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Abstract

The standard approach to computing an optimal mixed
strategy to commit to is based on solving a set of linear
programs, one for each of the follower’s pure strategies.
We show that these linear programs can be naturally
merged into a single linear program; that this linear pro-
gram can be interpreted as a formulation for the optimal
correlated strategy to commit to, giving an easy proof
of a result by von Stengel and Zamir that the leader’s
utility is at least the utility she gets in any correlated
equilibrium of the simultaneous-move game; and that
this linear program can be extended to compute optimal
correlated strategies to commit to in games of three or
more players. (Unlike in two-player games, in games of
three or more players, the notions of optimal mixed and
correlated strategies to commit to are truly distinct.) We
give examples, and provide experimental results that in-
dicate that for 50 × 50 games, this approach is usually
significantly faster than the multiple-LPs approach.

Introduction
Game theory provides a mathematical framework for ratio-
nal action in settings with multiple agents. As such, algo-
rithms for computing game-theoretic solutions are of great
interest to the multiagent systems community in AI.

It has long been well known in game theory that be-
ing able to commit to a course of action before the
other player(s) move(s)—often referred to as a Stackel-
berg model (von Stackelberg 1934)—can bestow signifi-
cant advantages. In recent years, the problem of comput-
ing an optimal strategy to commit to has started to receive
a significant amount of attention, especially in the mul-
tiagent systems community. In the initial paper (Conitzer
and Sandholm 2006), a number of variants were stud-
ied, including commitment to pure and to mixed strate-
gies, in normal-form and in Bayesian games. There have
been several other papers making progress on versions of
the problem that concern standard game-theoretic represen-
tations, including Bayesian games (Paruchuri et al. 2008;
Letchford, Conitzer, and Munagala 2009) and extensive-
form games (Letchford and Conitzer 2010). Perhaps the
biggest impulse to this line of research, though, is due to
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the use of these techniques in several security applications
that have recently been deployed in the real world, including
the randomized placement of checkpoints and canine units
at Los Angeles International airport (Pita et al. 2009) and
the assignment of Federal Air Marshals to flights (Tsai et al.
2009). These developments have inspired work on comput-
ing optimal mixed strategies to commit to in a specific class
of games called security games (Kiekintveld et al. 2009;
Korzhyk, Conitzer, and Parr 2010).

In this paper, we focus on what is arguably the most ba-
sic problem under the general topic of computing optimal
mixed strategies to commit to: given a game represented in
normal form, compute an optimal mixed strategy for player
1 to commit to. The following game is commonly used as an
example for this.

L R
U (1,1) (3,0)
D (0,0) (2,1)

Without commitment, this game is solvable by iterated
strict dominance: U strictly dominates D for player 1; af-
ter removing D, L strictly dominates R for player 2. So
the iterated strict dominance outcome (and hence the only
equilibrium outcome) is (U,L), resulting in a utility of 1 for
player 1. However, if player 1 can commit to a pure strategy
before player 2 moves, then player 1 is better off commit-
ting to D, thereby incentivizing player 2 to play R, resulting
in a utility of 2 for player 1. Even better for player 1 is to
commit to a mixed strategy of (.49U, .51D); this still incen-
tivizes player 2 to play R and results in an expected utility
of .49 · 3 + .51 · 2 = 2.49 for player 1. Of course, it is even
better to commit to (.499U, .501D), etc. In the limit case of
(.5U, .5D), player 2 becomes indifferent between L and R;
to guarantee the existence of an optimal solution, it is gen-
erally assumed that player 2 breaks ties in player 1’s favor,
so that (.5U, .5D) is the unique optimal mixed strategy for
player 1 to commit to, resulting in an expected utility of 2.5
for her.

It is already known (Conitzer and Sandholm 2006; von
Stengel and Zamir 2010) that, in a two-player normal-form
game, the optimal mixed strategy to commit to can be found
in polynomial time, by solving multiple linear programs.
(We will describe this approach in detail soon.) Still, given
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the problem’s fundamental nature and importance, it seems
worthwhile to investigate it in more detail. Can we design
other, possibly more efficient algorithms? Can we relate this
problem to other computational problems in game theory?

