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Abstract

We consider manipulation problems when the manipulator
only has partial information about the votes of the non-
manipulators. Such partial information is described by an
information set, which is the set of profiles of the non-
manipulators that are indistinguishable to the manipulator.
Given such an information set, a dominating manipulation
is a non-truthful vote that the manipulator can cast which
makes the winner at least as preferable (and sometimes more
preferable) as the winner when the manipulator votes truth-
fully. When the manipulator has full information, comput-
ing whether or not there exists a dominating manipulation is
in P for many common voting rules (by known results). We
show that when the manipulator has no information, there is
no dominating manipulation for many common voting rules.
When the manipulator’s information is represented by partial
orders and only a small portion of the preferences are un-
known, computing a dominating manipulation is NP-hard for
many common voting rules. Our results thus throw light on
whether we can prevent strategic behavior by limiting infor-
mation about the votes of other voters.

Introduction

In computational social choice, one appealing escape from
the Gibbard-Satterthwaite theorem (Gibbard 1973; Satterth-
waite 1975) was proposed in (Bartholdi, Tovey, and Trick
1989). Whilst manipulation may always be possible, per-
haps it is computationally too difficult to find? Many results
have subsequently been proven showing that various voting
rules are NP-hard to manipulate (Bartholdi and Orlin 1991;
Conitzer and Sandholm 2003; Elkind and Lipmaa 2005;
Conitzer, Sandholm, and Lang 2007; Faliszewski, Hemas-
paandra, and Schnoor 2008; Xia et al. 2009; Faliszewski,
Hemaspaandra, and Schnoor 2010) in various senses. How-
ever, recent results suggest that computing a manipulation is
easy on average or in many cases. Therefore, computational
complexity seems to be a weak barrier against manipulation.
See (Faliszewski, Hemaspaandra, and Hemaspaandra 2010;
Faliszewski and Procaccia 2010) for some surveys of this re-
cent research.

It is normally assumed that the manipulator has full in-
formation about the votes of the non-manipulators. The ar-
gument often given is that if it is NP-hard with full infor-
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mation, then it only can be at least as computationally diffi-
cult with partial information. However, when there is only
one manipulator, computing a manipulation is polynomial
for most common voting rules, including all positional scor-
ing rules, Copeland, maximin, and voting trees. The only
known exceptions are STV (Bartholdi and Orlin 1991) and
ranked pairs (Xia et al. 2009). Therefore, it is not clear
whether a single manipulator has incentive to lie when the
manipulator only has partial information.

In this paper, we study the problem of how one manipu-
lator computes a manipulation based on partial information
about the other votes. For example, the manipulator may
know that some voters prefer one alternative to another, but
might not be able to know all pairwise comparisons for all
voters. We suppose the knowledge of the manipulator is
described by an information set E. This is some subset of
possible profiles of the non-manipulators which is known to
contain the true profile. Given an information set and a pair
of votes U and V , if for every profile in E, the manipulator is
not worse off voting U than voting V , and there exists a pro-
file in E such that the manipulator is strictly better off voting
U , then we say that U dominates V . If there exists a vote U
that dominates the true preferences of the manipulator then
the manipulator has an incentive to vote untruthfully. We call
this a dominating manipulation. If there is no such vote, then
a risk-averse manipulator might have little incentive to vote
strategically.

We are interested in whether a voting rule r is immune to
dominating manipulations, meaning that a voter’s true pref-
erences are never dominated by another vote. If r is not
immune to dominating manipulations, we are interested in
whether r is resistant, meaning that computing whether a
voter’s true preferences are dominated by another vote U is
NP-hard, or vulnerable, meaning that this problem is in P.
These properties depend on both the voting rule and the form
of the partial information. Interestingly, it is not hard to see
that most voting rules are immune to manipulation when the
partial information is just the current winner. For instance,
with any majority consistent rule (for example, plurality), a
risk averse manipulator will still want to vote for her most
preferred alternative. This means that the chairman does not
need to keep the current winner secret to prevent such ma-
nipulations. On the other hand, if the chairman lets slip more
information, many rules stop being immune. With most scor-
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ing rules, if the manipulator knows the current scores, then
the rule is no longer immune to such manipulation. For in-
stance, when her most preferred alternative is too far behind
to win, the manipulator might vote instead for a less pre-
ferred candidate who can win.

