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Abstract

The problem of identifying the (dynamic) team structures
and team behaviors from the observed activities of multiple
agents is called Multi-Agent Plan Recognition (MAPR). We
extend a recent formalization of this problem to accommo-
date a compact, partially ordered, multi-agent plan language,
as well as complex plan execution models – particularly plan
abandonment and activity interleaving. We adopt a branch
and price approach to solve MAPR in such a challenging set-
ting, and fully instantiate the (generic) pricing problem for
MAPR. We show experimentally that this approach outper-
forms a recently proposed hypothesis pruning algorithm in
two domains: multi-agent blocks word, and intrusion detec-
tion. The key benefit of the branch and price approach is its
ability to grow the necessary component (occurrence) space
from which the hypotheses are constructed, rather than be-
gin with a fully enumerated component space that has an in-
tractable size, and search it with pruning. Our formulation
of MAPR has the broad objective of bringing mature Oper-
ations Research methodologies to bear upon MAPR, envis-
aged to have a similar impact as mature SAT-solvers had on
planning.

Introduction
Multi-agent plan recognition (MAPR) refers to the problem
of explaining the observed behavior trace of multiple agents
by identifying the (dynamic) team-structures and the team
plans (based on a given plan library) being executed, as well
as predicting their future behavior. Since multiple expla-
nations (and corresponding predictions) are possible, a tra-
ditional approach has been to prune in the space of expla-
nations/hypotheses to arrive at the most likely hypothesis
(or possibly multiple highly likely ones) (Sukthankar and
Sycara 2008; Banerjee, Kraemer, and Lyle 2010). We seek
a better alternative to this approach, but we require a suf-
ficiently general model of MAPR to accomplish this in a
principled way.

Recently, a formal model for MAPR was proposed and
used to investigate the complexity of its simplest set-
ting (Banerjee, Kraemer, and Lyle 2010). However, this
model accommodates neither an expressive plan language,
nor complex plan execution models such as plan abandon-
ment (agents starting a plan before completing an earlier
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plan) and activity interleaving (agents interrupting a plan to
serve a different plan, and resuming the earlier plan again,
possibly repeatedly). We extend this model to accommo-
date these features, and adopt an OR technique –branch
and price (Wolsey 1998)–to solve MAPR in this extended
model. The key result of this paper is that a hypothesis
growth approach (afforded by branch and price) is a more
scalable alternative to the traditional hypotheses pruning ap-
proach.

We begin with an illustration of MAPR in a multi-agent
blocks word domain, shown in Figure 1. In part (a), two
teams of robotic arms assemble (i.e., spell out) the goal
words “TAR” and “AXE” from separate stacks, starting from
the (not necessarily) same initial configuration. Part (b)
shows the trace of 6 steps of activities of the 4 robotic arms
available to the (remote) recognizer, who is not aware of
the team-structure (i.e., the mapping of agent-id to stack-id).
This assumption partly models the realistic incomplete in-
formation under which the recognizer must operate. While
arms 1 and 2 appear to jointly assemble “TAR”, and arms
3 and 4 appear to jointly assemble “AXE”, arms 2 and 3
seem to assemble “TAX” as well, creating ambiguity for the
recognizer. The key insight is to partition the trace into non-
overlapping team plans, such that invalid teams (such as the
supposed team of agents 2 and 3) fail to yield a complete
partition hypothesis. In this example, agents 1 and 4 would
be executing illegal plans individually, or building separate
stacks as a team, neither of which yields a valid partition
hypothesis. Note, teammates are not required to start plan
execution at the same time (unlike what Figure 1 (b) might
suggest), and may not complete a plan by the observation
horizon, making probabilistic prediction a useful objective.
Part (c) shows a (non-unique) plan from the library, for start
state in (a) and goal “TAR”, in the form of a plan graph. This
is a graph based on the partially ordered set of steps needed
to achieve a goal from a start state, with added constraints
for multi-agency: role constraints (which steps need to be
performed by the same agent) and concurrency constraints
(which steps need to be executed simultaneously; not needed
in this illustration). Note, the time and the team size needed
to execute a plan are unspecified but constrained, e.g., be-
tween 1 and 4 agents can (collaboratively) execute this plan,
in 5 to unlimited time steps (due to noops).