With three or more players, it is not immediately clear
how to define the optimal mixed strategy to commit to for
player 1. The reason is that, after player 1’s commitment, the
remaining players play a game among themselves, and we
need to consider according to which solution concept they
will play. For example, to be consistent with the tie-breaking
assumption in the two-player case, we could assume that the
remaining players will play according to the Nash equilib-
rium of the remaining game that is best for player 1. How-
ever, this optimization problem is already NP-hard by itself,
and in fact inapproximable unless P=NP (Gilboa and Zemel
1989; Conitzer and Sandholm 2008), so there is little hope
that this approach will lead to an efficient algorithm. Is there
another natural solution concept that allows for a more effi-
cient solution with three or more players?

In this paper, we make progress on these questions as fol-
lows. First, we show how to formulate the problem in the
two-player setting as a single linear program,1 and prove the
correctness of this formulation by relating it to the existing
multiple-LPs formulation. We then show how this single LP
can be interpreted as a formulation for finding the optimal
correlated strategy to commit to, giving an easy proof of
a known result by von Stengel and Zamir (2010) that the
optimal mixed strategy to commit to results in a utility for
the leader that is at least as good as what she would obtain
in any correlated equilibrium. We then show how this for-
mulation can be extended to compute an optimal correlated
strategy to commit to with three or more players, and illus-
trate by example that this can result in a higher utility for
player 1 both compared to the best mixed strategy to com-
mit to as well as compared to the best correlated equilibrium
for player 1. (Unlike in two-player games, in games of three
or more players, the notions of optimal mixed and correlated
strategies to commit to are truly distinct.) Finally, we present
experiments that indicate that, for 50×50 games drawn from
“most” distribution families, our formulation is significantly
faster than the multiple-LPs approach. We also investigate
how often the correlated strategy is a product distribution
(so that correlation does not play a role); as expected, with
two players we always have a product distribution, but with
more players this depends extremely strongly on the distri-
bution over games that is used.

Review: multiple LPs
We now describe the standard approach to com-
puting an optimal mixed strategy to commit to
with two players (Conitzer and Sandholm 2006;
von Stengel and Zamir 2010). The idea is a very natu-

1Earlier work has already produced formulations of
((pre-)Bayesian versions of) the problem that involve only a
single optimization (Paruchuri et al. 2008, extended version of
Letchford, Conitzer, and Munagala 2009). However, these existing
formulations use integer variables (even when restricted to the
case of a single follower type).

ral divide-and-conquer approach: because we can assume
without loss of optimality that in the solution, player 2
will play a pure strategy, we can simply consider each
pure strategy for player 2 in turn. Let player i’s set of
pure strategies be Si. For each pure strategy s2 ∈ S2 for
player 2, we solve for the optimal mixed strategy for player
1, under the constraint that s2 is a best response for player 2.

Linear Program 1 (known).
max

∑
s1∈S1

ps1u1(s1, s2)

subject to:
(∀s′2 ∈ S2)

∑
s1∈S1

ps1u2(s1, s
′
2) ≤

∑
s1∈S1

ps1u2(s1, s2)∑
s1∈S1

ps1 = 1

(∀s1 ∈ S1) ps1 ≥ 0

(The first constraint says that player 2 should not be better
off playing s′2 instead of s2.) There is one of these linear
programs for every s2, and at least one of these must have
a feasible solution. We choose one with the highest optimal
solution value; an optimal solution to this linear program
corresponds to an optimal mixed strategy to commit to. Be-
cause linear programs can be solved in polynomial time, this
gives a polynomial-time algorithm for computing an optimal
mixed strategy to commit to.

A single linear program
Instead of solving one separate linear program per pure
strategy for player 2, we can also solve the following single
linear program:

Linear Program 2.
max

∑
s1∈S1,s2∈S2

p(s1,s2)u1(s1, s2)

subject to:
(∀s2, s′2 ∈ S2)∑

s1∈S1
p(s1,s2)u2(s1, s

′
2) ≤

∑
s1∈S1

p(s1,s2)u2(s1, s2)∑
s1∈S1,s2∈S2

p(s1,s2) = 1

(∀s1 ∈ S1, s2 ∈ S2) p(s1,s2) ≥ 0

We now explain why this linear program gives the right an-
swer. The constraint matrix for Linear Program 2 has blocks
along the diagonal: for each s2 ∈ S2, there is a set of
constraints (one constraint for every s′2 ∈ S2) whose only
nonzero coefficients correspond to the variables p(s1,s2) (one
variable for every s1 ∈ S1). The exception is the proba-
bility constraint which has nonzero coefficients for all vari-
ables. (Cf. Dantzig-Wolfe decomposition.) The following
proposition will help us to understand the relationship to the
multiple-LPs approach, and hence the correctness of Linear
Program 2.