In this paper, we focus on the case where the partial in-
formation is represented by a profile Ppo of partial orders,
and the information set E consists of all linear orders that
extend Ppo. The dominating manipulation problem is re-
lated to the possible/necessary winner problems (Konczak
and Lang 2005; Walsh 2007; Betzler, Hemmann, and Nie-
dermeier 2009; Betzler and Dorn 2010; Xia and Conitzer
2011). In possible/necessary winner problems, we are given
an alternative c and a profile of partial orders Ppo that repre-
sents the partial information of the voters’ preferences. We
are asked whether c is the winner for some extension of Ppo

(that is, c is a possible winner), or whether c is the winner for
every extension of Ppo (that is, c is a necessary winner). We
note that in the possible/necessary winner problems, there is
no manipulator and Ppo represents the chair’s partial infor-
mation about the votes. In dominating manipulation prob-
lems, Ppo represents the partial information of the manipu-
lator about the non-manipulators.

We start with the special case where the manipulator has
complete information. In this setting the dominating manip-
ulation problem reduces to the standard manipulation prob-
lem, and many common voting rules are vulnerable to dom-
inating manipulation (from known results). When the ma-
nipulator has no information, we show that a wide range of
common voting rules are immune to dominating manipula-
tion. When the manipulator’s partial information is repre-
sented by partial orders, our results are summarized in Ta-
ble 1.

DOMINATING MANIPULATION1

STV Resistant (Proposition 2)
Ranked pairs Resistant (Proposition 2)

Borda Resistant (Theorem 4)
Copeland Resistant (Corollary 2)

Voting trees Resistant (Corollary 2)
Maximin Resistant (Theorem 7)
Plurality Vulnerable (Algorithm 2)

Veto Vulnerable (Omitted due to
the space constraint.)

Table 1: Computational complexity of the dominating manipula-
tion problems with partial orders, for common voting rules.

Our results are encouraging. For most voting rules r we
study in this paper (except plurality and veto), hiding even
a little information makes r resistant to dominating manip-
ulation. If we hide all information, then r is immune to
dominating manipulation. Therefore, limiting the informa-
tion available to the manipulator appears to be a promising
way to prevent strategic voting.

Preliminaries

Let C = {c1, . . . , cm} be the set of alternatives (or candi-
dates). A linear order on C is a transitive, antisymmetric,

1All hardness results hold even when the number of undeter-
mined pairs in each partial order is no more than a constant.

and total relation on C. The set of all linear orders on C is
denoted by L(C). An n-voter profile P on C consists of n
linear orders on C. That is, P = (V1, . . . , Vn), where for
every j ≤ n, Vj ∈ L(C). The set of all n-profiles is denoted
by Fn. We let m denote the number of alternatives. For
any linear order V ∈ L(C) and any i ≤ m, Alt(V, i) is the
alternative that is ranked in the ith position in V . A voting
rule r is a function that maps any profile on C to a unique
winning alternative, that is, r : F1 ∪ F2 ∪ . . . → C. The
following are some common voting rules. In this paper, if
not mentioned specifically, ties are broken in the fixed order
c1 � c2 � · · · � cm.