We do not claim the above simple multi-agent plan lan-
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(a) (b) (c)

Figure 1: Multi-Agent Blocks Word. Agents and teams with partially specified goals (a), trace (b), and a plan (c).

guage to be ideal, and in fact, an ideal language would be
a separate topic altogether. We use this language because
it is conformant to the existing planning literature and has
minimal additions to accommodate multi-agency. It is not
as compact as (Sukthankar and Sycara 2008), but it offers
more flexible and compact definitions of multi-agent plans
than (Banerjee, Kraemer, and Lyle 2010). We use a library
of such plans to partition the trace thus identifying individual
(dynamic) teams and their plans, whether they are complete
or incomplete, interleaved or non-interleaved. We formulate
MAPR in this extended model as a branch and price prob-
lem and show that this leads to a more scalable solution than
hypotheses pruning, in two experimental domains.

We address an idealized setting of MAPR that ignores
noisy (one observation confused for another) and missing
observations, and incompleteness of the library, besides ab-
stracting away the process of activity recognition (Sadilek
and Kautz 2010) whereby the observed abstract activities
in the trace are determined from raw sensor data. It is our
hope that identifying the most appropriate solution approach
for the idealized problem will lead to useful insights to ulti-
mately address non-idealized settings in a systematic man-
ner. In particular, we expect that the present insight of grow-
ing hypotheses being a more efficient alternative to hypothe-
ses pruning in MAPR, will spur a new set of heuristic ap-
proaches for non-idealized settings, to verify whether the
benefit extends there.

Preliminaries

Let A be a set of n agents, A = {1, 2, . . . , n}, and Σ be
a fixed size alphabet of grounded, primitive actions (e.g.,
“(unstack A T)”) that these agents can be observed to exe-
cute. We are given a trace, T , of observed activities of these
agents over T steps of time, in the form of a T × n matrix,
T = [tij ], where tij ∈ Σ is the action executed by agent j
at time i, j = 1, . . . , n and i = 1, . . . , T . We are also given
a library of team plans L, which is a finite collection of plan
graphs, used in the illustration in Figure 1(c). Plan graphs
grounded in start-goal states can be viewed as being pro-
duced by decomposition (Ghallab, Nau, and Traverso 2004)
from a (more abstract and traditional) Hierarchical Task Net-

work (Erol, Hendler, and Nau 1994) plan library into a par-
tially ordered set of primitive actions (which we call the plan
graph), after a team of agents have chosen a goal. This per-
spective resembles the generative model of plan execution
underlying PHATT (Geib, Maraist, and Goldman 2008), al-
beit for multiple agents.

Definition 1 (Plan) A multi-agent plan, π is given by a tuple
π = 〈S,O,R,C〉, where

• S = {s1, s2, . . .} is a set of plan steps (i.e., vertices of
graph, as in Figure 1(c)),

• O = {(si, sj), . . .} is a set of ordering constraints, stating
that si must be executed before sj ,

• R = {(si, sj), . . .} is a set of role constraints, stating that
si and sj must be executed by the same agent,

• C = {(si, sj), . . .} is a set of concurrency constraints,
stating that si and sj must be executed concurrently.

Additional constraints can be incorporated if needed. Note
that the role and concurrency constraints can be of positive
and negative kinds, the latter identifying pairs of steps that
must not be performed by the same agent, or concurrently.
But the experimental domains in this paper will only need
the positive kind of constraints, so we do not consider the
negative kind any further.

Definition 2 (Occurrence) An occurrence of a plan π =
〈S,O,R,C〉 in trace T is given by a set of triples oπ =
{(s, k, t), . . .} such that
•(s, k, t) ∈ oπ ⇒ 1 ≤ t ≤ T ∧ k ∈ A ∧ s = T (t, k) ∈ S

• ∀(si, sj) ∈ O, (si, ki, ti) ∈ oπ ∧ (sj , kj , tj) ∈ oπ ⇒ ti < tj
• ∀(si, sj) ∈ R, (si, ki, ti) ∈ oπ ∧ (sj , kj , tj) ∈ oπ ⇒ ki = kj
• ∀(si, sj) ∈ C, (si, ki, ti) ∈ oπ ∧ (sj , kj , tj) ∈ oπ ⇒ ti = tj

Additionally, if S = {si|(si, ki, ti) ∈ oπ}, then oπ is said
to be a complete occurrence. Otherwise, it is an incomplete
occurrence, and could either have been abandoned or might
be completed after T .