Proposition 1 Linear Program 2 always has an optimal so-
lution in which only a single block of variables takes nonzero
values. That is, there exists an optimal solution for which
there is some s∗2 ∈ S2 such that for any s1 ∈ S1, s2 ∈ S2

where s2 �= s∗2, p(s1,s2) = 0.
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Proof. Suppose for the sake of contradiction that all
optimal solutions require nonzero values for at least k
blocks, where k ≥ 2. For an optimal solution p with
exactly k nonzero blocks, let s2, s

′
2 ∈ S2, s2 �= s′2

be such that ts2 =
∑

s1∈S1
p(s1,s2) > 0 and ts′2 =∑

s1∈S1
p(s1,s′2) > 0. Let vs2 =

∑
s1∈S1

p(s1,s2)u1(s1, s2)

and vs′2 =
∑

s1∈S1
p(s1,s′2)u1(s1, s

′
2). Without loss of gen-

erality, suppose that vs2/ts2 ≥ vs′2/ts′2 . Then consider the
following modified solution p′:

• for all s1 ∈ S1, p′(s1,s2) =
ts2+ts′2

ts2
p(s1,s2);

• for all s1 ∈ S1, p′(s1,s′2) = 0;

• for all s′′2 /∈ {s2, s′2}, p′(s1,s′′2 ) = p(s1,s′′2 ).

p′ has k − 1 blocks with nonzero values; we will show that
p′ remains feasible and has at least the same objective value
as p, and must therefore be optimal, so that we arrive at the
desired contradiction.

To prove that p′ is still feasible, we first notice that any of
the constraints corresponding to the unchanged blocks (for
s′′2 /∈ {s2, s′2}) must still hold because none of the variables
with nonzero coefficients in these constraints have changed
value. The constraints for the block corresponding to s′2 hold
trivially because all the variables with nonzero coefficients
are set to zero. The constraints for the block correspond-
ing to s2 still hold because all the variables with nonzero
coefficients have been multiplied by the same constant
ts2+ts′2

ts2
. Finally, the probability constraint still holds be-

cause the total probability on the variables in the s2 block is
∑

s1∈S1
p′(s1,s2) =

∑
s1∈S1

ts2+ts′2
ts2

p(s1,s2) =
ts2+ts′2

ts2
ts2 =

ts2+ts′2 , that is, we have simply shifted the probability mass
from s′2 to s2. (All the probabilities are also still nonnega-

tive, because
ts2+ts′2

ts2
is positive.)

To prove that p′ is no worse than p, we note that the
total objective value derived under p′ from variables in
the s2 block of variables is

∑
s1∈S1

p′(s1,s2)u1(s1, s2) =
∑

s1∈S1

ts2+ts′2
ts2

p(s1,s2)u1(s1, s2) =
ts2+ts′2

ts2
vs2 ≥

vs2 + vs′2 , where the inequality follows from
vs2/ts2 ≥ vs′2/ts′2 . On the other hand, the total objec-
tive value derived under p′ from variables in the s′2 block of
variables is 0 because all these variables are set to zero. In
contrast, under the solution p, the total objective value from
these two blocks is vs2 + vs′2 . Because p and p′ agree on the
other blocks, it follows that p′ obtains at least as large an
objective value as p, and we have a contradiction. �

Proposition 1 suggests that one approach to solving Lin-
ear Program 2 is to force all the variables to zero with the
exception of a single block and solve the remaining linear
program; we try this for every block, and take the optimal
solution overall. However, this approach coincides exactly
with the original multiple-LPs approach, because:

Observation 1 In Linear Program 2, if for some s2, we
force all the variables p(s1,s′2) for which s′2 �= s2 to zero,

then the linear program that remains is identical to Linear
Program 1.

This also proves the correctness of Linear Program 2 (be-
cause the multiple-LPs approach is correct).

