
Quick Polytope Approximation of all
Correlated Equilibria in Stochastic Games

Liam MacDermed, Karthik S. Narayan, Charles L. Isbell, Lora Weiss
Georgia Institute of Technology

Robotics and Intelligent Machines Laboratory
Atlanta, Georgia 30332

liam@cc.gatech.edu, karthik.narayan@gatech.edu, isbell@cc.gatech.edu, lora.weiss@gtri.gatech.edu

Abstract

Stochastic or Markov games serve as reasonable models
for a variety of domains from biology to computer se-
curity, and are appealing due to their versatility. In this
paper we address the problem of finding the complete
set of correlated equilibria for general-sum stochastic
games with perfect information. We present QPACE –
an algorithm orders of magnitude more efficient than
previous approaches while maintaining a guarantee of
convergence and bounded error. Finally, we validate our
claims and demonstrate the limits of our algorithm with
extensive empirical tests.

1 Introduction and Related Work

Stochastic games naturally extend Markov decision pro-
cesses (MDPs) in multi-agent reinforcement learning prob-
lems. They can model a broad range of interesting problems
including oligopoly and monetary policy (Amir 2001), net-
work security and utilization (Nguyen, Alpcan, and Basar
2010), and phenotype-expression patterns in evolving mi-
crobes (Wolf and Arkin 2003). Unfortunately, typical ap-
plications of stochastic games are currently limited to very
small and simple games. Our primary objective in this work
is to make it feasible to solve larger and more complex
stochastic games.

There have been many approaches to solving stochastic
games in game theory and operations research, mostly fo-
cused on two-player, zero sum games or repeated games.
One line of work uses a recursive “self-generating set” ap-
proach that has a very similar flavor to the work we present
here (Abreu 1988; Cronshaw 1997; Judd, Yeltekin, and Con-
klin 2003; Horner et al. 2010). A recent example of this work
is that of Burkov and Chaib-draa (2010) where the set of
sub-game perfect Nash equilibria is found via a repeatedly
finer grain tiling of the set. Unfortunately, none of these ap-
proaches has appealing error or computational guarantees
able to generalize to stochastic games.

In artificial intelligence, the field of multi-agent learning
has produced a particularly promising line of research em-
ploying a modified version of Bellman’s dynamic program-
ming approach to compute the value function (Greenwald

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Hall 2003; Littman 2001; Hu and Wellman 2003). This
approach has lead to a few successes, particularly in the
zero-sum case; however, value-function based approaches
have been proven to be insufficient in the general case
(Zinkevich, Greenwald, and Littman 2005). In the wake of
this negative result, a new line of research has emerged that
replaces the value-function with a multi-dimensional equiv-
alent referred to as the achievable set.

Murray and Gordon (2007) derive an intractable algo-
rithm for calculating the exact form of the achievable set
based Bellman equation and proved correctness and conver-
gence; however, their approximation algorithm is not gener-
ally guaranteed to converge with bounded error, even with
infinite time. MacDermed and Isbell (2009) solved these
problems by targeting ε-equilibria instead of exact equilibria
and by approximating the closed convex hull with a bounded
number of vertices. Their algorithm bounded the final error
introduced by these approximations. While MacDermed and
Isbell’s algorithm scales linearly with the number of states,
it becomes infeasible when there are more than two players
with three actions each.

In this paper we adopt a new representation of achiev-
able sets and present a new algorithm, QPACE, that reduces
MacDermed and Isbell’s approach to a series of efficient
linear programs while maintaining their theoretical guaran-
tees. We prove correctness and conduct extensive empirical
tests demonstrating QPACE to be several orders of magni-
tude faster while providing identical results.

2 Background

Stochastic games extend MDPs to multiple agents by using
vectors (one element per player) to represent actions and re-
wards rather than the scalars used in MDPs. In our work, we
assume agents are rational and attempt to maximize their
long term expected utility with discount factor γ. We as-
sume agents can communicate freely with each other (cheap
talk). We also assume that agents observe and remember
past joint-actions, allowing agents to change behavior and
threaten or punish based on each other’s actions (e.g. ”if you
do X, I’ll do Y”).

We formally represent a stochastic game by the tuple
〈I, S, s0, A, P,R〉. The components in the tuple include the
finite set of players I , where we let n = |I|; the state
space S, where each s ∈ S corresponds to a normal form

Proceedings of the Twenty-Fifth AAAI Conference on Artificial IntelligenceProceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

707

game; a set of actions A; a transition probability function
P : S × An × S → R, describing the probability of
transitioning from one state to another given a joint-action
�a = 〈a1, · · · , an〉; and a reward function R : S×An → R

n

describing the reward a state provides to each player after a
joint-action. Agents start in initial state s0. They then repeat-
edly choose joint-actions, receive rewards, and transition to
new states.

When solving stochastic games, we target correlated
equilibria (CE), which generalize Nash equilibria. A CE
takes the form of a probability distribution across joint-
actions. Agents observe a shared random variable corre-
sponding to joint-actions drawn from the CE’s distribution.
This informs agents of their prescribed action without di-
rectly revealing other agents’ actions; however, information
about other agents’ actions is revealed in the form of a pos-
terior probability. The distribution is a CE when no agent
has an incentive to deviate. CEs only require a shared ran-
dom variable, but equilibrium selection without communica-
tion is an open problem and beyond the scope of this paper;
hence our assumption of cheap talk.