• (Positional) scoring rules: Given a scoring vector �sm =
(�sm(1), . . . , �sm(m)) of m integers, for any vote V ∈ L(C)
and any c ∈ C, let �sm(V, c) = �sm(j), where j is the rank of
c in V . For any profile P = (V1, . . . , Vn), let �sm(P, c) =∑n

j=1 �sm(Vj , c). The rule will select c ∈ C so that �sm(P, c)
is maximized. We assume scores are integers and decreas-
ing. Some examples of positional scoring rules are Borda,
for which the scoring vector is (m − 1,m − 2, . . . , 0), plu-
rality, for which the scoring vector is (1, 0, . . . , 0), and veto,
for which the scoring vector is (1, . . . , 1, 0).
• Copeland: For any two alternatives ci and cj , we con-

duct a pairwise election in which we count how many votes
rank ci ahead of cj , and how many rank cj ahead of ci. ci
wins if and only if the majority of voters rank ci ahead of
cj . An alternative receives one point for each such win in a
pairwise election. Typically, an alternative also receives half
a point for each pairwise tie, but this will not matter for our
results. The winner is the alternative with the highest score.
• Maximin: Let DP (ci, cj) be the number of votes that

rank ci ahead of cj minus the number of votes that rank cj
ahead of ci in the profile P . The winner is the alternative c
that maximizes min{DP (c, c

′) : c′ ∈ C, c′ �= c}.
• Ranked pairs: This rule first creates an entire ranking

of all the alternatives. In each step, we will consider a pair
of alternatives ci, cj that we have not previously considered;
specifically, we choose the remaining pair with the highest
DP (ci, cj). We then fix the order ci � cj , unless this con-
tradicts previous orders that we fixed (that is, it violates tran-
sitivity). We continue until we have considered all pairs of
alternatives (hence we have a full ranking). The alternative
at the top of the ranking wins.

• Voting trees: A voting tree is a binary tree with m leaves,
where each leaf is associated with an alternative. In each
round, there is a pairwise election between an alternative ci
and its sibling cj : if the majority of voters prefer ci to cj ,
then cj is eliminated, and ci is associated with the parent of
these two nodes. The alternative that is associated with the
root of the tree (i.e. wins all its rounds) is the winner.

• Single transferable vote (STV): The election has m
rounds. In each round, the alternative that gets the lowest
plurality score (the number of times that the alternative is
ranked in the top position) drops out, and is removed from
all of the votes (so that votes for this alternative transfer to
another alternative in the next round). The last-remaining
alternative is the winner.

For any profile P , we let WMG(P ) denote the weighted
majority graph of P , defined as follows. WMG(P ) is a di-
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rected graph whose vertices are the alternatives. For i �= j,
if DP (ci, cj) > 0, then there is an edge (ci, cj) with weight
wij = DP (ci, cj).

We say that a voting rule r is based on the weighted ma-
jority graph (WMG), if for any pair of profiles P1, P2 such
that WMG(P1) = WMG(P2), we have r(P1) = r(P2). A
voting rule r is Condorcet consistent if it always selects the
Condorcet winner (that is, the alternative that wins each of
its pairwise elections) whenever one exists.

Manipulation with Partial Information

We now introduce the framework of this paper. Suppose
there are n ≥ 1 non-manipulators and one manipulator.
The information the manipulator has about the votes of the
non-manipulators is represented by an information set E.
The manipulator knows for sure that the profile of the non-
manipulators is in E. However, the manipulator does not
know exactly which profile in E it is. Usually E is repre-
sented in a compact way. Let I denote the set of all possible
information sets in which the manipulator may find herself.

Example 1. Suppose the voting rule is r.
• If the manipulator has no information, then the only in-

formation set is E = Fn. Therefore I = {Fn}.
• If the manipulator has complete information, then I =

{{P} : P ∈ Fn}.
• If the manipulator knows the current winner (before the

manipulator votes), then the set of all information sets the
manipulator might know is I = {E1, E2, . . . , Em}, where
for any i ≤ m, Ei = {P ∈ Fn : r(P ) = ci}.

Let VM denote the true preferences of the manipulator.
Given a voting rule r and an information set E, we say that a
vote U dominates another vote V , if for every profile P ∈ E,
we have r(P ∪ {U}) 	VM

r(P ∪ {V }), and there exists
P ′ ∈ E such that r(P ′ ∪ {U}) �VM

r(P ′ ∪ {V }). In
other words, when the manipulator only knows the voting
rule r and the fact that the profile of the non-manipulators is
in E (and no other information), voting U is a strategy that
dominates voting V . We define the following two decision
problems.