For instance, the only complete occurrence of the plan in
Figure 1(c) in the trace in 1(b) is oTAR ={((unstack R X),
1, 1), ((unstack A T), 2, 1),((put-down R), 1, 2), ((put-down
A), 2, 2), ((pick-up A), 1, 4), ((pick-up T), 2, 4), ((stack A
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R), 1, 5), ((stack T A), 2, 6)}. Similarly, complete occur-
rences of plans with goals “AXE” and “TAX” can be cre-
ated, as indicated in Figure 1(b). As an illustration of an
incomplete occurrence for goal “AXE”, o′AXE , consider the
team of agents {1, 4} and the first 4 steps of observation in
Figure 1(b). This is given by o′AXE ={((unstack R X), 1, 1),
((unstack A T), 4, 1),((put-down R), 1, 2), ((put-down A), 4,
2), ((pick-up A), 1, 4), ((pick-up X), 4, 3), ((stack X E), 4,
4)}.

The set of agents involved in an occurrence o is a (hypoth-
esized) team, and represented as Xo = {k|(s, k, t) ∈ o}.
Also, let tomax = max{t|(s, k, t) ∈ o} be the finish time
of an occurrence. For the case that the observed agents are
not interleaving plan execution, for each occurrence oπ that
is incomplete, if toπmax = T , or all agents in Xoπ only ex-
ecute “noop”s between toπmax and T , then oπ is assumed a
potential candidate for completion after T and yields a pre-
diction (stating that the set of agents in Xoπ must accom-
plish the unexecuted steps of π after time T ). Otherwise, oπ
is assumed to be abandoned. On the other hand, when the
observed agents are indeed interleaving plan execution, then
no such distinction can be made for incomplete occurrences.
Moreover in this case, prediction of observations beyond T
is more complex, with multiple reasonable alternatives. In
this paper, we only focus on the problem of explanation, and
defer a general treatment of prediction in both interleaving
and non-interleaving cases to future work.

Definition 3 (Interleaved Explanation) An interleaved ex-
planation of T is a set of occurrences Π = {o1, o2, . . .} such
that all of the following hold:

Library-conformity: Each oi ∈ Π is a (complete or in-
complete) occurrence of some plan π ∈ L,

Non-overlap: ∀oi, oj ∈ Π, oi
⋂
oj = ∅,

Coverage: ∀(i, j) s.t. T (i, j) �= (noop), ∃ok ∈
Π s.t.(T (i, j), j, i) ∈ ok.

The above definition requires that Π partitions T . For in-
stance, if a complete list of (complete and incomplete) oc-
currences were generated for the example in Figure 1 (as-
suming no other start state is possible, and the only goals
possible are “TAR”, “TAX” and “AXE”), the only subset
of those occurrences that successfully partitions T would
be Π = {oTAR, oAXE}. Thus the remaining occurrences
oTAX , o′AXE and others are effectively discarded as being
contradictory in explaining T . A valid partition (not neces-
sarily unique) yields a self-consistent explanation. Notice
that in this example, the occurrences actually fit into the
partition/explanation in a non-interleaved manner, although
they also satisfy the above definition. In order to capture
non-interleaved partition/explanation, we require an addi-
tional constraint as stated in the following definition.

Definition 4 (Non-interleaved Explanation) A non-
interleaved explanation of T is a set of occurrences
Π = {o1, o2, . . .} such that in addition to the conditions in
Definition 3, the following holds for each oj ∈ Π

∀t ∈ [to
j

min, t
oj

max], ∀i ∈ Xoj , (T (t, i), i, t) ∈ oj∨T (t, i) = (noop)

where Xoj and to
j

max are as defined before, and to
j

min is sim-
ilarly defined as to

j

min = min{ti|(si, ki, ti) ∈ oj}.