Game-theoretic interpretation: commitment to
correlated strategies

Linear Program 2 can be interpreted as follows. Player 1
commits to a correlated strategy. This entails that player 1
chooses a distribution p(s1,s2) over the outcomes, and com-
mits to acting as follows: she draws (s1, s2) according to the
distribution, recommends to player 2 that he should play s2,
and plays s1 herself. The constraints
(∀s2, s′2 ∈ S2)∑

s1∈S1
p(s1,s2)u2(s1, s

′
2) ≤

∑
s1∈S1

p(s1,s2)u2(s1, s2)
in Linear Program 2 then mean that player 2 should always
follow the recommendation s2 rather than take some alter-
native action s′2. This is for the following reasons: if for
some s2,

∑
s1∈S1

p(s1,s2) = 0, then there will never be a
recommendation to player 2 to play s2, and indeed the con-
straint will hold trivially in this case. On the other hand, if∑

s1∈S1
p(s1,s2) > 0, then player 2’s subjective probability

that player 1 will play s1 given a recommendation of s2 is
P (s1|s2) =

p(s1,s2)∑
s′1∈S1

p(s′1,s2)
. Hence player 2 will be incen-

tivized to follow the recommendation of playing s2 rather
than s′2 if and only if
(∀s2, s′2 ∈ S2)∑

s1∈S1
P (s1|s2)u2(s1, s

′
2) ≤

∑
s1∈S1

P (s1|s2)u2(s1, s2)
which is identical to the constraint in Linear Program 2 (by
multiplying by

∑
s′1∈S1

p(s′1,s2)).
Proposition 1 entails that we can without loss of optimal-

ity restrict attention to solutions where the recommendation
to player 2 is always the same (so that there is no information
in the signal to player 2).

Given this interpretation of Linear Program 2, it is not
surprising that it is very similar to the linear feasibility
formulation of the correlated equilibrium problem for two
players. (In a correlated equilibrium (Aumann 1974), a third
party known as a mediator draws (s1, s2), recommends to
each player i to play si without telling what the recom-
mendation to the other player is, and it is optimal for each
player to follow the recommendation.) The linear feasibility
formulation of the correlated equilibrium problem is as
follows (and the justification for the incentive constraints is
the same as above):

Linear Program 3 (known).
(no objective required)subject to:
(∀s1, s′1 ∈ S1)∑

s2∈S2
p(s1,s2)u1(s

′
1, s2) ≤

∑
s2∈S2

p(s1,s2)u1(s1, s2)

(∀s2, s′2 ∈ S2)∑
s1∈S1

p(s1,s2)u2(s1, s
′
2) ≤

∑
s1∈S1

p(s1,s2)u2(s1, s2)∑
s1∈S1,s2∈S2

p(s1,s2) = 1

(∀s1 ∈ S1, s2 ∈ S2) p(s1,s2) ≥ 0
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Linear Program 2 is identical to Linear Program 3, except
that in Linear Program 2 we have dropped the incentive con-
straints for player 1, and added an objective of maximiz-
ing player 1’s expected utility. If we add the incentive con-
straints for player 1 back in, then we obtain a linear program
for finding the correlated equilibrium that maximizes player
1’s utility. Because adding constraints cannot increase the
objective value of a maximization problem, we immediately
obtain the following corollary:

Corollary 1 ((von Stengel and Zamir 2010)) Player 1’s
expected utility from optimally committing to a mixed
strategy is at least as high as her utility in any correlated
equilibrium of the simultaneous-move game.

Commitment to correlated strategies with
more players

We have already seen that committing to a correlated strat-
egy in a two-player game is in some sense not particularly
interesting, because without loss of optimality player 2
will always get the same recommendation from player
1. However, the same is not true for games with n ≥ 3
players, where player 1 commits to a correlated strategy and
sends recommendations to players 2, . . . , n, who then play
simultaneously. We can easily extend Linear Program 2 to
this case of n players (just as it is well known that Linear
Program 3 can be extended to the case of n players):

Linear program 4.
max

∑
s1∈S1,...,sn∈Sn

p(s1,...,sn)u1(s1, . . . , sn)

subject to:
(∀i ∈ {2, . . . , n}) (∀si, s′i ∈ Si)∑

s−i∈S−i

p(si,s−i)ui(s
′
i, s−i) ≤

∑

s−i∈S−i

p(si,s−i)ui(si, s−i)

∑
s1∈S1,...,sn∈Sn

p(s1,...,sn) = 1

(∀s1 ∈ S1, . . . , sn ∈ Sn) p(s1,...,sn) ≥ 0

(Here, we followed the standard game theory notation of us-
ing −i to refer to “the players other than i.”) Again, Lin-
ear Program 4 is simply the standard linear feasibility pro-
gram for correlated equilibrium, with the constraints for
player 1 omitted and with an objective of maximizing player
1’s expected utility. This immediately implies the following
proposition:

Proposition 2 The optimal correlated strategy to commit to
in an n-player normal-form game can be found in time poly-
nomial in the size of the input.