Definition 1. Given a voting rule r, an information set E,
the true preferences VM of the manipulator, and two votes V
and U , we are asked the following two questions.
• Does U dominate V ? This is the DOMINATION problem.
• Does there exist a vote V ′ that dominates VM? This is the
DOMINATING MANIPULATION problem.

We stress that usually E is represented in a compact
way, otherwise the input size would already be exponentially
large, which would trivialize the computational problems.
Given a set I of information sets, we say a voting rule r is
immune to dominating manipulation, if for every E ∈ I and
every VM that represents the manipulator’s preferences, VM

is not dominated; r is resistant to dominating manipulation,
if DOMINATING MANIPULATION is NP-hard (which means
that r is not immune to dominating manipulation, assuming
P�=NP); and r is vulnerable to dominating manipulation, if
r is not immune to dominating manipulation, and DOMINAT-
ING MANIPULATION is in P.

Manipulation with Complete/No Information

In this section we focus on the following two special cases:
(1) the manipulator has complete information, and (2) the
manipulator has no information. It is not hard to see that
when the manipulator has complete information, DOMINAT-
ING MANIPULATION coincides with the standard manipu-
lation problem. Therefore, our framework of dominating
manipulation is an extension of the traditional manipulation
problem, and we immediately obtain the following proposi-
tion from the Gibbard-Satterthwaite theorem (Gibbard 1973;
Satterthwaite 1975).
Proposition 1. When m ≥ 3 and the manipulator has full
information, a voting rule satisfies non-imposition and is im-
mune to dominating manipulation if and only if it is a dicta-
torship.

The following proposition directly follows from the com-
putational complexity of the manipulation problems for
some common voting rules (Bartholdi, Tovey, and Trick
1989; Bartholdi and Orlin 1991; Conitzer, Sandholm, and
Lang 2007; Zuckerman, Procaccia, and Rosenschein 2009;
Xia et al. 2009).
Proposition 2. When the manipulator has complete infor-
mation, STV and ranked pairs are resistant to DOMINATING
MANIPULATION; all positional scoring rules, Copeland,
voting trees, and maximin are vulnerable to dominating ma-
nipulation.

Next, we investigate the case where the manipulator has
no information. We obtain the following positive results.
Due to the space constraint, most proofs are omitted.
Theorem 1. When the manipulator has no information, any
Condorcet consistent voting rule r is immune to dominating
manipulation.

Theorem 2. When the manipulator has no information,
Borda is immune to dominating manipulation.
Theorem 3. When the manipulator has no information and
n ≥ 6(m − 2), any positional scoring rule is immune to
dominating manipulation.

These results demonstrate that the information that the
manipulator has about the votes of the non-manipulators
plays an important role in determining strategic behavior.
When the manipulator has complete information, many com-
mon voting rules are vulnerable to dominating manipulation,
but if the manipulator has no information, then many com-
mon voting rules become immune to dominating manipula-
tion.

Manipulation with Partial Orders
In this section, we study the case where the manipulator has
partial information about the votes of the non-manipulators.
We suppose the information is represented by a profile Ppo

composed of partial orders. That is, the information set is
E = {P ∈ Fn : P extends Ppo}. We note that the two cases
discussed in the previous section (complete information and
no information) are special cases of manipulation with par-
tial orders. Consequently, by Proposition 1, when the ma-
nipulator’s information is represented by partial orders and
m ≥ 3, no voting rule that satisfies non-imposition and non-
dictatorship is immune to dominating manipulation. It also
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follows from Theorem 2 that STV and ranked pairs are re-
sistant to dominating manipulation. The next theorem states
that even when the manipulator only misses a tiny portion
of the information, Borda becomes resistant to dominating
manipulation.
Theorem 4. DOMINATION and DOMINATING MANIPULA-
TION with partial orders are NP-hard for Borda, even when
the number of unknown pairs in each vote is no more than 4.
Proof. We only prove that DOMINATION is NP-hard, via
a reduction from EXACT COVER BY 3-SETS (X3C). The
proof for DOMINATING MANIPULATION is omitted due to
space constraint. The reduction is similar to the proof of the
NP-hardness of the possible winner problems under posi-
tional scoring rules in (Xia and Conitzer 2011).

