo-
rithm was equally represented in the population. The propor-
tion of the population employing each algorithm was then al-
tered in each subsequent generation using the replicator dy-
namic (Taylor and Jonker 1978). Performance in these evo-
lutionary tournaments was measured as the percentage of the
population employing that algorithm after 1000 generations.

Results

The top performers in each of the games and tournaments
are shown in Tables 4 and 5 and Figure 1. As expected, no
one algorithm performed the best in all games. However, R-
lopars performed the best on average. It had the highest av-
erage payoff per round in the round-robin tournaments in
both the selected games and in each class of random games.
Furthermore, it performed well in many individual games,
finishing in the top two in seven of the twelve games. In
evolutionary tournaments, it had the highest average popula-
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Figure 1: Population share in evolutionary tournaments in random games.

Table 5: Average payoffs in random games.

Common Interest Conflicting Interest Constant Sum

1. R-lopars 0.971 1. R-lopars 0.847 1. R-lopars 0.528
2. QL-OP 0.964 2. QL-OP 0.811 2. QL(2) 0.512
3. GIGA-WoLF 0.957 3. QL(1) 0.800 3. QL-OP 0.511
4. S-alg(1) 0.955 4. QL(0) 0.798 4. QL(1) 0.509
5. QL(0) 0.951 5. QL(2) 0.795 5. WPL 0.506
6. QL(1) 0.946 6. S-alg(2) 0.792 6. Exp3 0.504
7. Exp3 0.945 7. GIGA-WoLF 0.790 7. GIGA-WoLF 0.497
8. S-alg(2) 0.940 8. S-alg(1) 0.789 8. WoLF-PHC 0.497
9. WPL 0.938 9. WPL 0.772 9. S-alg(2) 0.485
10. QL(2) 0.933 10. Exp3 0.772 10. QL(0) 0.481
11. WoLF-PHC 0.917 11. WoLF-PHC 0.749 11. S-alg(1) 0.471

tion share after 1000 generations across the selected games,
achieving an average population share of 31%. In random
games, it obtained the highest population share in common-
and conflicting-interest games, and the second highest pop-
ulation share in constant-sum games.

It is interesting to analyze what aspects of R-lopars’s
learning bias make it perform as it does. To do this, we com-
pare its performance with that of other algorithms whose
learning biases differ from it in some way. First, we com-
pare it to QL-OP. The main difference between these two
learning algorithms is their state representation. Both algo-
rithms use recurrent state, but QL-OP’s state is its previous
action, while R-lopars uses its previous action and reward.

R-lopars’s and QL-OP’s average performance in the
round-robin tournaments are both in the top three on aver-
age in both selected and random games (Tables 4 and 5).
However, R-lopars substantially outperforms QL-OP in evo-
lutionary tournaments due to its superior performance in
self play (Figure 2). This result illustrates the importance
of defining state with respect to the previous behaviors of all
agents, which R-lopars encodes with its previous reward.

While defining state with something that reflects the past
behavior of all agents is important, it is not the only aspect
of R-lopars’s learning bias that makes it successful. Both S-
alg(1) and S-alg(2) also encode a recurrent state based on
previous rewards. However, R-lopars’s performance is much
more robust than both S-alg(1) and S-alg(2). While these
algorithms also perform very well in self play (Figure 2),
they do not perform as well as R-lopars when associating
with other types of algorithms (Figure 3). In this case, R-
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Figure 2: Average per round payoffs in self play.
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Figure 3: Average per round payoff in all selected games.

lopars’s best response strategy rule and/or its use of future
discounted rewards allow it to learn more effectively than
the satisficing algorithms, which use a satisficing decision
rule and only encode immediate rewards.

Tables 4 and 5 and Figure 1 also show the importance of
setting optimistic priors in games played with minimal infor-
mation. Except in random constant-sum games, the top two
(and sometimes three) algorithms all set optimistic priors. A
comparison of QL-OP and QL(1), who differ only in their
priors, also illustrates this importance. In both selected and
random games, QL-OP outperformed QL(1) on average.

Algorithms that encode the rational learning bias (GIGA-
WoLF, WoLF-PHC, Exp3, and WPL) typically performed
poorly in most of our tournaments. This suggests that a ra-
tional learning bias is not effective across a wide range of re-
peated matrix games played with minimal information. One
exception to this latter observation is in constant-sum games.
While R-lopars quickly gained a high population share in
the random, constant-sum, evolutionary tournament (Fig-
ure 1(a)), WPL slowly gained an upper hand once weaker
algorithms were eliminated from the population. Thus, in
games played with minimal information, the rational learn-
ing bias appears to be somewhat successful in fully compet-
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itive games, but not in other kinds of games.
Finally, any time conclusions are made using empirical re-

sults, the results are somewhat contingent on the parameter
values that are used. Parameter values constitute yet another
aspect of an algorithm’s learning bias. One particularly in-
teresting question is whether an agent is better off using a
faster learning rate. To investigate this, we re-ran our round-
robin tournaments with two versions of each algorithm, one
with a fast learning rate, and the other with a slow learning
rate. Results showed that, while the learning rate had a slight
impact on performance in some individual games, there was
no net benefit to having a faster learning rate (or vice versa).
Thus, in our study, learning rate was not an important com-
ponent of an algorithm’s learning bias.

Conclusions and Discussion

In this paper, we have analyzed the role of learning bias
in repeated matrix games played with minimal information
(i.e., games in which the actions and payoffs of associates
are unobservable). Specifically, we have dissected the learn-
ing biases of multi-agent learning algorithms published in
the literature by comparing and contrasting the strategy se-
lection rules, priors, belief models, state and reward rep-
resentations, and strategy spaces used by these algorithms.
Based on this analysis, we created a new algorithm, called
R-lopars, that adapted a successful learning bias to minimal
information environments. We then evaluated this algorithm
and ten other learning algorithms in a large empirical study
involving a variety of repeated two-player matrix games
played with minimal information. Our study showed that,
on average, R-lopars outperformed the other algorithms.

We also found that, among a representative set of algo-
rithms, the most common learning bias for repeated matrix
games combines a best response or gradient ascent strategy
selection rule with (1) a stateless world representation, (2) a
strategy space defined over all pure and mixed strategies,
and (3) a random or undefined prior. We refer to this learn-
ing bias as the rational learning bias due to the game theo-
retic goals of the algorithms that tend to encode it. Despite
its popularity, algorithms implementing the rational learning
bias performed poorly in our study.

While these results are limited in nature, we believe that
they illustrate an important point. Rather than focus solely
on learning “rational,” game theoretic, concepts such as no-
regret, best response, and Nash equilibrium, we believe that
designers of a multi-agent learning algorithm should pay
more attention to the wider learning biases their algorithm
encodes via its assumptions, representations, and rules. The
success of an algorithm in repeated games played with min-
imal information often hinges on the sometimes trivialized
aspects of an algorithm, including priors and state and re-
ward representation. As a result, R-lopars outperformed the
other algorithms in our study.
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