For an abandoned team plan, this definition requires all
teammates to abandon it at the same time. We do not ad-
dress non-unanimous abandonment in this paper. We call
the set of possible explanations of T , P . Alternative ex-
planations in P are also called hypotheses, and the goal of
MAPR is either to output the most likely hypothesis, or a set
of hypotheses that are most highly ranked in some way. Our
search approach accommodates both choices, albeit in lim-
ited ways. We associate a utility function f : P 	→ � to the
explanations/hypotheses, so that each explanation of T can
be evaluated for its preferability, with higher f indicating
greater preferability. f can be defined in various ways; e.g.,
setting f({o1, . . . , oz}) = −z captures Kautz & Allen’s
“minimal top-level plans” (1986) criterion for a single agent,
and Kaminka & Bowling’s “maximum coherence” (2002)
for multiple agents. In this paper, we define f to represent
the log-likelihood of an explanation using a simple prob-
ability model, and assuming independence of occurrences.
Although this returns one hypothesis, our search procedure
can be easily modified to return all hypotheses that exceed
a selected f value, thus accommodating the other goal of
MAPR. The following is a straightforward extension of the
hardness result of (Banerjee, Kraemer, and Lyle 2010), and
stated without proof:

Theorem 1 For an arbitrary trace T and a library of
plan graphs L, the problem of deciding whether a non-
interleaved explanation of T exists is NP-complete.

Our experimental results indicate that finding an interleaved
explanation is even harder.

Solution Approach

The approach suggested in (Banerjee, Kraemer, and Lyle
2010) segregates the occurrence generation from hypoth-
esis search, and as such, must completely enumerate the
occurrence space. However, this space can be large, with
O(T 22n) being a tight bound on its size. Moreover, only
a small part of this space will ever appear in the solution,
since the number of activities to be explained is only O(Tn).
Enumerating the occurrences before the search can begin is
a significant liability, not because it is expensive (it is not,
compared to the search time), but because pruning oriented
search is simply inefficient in the hypothesis space that is
grounded on a complete occurrence space (components of
hypotheses), as our experiments show. Other existing ap-
proaches have also emphasized on pruning hypotheses (ex-
planations that are built out of the set of occurrences), albeit
heuristically (Sukthankar and Sycara 2008). This paper is
partly motivated by the need for an alternative perspective
to hypotheses search.

In this paper, instead of pruning unwanted hypotheses
from a (potentially) very large space, we grow incrementally
the set of occurrences most likely to be used in the most val-
ued hypothesis, and only ever generate those occurrences.
We adopt a branch and price (Wolsey 1998) approach for
hypothesis search, with column generation used for incre-
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mental occurrence generation and incorporation in the solu-
tion basis. As customary in branch and price, we establish
a master problem (MP) which is the original MAPR prob-
lem posed as an integer (boolean) program, but relaxed to be
solved efficiently as a linear program. Initially, its basis only
consists of occurrences (columns) that are sufficient to pro-
duce a feasible solution to the LP relaxation. This is called a
restricted master problem (RMP). Then, column generation
is used as secondary (or slave problem, SP) to the master to
identify a new occurrence (column) to enter the basis, and
this process repeats until the solution to the RMP is guaran-
teed to also be a solution to the MP. Although such a solution
may not solve the original integer program (because it may
assign non-integers to some variables), it provides an upper
bound that is useful for branch and bound search. More im-
portantly, the alternation of RMP and SP at each node spread
over paths in the branch and bound tree allows us to incre-
mentally generate new hypotheses, i.e., to grow hypotheses.

Branch and Price Formulation

As in (Banerjee, Kraemer, and Lyle 2010), let E be a binary
matrix which has Tn columns and O(T 22n) rows. In the
example of Figure 1, assuming only the three possible goals
shown and one plan per goal with a fixed start state of (a)
and no interleaving or abandonment, E is simply
⎡
⎣

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0

⎤
⎦ .