In an X3C instance, we are given two sets V =
{v1, . . . , vq}, S = {S1, . . . , St}, where for any j ≤ t,
Sj ⊆ V and |Sj | = 3. We are asked whether there exists
a subset S ′ of S such that each element in V is in exactly one
of the 3-sets in S ′. We construct a DOMINATION instance as
follows.
Alternatives: C = {c, w, d} ∪ V , where d is an auxiliary
alternative. Therefore, m = |C| = q + 3. Ties are broken in
the following order: c � w � V � d.
Manipulator’s preferences and possible manipulation:
VM = [w � c � d � V]. We are asked whether V = VM is
dominated by U = [w � d � c � V].
The profile of partial orders: Let Ppo = P1 ∪ P2, defined
as follows.
First part (P1) of the profile: For each j ≤ t, We define a
partial order Oj as follows.
Oj = [w � Sj � d � Others] \ [{w} × (Sj ∪ {d})]

That is, Oj is a partial order that agrees with w � Sj �
d � Others, except that the pairwise relations between
(w, Sj) and (w, d) are not determined (and these are the only
4 unknown relations). Let P1 = {O1, . . . , Ot}.
Second part (P2) of the profile: We first give the proper-
ties that we need P2 to satisfy, then show how to construct
P2 in polynomial time. All votes in P2 are linear orders that
are used to adjust the score differences between alternatives.
Let P ′

1 = {w � Si � d � Others : i ≤ t}. That is, P ′
1

(|P ′
1| = t) is an extension of P1 (in fact, P ′

1 is the set of lin-
ear orders that we started with to obtain P1, before removing
some of the pairwise relations). Let �sm = (m − 1, . . . , 0).
P2 is a set of linear orders such that the following holds for
Q = P ′

1 ∪ P2 ∪ {V }:
(1) For any i ≤ q, �sm(Q, c) − �sm(Q, vi) = 1, �sm(Q,w) −
�sm(Q, c) = 4q/3.
(2) For any i ≤ q, the scores of vi and w, c are higher than
the score of d in any extension of P1 ∪ P2 ∪ {V } and in any
extension of P1 ∪ P2 ∪ {U}.
(3) The size of P2 is polynomial in t+ q.

We now show how to construct P2 in polynomial time.
For any alternative a �= d, we define the following two votes:
Wa = {[a � d � Others], [Rev(Others) � a � d]}, where
Rev(Others) is the reversed order of the alternatives in C \
{a, d}. We note that for any alternative a′ ∈ C \ {a, d},
�sm(W,a)−�sm(W,a′) = 1 and �sm(W,a′)−�sm(W,d) = 1.
Let Q1 = P ′

1 ∪ {V }. P2 is composed of the following parts:
(1) tm− �sm(Q1, c) copies of Wc.
(2) tm+ 4q/3− �sm(Q1, w) copies of Ww.

(2) For each i ≤ q, there are tm− 1− �sm(Q1, vi) copies of
Wvi .

We next prove that V is dominated by U if and only if c is
the winner in at least one extension of Ppo ∪ {V }. We note
that for any v ∈ V ∪ {w}, the score of v in V is the same
as the score of v in U . The score of c in U is lower than the
score of c in V . Therefore, for any extension P ∗ of Ppo, if
r(P ∗∪{V }) ∈ ({w}∪V), then r(P ∗∪{V }) = r(P ∗∪{U})
(because d cannot win). Hence, for any extension P ∗ of Ppo,
voting U can result in a different outcome than voting V
only if r(P ∗ ∪ V ) = c. If there exists an extension P ∗ of
Ppo such that r(P ∗ ∪ {V }) = c, then we claim that the
manipulator is strictly better off voting U than voting V . Let
P ∗
1 denote the extension of P1 in P ∗. Then, because the

total score of w is no more than the total score of c, w is
ranked lower than d at least q

3 times in P ∗
1 . Meanwhile, for

each i ≤ q, vi is not ranked higher than w more than one
time in P ∗

1 , because otherwise the total score of vi will be
strictly higher than the total score of c. That is, the votes in
P ∗
1 where d � w make up a solution to the X3C instance.