The following example illustrates that if there are three
or more players, then commitment to a correlated strategy
can be strictly better for player 1 than commitment to a
mixed strategy (as well as any correlated equilibrium of the
simultaneous-move version of the game).

Example. Consider a three-player game between a wildlife
refuge Manager (player 1, aka. M), a Lion (player 2, aka. L),
and a wildlife Photographer (player 3, aka. P). There are four

locations in the game: A and B (two locations in the refuge
that are out in the open), C (a safe hiding place for the lion),
and D (the wildlife photographer’s home). Each player must
choose a location: M can choose between A and B, L be-
tween A, B, and C, and P between A, B, and D.

M wants L to come out into the open, and would prefer
even more to be in the same place as L in order to study him.
Specifically, M gets utility 2 if she is in the same location as
L, 1 if L is at A or B but not at the same location as M,
and 0 otherwise. L just wants to avoid contact with humans.
Specifically, L gets utility 1 unless he is in the same location
as another player, in which case he gets 0. P wants to get a
close-up shot of L, but would rather stay home than go out
and be unsuccessful. Specifically, P gets utility 2 for being
in the same location as L, and otherwise 1 for being at D,
and 0 otherwise.

A correlated strategy specifies a probability for every out-
come, that is, every feasible triplet of locations for the play-
ers. We will show that the unique optimal correlated strategy
for M to commit to is: p(A,B,D) = 1/2, p(B,A,D) = 1/2.
That is, she flips a coin to determine whether to go to A or B,
signals to L to go to the other location of the two, and always
signals to P to stay home at D. This is not a correlated equi-
librium of the simultaneous-move game, because M would
be better off going to the same location as L. This does not
pose a problem because M is committing to the strategy. The
other two players are best-responding by following the rec-
ommendations: L is getting his maximum possible utility of
1; P (whose signal is always D and thus carries no informa-
tion) is getting 1 for staying home, and switching to either A
or B would still leave her with an expected utility of 1.

To see that M cannot do better, note that L can guarantee
himself a utility of 1 by always choosing C, so there is
no feasible solution where L has positive probability of
being in the same location as another player. Hence, in any
feasible solution, any outcome where M gets utility 2 has
zero probability. All that remains to show is that there is no
other feasible solution in which M always gets utility 1. In
any such solution, L must always choose A or B. Also, in
any feasible solution, P cannot play A or B with positive
probability, because she can never be in the same location
as L; hence, if she played A or B with positive probability,
she would end up with an expected utility strictly below
1, whereas she can guarantee herself 1 just by choosing
D. Because M also cannot be in the same location as L
with positive probability, it follows that only p(A,B,D) and
p(B,A,D) can be set to positive values. If one of them is
set to a value greater than 1/2, then P would be better off
choosing the location where L is more than half the time. It
follows that p(A,B,D) = 1/2, p(B,A,D) = 1/2 is the unique
optimal solution. �

Experiments
While Linear Programs 2 and 4 are arguably valuable from
the viewpoint of improving our conceptual understanding
of commitment, it is also worthwhile to investigate them
as an algorithmic contribution. Linear Program 4 allows us
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to do something we could not do before, namely, to com-
pute an optimal correlated strategy to commit to in games
with more than two players. This cannot be said about the
special case of Linear Program 2, because we already had
the multiple-LPs approach. But how does Linear Program
2 compare to the multiple-LPs approach? At least, it pro-
vides a slight implementation advantage, in the sense of not
having to write code to iterate through multiple LPs. More
interestingly, what is the effect on runtime of using it rather
than the multiple-LPs approach? Of course, this depends on
the LP solver. Does the solver benefit from having the prob-
lem decomposed into multiple LPs? Or does it benefit from
seeing the whole problem at once?

To answer these questions, we evaluated our approach on
GAMUT (Nudelman et al. 2004), which generates games
according to a variety of distributions. Focusing on two-
player games, we used CPLEX 10.010 both for the multiple-
LPs approach (LP1) and for Linear Program 2 (LP2). For
each GAMUT game class, we generated 50 two-player
games with 50 strategies per player and compared the time
it takes to find the optimal strategies to commit to in these
games using LP1 and LP2. We show the boxplots of the run
times in Figure 1. Perhaps surprisingly, it turns out that LP2
generally solves much faster. One possible explanation for
this is as follows. In the multiple-LPs approach, each block
is solved to optimality separately. In contrast, when pre-
sented with LP2, the solver sees the entire problem instance
all at once, which in principle could allow it to quickly prune
some blocks as being clearly suboptimal. The only distribu-
tion for which LP2 is slower is RandomZeroSum. Unfortu-
nately, preliminary experiments on random games indicate
that LP2 does not scale gracefully to larger games, and that
perhaps LP1 scales a little better. We conjecture that this is
due to heavier memory requirements for LP2.