(1)
E will be much larger when interleaving and/or abandon-
ment are allowed. The Tn columns correspond to the Tn
observations in the trace (in row major order), while each
row of E is a binary encoding of an occurrence (Defini-
tion 2). In equation 1, the three rows from top correspond
to the three occurrences indicated in Figure 1(b) for goals
“TAR”, “TAX” and “AXE” respectively. Essentially, a row
has a 1 for every non-noop trace-cell covered by that occur-
rence, and 0 elsewhere. We can consider a binary vector, x
of length r(E), that stipulates which rows of E (i.e., which
occurrences) can yield a solution. In other words, x gives
a set of rows of E such that for every column of E there is
exactly one row in this set that contains a 1 in that column.
In the example corresponding to equation 1, x = [1, 0, 1],
where only the “(noop)” columns are not covered. Then the
MAPR problem can be posed as the master integer program
(MP)

max vTx

s.t. ETx = 1

xi ∈ {0, 1}∀i = 1, . . . , r(E) (2)

where v is the vector of utilities of the occurrences. The
restricted master problem (RMP) is given by

max ṽT x̃

s.t. ẼT x̃ = 1

x̃i ∈ {0, 1}∀i = 1, . . . , r(Ẽ) (3)

where Ẽ contains a much smaller number of rows (but Tn
columns), and x̃ is the decision vector on this restricted ba-
sis. We are also required to relax the RMP to be solved as a
linear program, thus producing a vector x̃ such that poten-
tially 0 < x̃k < 1 for some k. To force these variables to
be boolean, we branch on a set of fractional variables, de-
termined as follows: We pick two columns of Ẽ, indexed
i and j (say), such that E(k, i) = E(k, j) = 1 for rows k
with 0 < x̃k < 1 in the LP solution. That is, the trace cells
corresponding to i and j are both covered by some occur-
rence(s) with fractional weight in x̃. This gives us a set of
rows K of Ẽ such that 0 <

∑
k∈K:E(k,i)=E(k,j)=1 x̃k <

1. We form two branches: one with the added restric-
tion that

∑
k∈K:E(k,i)=E(k,j)=1 x̃k = 1, i.e., both trace

cells corresponding to i and j must be covered by exactly
one row from K. The other branch has the restriction∑

k∈K:E(k,i)=E(k,j)=1 x̃k = 0, i.e., no row from K can
cover those trace cells. These branches not only ensure
that the fractional weights are forced to become boolean
further down the tree, but also that the resulting problems
are separated to minimize overlap/redundancy. Each result-
ing node in the search tree is a new RMP. Instead of adding
the above new constraints to the RMP, equivalent constraints
are actually added to the slave problem (SP) in the succes-
sor nodes. For the two successors corresponding to the two
branches above, we add the constraints E(k, i) = E(k, j)
and E(k, i) + E(k, j) ≤ 1 respectively, for every row k
added by column generation in the subtree rooted at this suc-
cessor. We also remove occurrences that do not satisfy these
constraints from the basis in the successors. These steps are
standard for covering problems (Wolsey 1998), so we skip
the explanations.

Column Generation

The general idea of column generation is that optimal solu-
tions to large LPs can be produced without explicitly includ-
ing all variables (x, corresponding to the columns of ET ) in
the constraint matrix E. In fact, only a small subset will
be in the solution and all others that have a non-positive re-
duced price (Wolsey 1998) can be ignored.

When the LP form of the RMP (equation 3) is solved, let
the primal and the dual solutions be denoted by (x, μ). μ
may not be dual feasible for the LP version of the master IP
(equation 2), but this can be verified by checking for non-
positive reduced price

∃k s.t. (vk − μET
k ) ≤ 0? (4)

Of course, since we do not know E, this cannot be directly
solved. Instead this is solved as the pricing subproblem (SP)
as discussed in the next section.

If no such k is found, then μ is indeed dual feasible and
hence the optimal solution of the LP version of equation 3
is also optimal for the LP version of equation 2. Then we
branch as stated in the previous section. But if such a k is
found, then this new variable is included in the basis, and
the corresponding column is added to ẼT , and column gen-
eration is repeated.