Therefore, the only possibility for c to win is for the scores
of c, w, and all alternatives in V to be the same (so that c
wins according to the tie-breaking mechanism). Now, we
have w = r(P ∗ ∪{U}). Because w �VM

c, the manipulator
is better off voting U . It follows that V is dominated by U if
and only if there exists an extension of Ppo ∪{V } where c is
the winner.

The above reasoning also shows that V is dominated by
U if and only if the X3C instance has a solution. Therefore,
DOMINATION is NP-hard. �

Theorem 4 can be generalized to a class of scoring rules
similar to the class of rules in Theorem 1 in (Xia and
Conitzer 2011), which does not include plurality or veto. In
fact, as we will show later, plurality and veto are vulnerable
to dominating manipulation.

We now investigate the relationship to the possible win-
ner problem in more depth. In a possible winner prob-
lem (r, Ppo, c), we are given a voting rule r, a profile Ppo

composed of n partial orders, and an alternative c. We are
asked whether there exists an extension P of Ppo such that
c = r(P ). Intuitively, both DOMINATION and DOMINATING
MANIPULATION seem to be harder than the possible winner
problem under the same rule. Next, we present two theo-
rems, which show that for any WMG-based rule, DOMINA-
TION and DOMINATING MANIPULATION are harder than two
special possible winner problems, respectively.

We first define a notion that will be used in defining the
two special possible winner problems. For any instance of
the possible winner problem (r, Ppo, c), we define its WMG
partition R = {Rc′ : c

′ ∈ C} as follows. For any c′ ∈ C, let
Rc′ = {WMG(P ) : P extends Ppo and r(P ) = c′}. That
is, Rc′ is composed of all WMGs of the extensions of Ppo,
where the winner is c′. It is possible that for some c′ ∈ C,
Rc′ is empty. For any subset C′ ⊆ C \{c}, we let GC′ denote
the weighted majority graph where for each c′ ∈ C′, there is
an edge c′ → c with weight 2, and these are the only edges in
GC′ . We are ready to define the two special possible winner
problems for WMG-based voting rules.
Definition 2. Let d∗ be an alternative and let C′ be a
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nonempty subset of C \ {c, d∗}. For any WMG-based voting
rule r, we let PW1(d

∗, C′) denote the set of possible winner
problems (r, Ppo, c) satisfying the following conditions:

1. For any G ∈ Rc, r(G+GC′) = d∗.
2. For any c′ �= c and any G ∈ Rc′ , r(G+GC′) = r(G).
3. For any c′ ∈ C′, Rc′ = ∅.

We recall that Rc and Rc′ are elements in the WMG par-
tition of the possible winner problem.
Definition 3. Let d∗ be an alternative and let C′ be a
nonempty subset of C \ {c, d∗}. For any WMG-based vot-
ing rule r, we let PW2(d

∗, C′) denote the problem instances
(r, Ppo, c) of PW1(d

∗, C′), where for any c′ ∈ C \ {c, d∗},
Rc′ = ∅.
Theorem 5. Let r be a WMG-based voting rule. There is
a polynomial time reduction from PW1(d

∗, C′) to DOMINA-
TION with partial orders, both under r.
Proof. Let (r, Ppo, c) be a PW1(d