Table 1 shows how often the correlated strategy to commit
to computed by Linear Program 4 is a product distribution.
We say that a distribution p(s1, . . . , sn) is a product distri-
bution iff it satisfies the following condition.

∀i ∈ {1, . . . , n}
∀si ∈ {s′′i ∈ Si : p(s

′′
i ) > 0}

∀s′i ∈ {s′′i ∈ Si : p(s
′′
i ) > 0}

∀s−i ∈ S−i : p(s−i|si) = p(s−i|s′i)
Low percentages here indicate that correlation plays a sig-
nificant role. To compute this data, we generated 50 payoff
matrices with 10 strategies per player for each combination
of a GAMUT class and a number of players. In other words,
if the leader commits to a product distribution over the strat-
egy profiles, then the recommendation each of the follow-
ers gets from the correlated strategy does not give out any
information about the recommendations that the other play-
ers receive. In games with two players, the correlated strat-
egy computed by LP2 is always a product distribution, as
expected by Proposition 1. For games with more than two
players, in some distributions correlation does not play a big
role, and in others it does.

We say that a correlated strategy is a degenerate distribu-
tion if its support size is 1. A degenerate distribution is a

Game class \� players 2 3 4
P D P D P D

BidirectionalLEG 1 .96 .9 .86 .84 .84
CovariantGame 1 .48 .64 .6 .68 .68
DispersionGame 1 1 1 1 1 1
GuessTwoThirdsAve 1 1 0 0 0 0
MajorityVoting 1 .88 1 1 1 1
MinimumEffortGame 1 1 1 1 1 1
RandomGame 1 .42 .16 .08 .02 .02
RandomGraphicalGame 1 .4 .22 .1 .02 .02
RandomLEG 1 1 .92 .92 .02 .02
TravelersDilemma 1 0 1 1 .02 .02
UniformLEG 1 .96 .88 .86 .02 .02

Table 1: For each game class and number of players, the two
numbers shown are the fractions of product distributions (P)
and the fractions of degenerate distributions (D) among the
correlated strategies computed by LP4.

special case of a product distribution. As we can see from
Table 1, a large fraction of computed product distributions
are actually degenerate.

Conclusion
In this paper, we have shown that in two-player games, op-
timal mixed strategies to commit to can be computed us-
ing a single linear program that, experimentally, appears to
solve 50 × 50 games drawn from most common distribu-
tions significantly faster than the known multiple-LPs ap-
proach. This single linear program has a close relationship
to the linear program formulation for correlated equilibrium,
allowing us to immediately obtain a known result about the
relationship to correlated equilibrium as a corollary, and to
extend the program to compute an optimal correlated strat-
egy to compute for more than two players (and with more
than two players, we indeed get nontrivial correlations).

The observation that a player’s ability to commit can be
modeled simply by dropping the incentive constraints for
that player in an equilibrium formulation, and adding an ob-
jective, can also be used for variants of the problem. For ex-
ample, in an n-player game in which a given coalition of k
players is able to make a joint commitment, all that is needed
is to drop the incentive constraints for those k players and
formulate an appropriate objective (such as the sum of those
players’ utilities).

A natural direction for future research is to try to extend
the methodology here to game representations other than the
normal form. Significant results on the efficient computation
of correlated equilibria in succinctly represented games have
been obtained, though optimizing over the space of corre-
lated equilibria (which is close to what we do in this pa-
per) poses more challenges (Papadimitriou and Roughgar-
den 2008; Jiang and Leyton-Brown 2010).

Another direction for future research is to investigate
more thoroughly scaling to larger games and address the
memory requirements of LP2. It may be possible to achieve
(some of) the benefits of LP2 that we have observed here in
the multiple-LPs approach by giving the solver bounds from
earlier LPs to quickly prune later, suboptimal LPs.
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Figure 1: Run time comparison of LP1 and LP2 on GAMUT games (seconds).
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