The example of Figure 1 is too improverished to illus-
trate the entire process of column generation and branch and
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price. In fact, a detailed illustration will require a rather un-
wieldy example. Instead, we try to provide the intuitions
through an analogy: consider the problem of fitting a puz-
zle base (T ) with jigsaw pieces (analogous to occurrences)
that include many unnecessary pieces. While this problem
can be posed as equation 2, we allow pieces to be fraction-
ally selected (0 < xk < 1) from a smaller set of pieces
(Ẽ), producing equation 3. Then, equation 4 (the pricing
subproblem, as described in the next section) is analogous
to asking for the best piece to be added to a partially filled
jigsaw base. The associated constraint E(k, i) = E(k, j)
requires that the returned piece either covers both areas i
and j of the base (i.e., E(k, i) = E(k, j) = 1) or cov-
ers neither (i.e., E(k, i) = E(k, j) = 0). The constraint
E(k, i) + E(k, j) ≤ 1 requires that the returned piece must
not cover both areas i and j of the base simultaneously. The
incremental filling of the jigsaw base would be controlled by
the outer branch and bound process.

The Pricing Subproblem

The key component of the column generation approach that
is non-standard and cannot be used off-the-shelf, is the pric-
ing subproblem that leads to expansion of Ẽ. In MAPR,
the pricing problem can be setup as a separate integer pro-
gramming problem that returns the maximizing k for equa-
tion 4. We create a graph that maps the non-noop cells in T
to matching plan steps in the library, as shown in Figure 2.
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Figure 2: Graph of the pricing prob-
lem.

If a cell c is
mapped to step sp
of a plan p then
the (dashed) edge
is represented by
the boolean vari-
able xcsp . Each
cell c is asso-
ciated with the
time tc when it
was executed and
the agent ac that
executed it, i.e.,
T (tc, ac) = c.

We first
present the con-
straints of this
IP for the cases
where activity
interleaving are present and absent, followed by our choice
of v to give the objective function. In what follows, M is
assumed to be a large integer, at least M > max{T, n, πM}
where πM is the maximum number of steps in any plan.

Interleaving Allowed

Each plan step sp that is not the “START” step is as-
signed a time τsp , giving a pair of constraints for each
sp (except “START”):

∑
c(tc − M)xcsp ≤ τsp − M and∑

c(tc−2M)xcsp ≥ τsp −2M . There is a boolean variable
bp corresponding to the “START” step of a plan p saying
whether it (and hence the plan) is active. Since the program

must output one occurrence,
∑

p bp = 1. Then for each step
(lp) for each plan p that has an incoming ordering edge from
the “START” step of p (we call these “leader” steps), we
have the constraint τlp ≥ (1− bp)M + 1.

We use two variables τmin and τmax to locate the start and
end times of the occurrence returned. Then for each plan
leader step lp, we have the constraint τmin ≤ τlp , and for
each plan step sp of p there is a constraint τsp ≤ τmax +
(1−

∑
c xcsp)2M .

Each ordering constraint (edge s′p → sp) and each con-
currency constraint (edge σp � σ′

p) in each plan p are re-
spectively encoded as τsp > τs′p and τσp

= τσ′
p
. Each role

constraint (edge sp ⇔ s′p) in each plan p is encoded as
∑

c

(ac −M)xcsp + 2M ≥
∑

c

(ac +M)xcs′p

∑

c

(ac +M)xcsp ≤
∑

c

(ac −M)xcs′p + 2M

Finally, the constraint
∑

sp,p
xcsp ≤ 1 for each c ensures

that no more than one outgoing edge from c can be active.
Similarly, the constraint

∑
c xcsp ≤ 1 for each step sp of

each plan p ensures that no more than one cell can map to sp
(at most one incoming active edge to sp).

In the blocks word domain, the fact that an agent holding
a block X (due to some action θ) cannot execute any non-
noop action unless it has executed an action θ′ of the form
(stack X *) or (put-down X), or has abandoned the plan (in
which case it is assumed to have executed an invisible “re-
set” action) cannot be adequately captured by the role and
ordering constraints alone. For this purpose, we use the fol-
lowing set of constraints only for the blocks word domain:
for each ordered pair θ → θ′ described above in each plan p,
for each cell c that maps to θ, pick c′ – the earliest non-noop
cell corresponding to agent ac after time tc; then

∑

sp

∑

c′′∈Θ

xc′′sp ≤ (1 + xc′θ′ − xcθ)M

where Θ is the set of all (non-noop) cells corresponding to
agent ac after time tc (therefore, Θ includes c′). Here we are
enforcing the convention that if c′ has no mapping to θ′ (in
Figure 2) then xc′θ′ = 0 instead of being undefined. There
are O(π2

ML + Tn) constraints and O(πMLTn) variables,
where L = |L|.