∗, C′) instance. We con-
struct the following DOMINATION instance. Let the profile
of partial orders be Qpo = Ppo ∪ {Rev(d∗ � c � C′ �
Others)}, V = VM = [d∗ � c � C′ � Others], and
U = [d∗ � C′ � c � Others]. Let P be an extension
of Ppo. It follows that WMG(P ∪ {Rev(d∗ � c � C′ �
Others), V }) = WMG(P ), and WMG(P ∪ {Rev(d∗ �
c � C′ � Others), U}) = WMG(P ) + GC′ . There-
fore, the manipulator can change the winner if and only if
WMG(P ) ∈ Rc, which is equivalent to c being a possible
winner. We recall that by the definition of PW1(d

∗, C′), for
any G ∈ Rc, r(G + GC′) = d∗; for any c′ �= c and any
G ∈ Rc′ , r(G + GC′) = c′; and d∗ �V c. It follows that
V (=VM ) is dominated by U if and only if the PW1(d

∗, C′)
instance has a solution. �

Theorem 5 can be used to prove that DOMINATION is
NP-hard for Copeland, maximin, and voting trees, even
when the number of undetermined pairs in each partial or-
der is bounded above by a constant. It suffices to show
that for each of these rules, there exist d∗ and C′ such that
PW1(d

∗, C′) is NP-hard. To prove this, we can modify
the NP-completeness proofs of the possible winner prob-
lems for Copeland, maximin, and voting trees by Xia and
Conitzer (Xia and Conitzer 2011). These proofs are omitted
due to space constraint.
Corollary 1. DOMINATION with partial orders is NP-hard
for Copeland, maximin, and voting trees, even when the
number of unknown pairs in each vote is bounded above by
a constant.
Theorem 6. Let r be a WMG-based voting rule. There is
a polynomial-time reduction from PW2(d

∗, C′) to DOMINAT-
ING MANIPULATION with partial orders, both under r.
Proof. The proof is similar to the proof for Theorem 5.
We note that d∗ is the manipulator’s top-ranked alternative.
Therefore, if c is not a possible winner, then V (= VM ) is
not dominated by any other vote; if c is a possible winner,
then V is dominated by U = [w � C′ � c � Others]. �

Similarly, we have the following corollary.
Corollary 2. DOMINATING MANIPULATION with partial
orders is NP-hard for Copeland and voting trees, even when
the number of unknown pairs in each vote is bounded above
by a constant.

It is an open question if PW2(d
∗, C′) with partial orders is

NP-hard for maximin. However, we can directly prove that
DOMINATING MANIPULATION is NP-hard for maximin by a
reduction from X3C.
Theorem 7. DOMINATING MANIPULATION with partial or-
ders is NP-hard for maximin, even when the number of un-
known pairs in each vote is no more than 4.

For plurality and veto, there exist polynomial-time algo-
rithms for both DOMINATION and DOMINATING MANIPU-
LATION. Given an instance of DOMINATION, denoted by
(r, Ppo, VM , V, U), we say that U is a possible improve-
ment of V , if there exists an extension P of Ppo such that
r(P ∪ {U}) �VM

r(P ∪ {V }). It follows that U dominates
V if and only if U is a possible improvement of V , and V
is not a possible improvement of U . We first introduce an
algorithm (Algorithm 1) that checks whether U is a possible
improvement of V for plurality.

Let ci∗ (resp., cj∗ ) denote the top-ranked alternative in V
(resp., U ). We will check whether there exists 0 ≤ l ≤
n, d, d′ ∈ C with d′ �VM

d, and an extension P ∗ of Ppo,
such that if the manipulator votes for V , then the winner is
d, whose plurality score in P ∗ is l, and if the manipulator
votes for U , then the winner is d′. We note that if such d, d′
exist, then either d = ci∗ or d′ = cj∗ (or both hold). To this
end, we solve multiple maximum-flow problems defined as
follows.

Let C′ ⊂ C denote a set of alternatives. Let �e =
(e1, . . . , em) ∈ N

m be an arbitrary vector composed of
m natural numbers such that

∑m
i=1 ei ≥ n. We define a

maximum-flow problem F�e
C′ as follows.

Vertices: {s,O1, . . . , On, c1, . . . , cm, y, t}.
Edges:

• For any Oi, there is an edge from s to Oi with capacity 1.
• For any Oi and cj , there is an edge Oi → cj with capacity
1 if and only if cj can be ranked in the top position in at
least one extension of Oi.

• For any ci ∈ C′, there is an edge ci → t with capacity ei.
• For any ci ∈ C \ C′, there is an edge ci → y with capacity
ei.

• There is an edge y → t with capacity n−∑
ci∈C′ ei.

For example, F�e
{c1,c2} is illustrated in Figure 1.

s

O1

On

c3

c1

cm

t

c2

y

1

1

1

1

1

1

1

e1

e2

e3

em

n− e1 − e2

...

...

Figure 1: F�e
{c1,c2}.

It is not hard to see that F�e
C′ has a solution whose value

is n if and only if there exists an extension P ∗ of Ppo, such
that (1) for each ci ∈ C′, the plurality of ci is exactly ei, and
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(2) for each ci′ �∈ C′, the plurality of ci′ is no more than ei′ .
Now, for any pair of alternatives d = ci, d

′ = cj such that
d′ �VM

d and either d = ci∗ or d′ = cj∗ , we define the set
of admissible maximum-flow problems Al

Plu to be the set of
maximum flow problems F�e

ci,cj where ei = l, and if F�e
ci,cj

has a solution, then the manipulator can improve the winner
by voting for U . Details are omitted due to space constraint.
Algorithm 1 solves all maximum-flow problems in Al

Plu to
check whether U is a possible improvement of V .

Algorithm 1: PossibleImprovement(V ,U )
1 Let ci∗ = Alt(V, 1) and cj∗ = Alt(U, 1).
2 for any 0 ≤ l ≤ n and any pair of alternatives
d = ci, d

′ = cj such that d′ �VM
d and either d = ci∗

or d′ = cj∗ do

3 Compute Al
Plu.

4 for each maximum-flow problem F�e
C′ in Al

Plu do
5 if

∑
ci∈C′ ei ≤ n and the value of maximum

flow in F�e
C′ is n then

6 Output that the U is a possible improvement
of V , terminate the algorithm.

7 end

8 end

9 end
10 Output that U is not a possible improvement of V .

The algorithm for DOMINATION (Algorithm 2) runs Algo-
rithm 1 twice to check whether U is a possible improvement
of V , and whether V is a possible improvement of U .

Algorithm 2: Domination
1 if PossibleImprovement(V ,U )=“yes” and

PossibleImprovement(U ,V )=“no” then
2 Output that V is dominated by U .
3 end
4 else
5 Output that V is not dominated by U .
6 end

The algorithm for DOMINATING MANIPULATION for plu-
rality simply runs Algorithm 2 m − 1 times. In the input
we always have that V = VM , and for each alternative in
C \ {Alt(V, 1)}, we solve an instance where that alternative
is ranked first in U . If in any step V is dominated by U , then
there is a dominating manipulation; otherwise V is not dom-
inated by any other vote. The algorithms for DOMINATION
and DOMINATING MANIPULATION for veto are similar. We
omit the details due to space constraint.

Future Work

Analysis of manipulation with partial information provides
insight into what needs to be kept confidential in an elec-
tion. For instance, in a plurality or veto election, reveal-
ing (perhaps unintentionally) part of the preferences of non-
manipulators may open the door to strategic voting. An in-
teresting open question is whether there are any more gen-
eral relationships between the possible winner problem and
the dominating manipulation problem with partial orders. It
would be interesting to identify cases where voting rules are
resistant or even immune to manipulation based on other

types of partial information, for example, the set of possi-
ble winners. We may also consider other types of strategic
behavior with partial information in our framework, for ex-
ample, coalitional manipulation, bribery, and control. We
are currently working on proving completeness results for
higher levels of the polynomial hierarchy for problems sim-
ilar to those studied in this paper.
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