Interleaving Not Allowed

Additional constraints are needed when the agents are not
interleaving their plan steps. To prevent activity interleaving
we use the following pair of constraints for each c

τmin − tc + (tc +M)
∑

sp,p

xcsp +M(2 + kc − 2αi) > 0

τmax − tc + (tc −M)
∑

sp,p

xcsp −M(1 + kc − 2αi) < 0

where i = ac, the agent corresponding to cell c. These con-
straints ensure that if agent i = ac is active (i.e., αi = 1)

605



but c is inactive, then tc �∈ [τmin, τmax]. The boolean vari-
able kc needs no additional constraint, but for the boolean
variable αi we have a pair of constraints for each agent i:∑

ac=i,sp,p
xcsp ≤ αiM and

∑
ac=i,sp,p

xcsp ≥ αi. Thus,
there are an additional O(Tn) constraints and n variables
compared to the interleaved case.

Objective Function

To generate the utility of occurrence ok (given as vk
in equation 4), we represent its posterior likelihood as
P (ok|Xok , π).P (π|Xok).P (Xok) where P (Xok) stands
for the likelihood of agents in Xok forming a team at time
to

k

min, P (π|Xok) stands for the likelihood of that team se-
lecting plan π, and P (ok|Xok , π) is the likelihood of ok

emerging as the observational outcome of that team exe-
cuting that plan. For this paper, we assume a very sim-
ple yet reasonable generative model of these likelihoods:
P (Xok) ∝ exp(−β1|Xok |) thus making smaller teams
likelier than larger teams, P (π|Xok) ∝ exp(−β2(|π| −
|Xok |)) thus making smaller teams prefer smaller plans
(|π| being the number of steps in π), and P (ok|Xok , π) ∝
exp(−β3(|π| − |ok|)) for no interleaving (thus preferring
plans closer to completion than further) but P (ok|Xok , π) ∝
exp(−β3(|π| − |ok|) − β4(t

ok

max − to
k

min)) with interleaving
thus also preferring plan execution during shorter intervals
over longer/largely separated intervals. Setting vk to the pos-
terior log-likelihood, we get

vk = (β2 −β1)|Xok |− (β2 +β3)|π|+β3|ok|−β4(t
ok

max − to
k

min)

where β4 = 0 for the case of non-interleaved explanations.
Note that setting f({o1, . . . , oz}) =

∑
i vi, gives us the

MAP explanation under the above probability model and the
assumption of independence of occurrence likelihoods.

Experimental Results

We selected two domains for experimentation: BLOCKS
WORD and INTRUSION DETECTION (Geib and Gold-
man 2002), for both of which the data were adopted
from (Ramirez and Geffner 2010), hence the goals were
all conjunctive. We selected the 5 goal words “STAR”,
“STACK”, “RASH”, “TRASH” and “CRASH”, and 2 pos-
sible start states (as shown in Figure 4) for BLOCKS WORD.
With a single plan per start-goal configuration, we had 10
plan graphs in the library with an average of 15 steps per
plan. For INTRUSION DETECTION, we randomly selected 5
goals from (Ramirez and Geffner 2010) and assumed no role
or concurrency constraints. Note that this domain is more
abstract and has no ground states, unlike BLOCKS WORD.
With one plan per conjunctive goal, we had 5 plan graphs
in the plan library with an average of 16 steps per plan.
We modified the domain and problem PDDL descriptions
to accommodate a variable number of agents for plan exe-
cution, then used a partial order planner to populate L (e.g.,
Figure 1(c)) given the goals, and finally allowed distributed
execution of randomly selected plans by random (dynamic)

teams to generate the traces 1.

�

�

�

� �

�

�

�

� �

� �

�

� �

�

Figure 4: Start states for BLOCKS WORD experiments.

We compare our results with the hypothesis pruning ap-
proach of (Banerjee, Kraemer, and Lyle 2010) (labeled “Al-
gorithm X” in the plots and “ALGX” in the table), since it
is based on a model closest to ours. We used IBM ILOG
CPLEX (academic version) for the branch and price im-
plementation (labeled “BNP” in the table) but disabled its
multi-core utilization for fair comparison with “Algorithm
X”. The experiments were run on a cluster with 12 Dell
M610 Blades, each having 8 Intel Xeon 3.00GHz processors
with 12Gb RAM shared amongst them, with a cutoff time of
12h. We set β1 = β3 = β4 = 1, β2 = 2. Figure 3 shows
the plot of runtimes, proving the (relative) scalability of the
new perspective to search. The times reported for “ALGX”
includes the occurrence generation time, since “Algorithm
X” needs all occurrences to be generated prior to search.
Table shows the relative number of occurrences seen by
the two search approaches, supporting the above conclusion,
and also shows the percentage of instances that were cutoff
by the time limit. Results were not available for “N/A” be-
cause the runs were too expensive. We kept T fixed at 15,
and varied n since the latter is the key to intractability. All
results are averaged over 30 instances including the cutoff
instances, which explains why some plots flatten out close
to the cutoff time. Thus except for BLOCKS WORD with
no interleaving, we see a speedup of 100 times or better for
our proposed hypotheses growth approach, compared to hy-
potheses pruning.

Conclusions and Future Work
We have presented an adaptation of a powerful OR tech-
nique, branch and price, for solving instances of large
MAPR problems that accommodate activity interleaving and
plan abandonment. The underlying principle can be thought
of as a hypotheses growth approach, as opposed to the
prevailing hypotheses pruning approach. Our experiments
show that the new approach is significantly more scalable
than a previous approach. Our formulation of MAPR is
geared toward bringing other mature OR methodologies to
bear upon MAPR in the future, and envisaged to have a sim-
ilar impact as mature SAT-solvers had on planning.

Acknowledgments: We are grateful to the anonymous re-
viewers, as well as to Gal Kaminka and Gita Sukthankar
for helpful comments and suggestions. This work was sup-
ported in part by a start-up grant from the University of
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1A part of the trace generator utility is available at http://
www.cs.usm.edu/˜banerjee/TraceGen
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Figure 3: Top: Multi-agent BLOCKS WORD with no interleaving (left), and with interleaving (right). Bottom: Same for Multi-agent
INTRUSION DETECTION

n INTRUSION DETECTION BLOCKS WORD
Interleaving No Interleaving Interleaving No Interleaving

% cutoff # occs ×103 % cutoff # occs ×103 % cutoff # occs ×103 % cutoff # occs ×103

ALGX BNP ALGX BNP ALGX BNP ALGX BNP ALGX BNP ALGX BNP ALGX BNP ALGX BNP

8 16.7 0.0 479.9 0.1 0.0 0.0 0.2 0.0 0.0 0.0 61.2 0.0 0.0 0.0 0.3 0.0

10 26.7 0.0 860.9 0.1 0.0 0.0 0.2 0.0 13.3 0.0 139.9 0.1 0.0 0.0 0.5 0.0

12 40.0 0.0 2270.0 0.2 0.0 0.0 0.3 0.0 10.0 0.0 225.5 0.1 0.0 0.0 0.8 0.0

14 70.0 0.0 5060.6 0.3 0.0 0.0 0.5 0.0 30.0 0.0 540.5 0.1 0.0 0.0 1.0 0.0

16 N/A 0.0 N/A 0.4 0.0 0.0 0.8 0.0 46.7 0.0 871.5 0.2 0.0 0.0 1.6 0.0

20 N/A 0.0 N/A 0.8 0.0 0.0 2.3 0.0 N/A 0.0 N/A 0.4 0.0 0.0 2.9 0.0

30 N/A 0.0 N/A 2.1 20.0 0.0 5.2 0.1 N/A 6.7 N/A 1.7 10.0 0.0 17.3 0.2

40 N/A 56.7 N/A 2.8 80.0 0.0 22.1 0.2 N/A 86.7 N/A 2.0 50.0 33.3 54.0 0.4
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