2.1 Achievable Sets

The core idea of our algorithm involves an achievable set
function V : S → {Rn}, the multi-agent analogy to the
single agent value-function. As a group of n agents follow
a joint-policy, each player i ∈ I receives rewards. The dis-
counted sum of these rewards is that player’s utility, ui. The
vector �u ∈ R

n containing these utilities is known as the
joint-utility, or value-vector. Thus, a joint-policy yields a
joint-utility in R

n. If we examine all mixed joint-policies
starting from state s, discard those not in equilibrium, and
compute all the joint-utilities of the remaining policies we
will have a set of points in R

n: the achievable set.
An achievable set contains all possible joint-utilities that

players can receive using policies in equilibrium. Each di-
mension represents the utility for a player (Figure 1). This
definition is valid for any equilibrium solution concept, but
QPACE can only compute achievable sets representable as
convex polytopes, such as those from CE. Since this set
contains all attainable joint-utilities, it will contain the op-
timal joint-utility for any definition of “optimal.” From this
achievable set, an optimal joint-utility can be chosen using
a bargaining solution (Myerson 1991). Once the agents in
the game agree on a joint-utility, a policy can be constructed
in a greedy manner for each player that achieves the targeted
utilities (Murray and Gordon 2007), similar to the procedure
in which a value function can be used to construct a pol-
icy in single-agent reinforcement learning. As agents care
only about the utility they achieve and not about the specific
policy they use, computing the achievable set for each state
solves the stochastic game.

2.2 Augmented Stage Games and Threats

When choosing which action to execute, agents consider not
only their immediate reward but also the long term utility of
the next state in which they may arrive. The expected joint-
utility for each joint-action is known as the continuation util-
ity, −→cu�a. Because the agents consider both their immediate

Player 1 Utility

Pl
ay

er
 2

 U
ti

lit
y (5.25, 5.25)

(7, 2)

(2, 7)

(3.6, 3.6)

A) B)

7, 2

2, 7

6, 6

0, 0

Chicken

Chicken

Dare

Dare

Figure 1: A) The game of chicken. B) The achievable set of corre-
lated equilibria for chicken. For each joint-utility within the region
there exists a correlated equilibrium yielding the given rewards for
each player. For example the point (5.25, 5.25) is achieved by the
agents playing (chicken, chicken) with probability 1

2
while playing

(dare, chicken), and (chicken, dare) each with probability 1
4

.

reward and their continuation utility they are in essence play-
ing an augmented stage game with payoffs R(s,�a) +−→cu�a.

Assuming that the players cooperate with each other, they
choose to jointly play any equilibrium policy in the succes-
sor state s′. Thus, the continuation utility −→cu�as′ of each suc-
cessor state may be any point in the achievable set V (s′)
of that state. We call the set of possible continuation utili-
ties, Q(s,�a), the action achievable set function. When there
is only one successor, i.e. P (s′|s,�a) = 1, then Q(s,�a) =
V (s′). When there is more than one successor state, the con-
tinuation utility is the expectation over these utilities, i.e.

Q∗(s,�a) =
{∑

s′
P (s′|s,�a)−→cu�as′ | −→cu�as′ ∈ V ∗(s′)

}
(1)

It is advantageous for players to punish other players who
deviate from the agreed upon joint-policy. Players accom-
plish this by changing their continuation utility in the event
of defection. The harshest threat possible (which maximizes
the achievable set) is a global grim trigger strategy, where all
other players cooperate in choosing policies minimizing the
defecting player’s rewards for the rest of the game. The grim
trigger threat-point (

−→
gt�ai) is a continuation utility that play-

ers choose for each joint-action �a in the event that player i
defects. This utility can be calculated as a zero-sum game
using Nash-Q learning (Hu and Wellman 2003) indepen-
dently at initialization. While grim trigger threats can lead
to subgame imperfect equilibria, extending our algorithm to
compute subgame perfect equilibria is easy (see Section 5).

3 The QPACE Algorithm

Achievable set based approaches replace the value-function,
V (s), in Bellman’s dynamic program with an achievable set
function – a mapping from state to achievable set. We up-
date the achievable set function over a series of iterations,
akin to value iteration. Each iteration produces an improved
estimate of the achievable set function using the previous

Figure 2: An example achievable set contraction

708

iteration’s estimate. The achievable set function is initial-
ized to some large over-estimate and the algorithm shrinks
the sets during each iteration until insufficient progress is
made, at which point the current estimate of the achievable
set function is returned (Figure 2).

The general outline of QPACE per iteration is:

1. Calculate the action achievable sets Q(s,�a), giving us the
set of possible continuation utilities.

2. Construct a set of inequalities that defines the set of cor-
related equilibria.

3. Approximately project this feasible set into value-vector
space by solving a linear program for each hyperplane of
our achievable set polytope V (s).

3.1 Representing Achievable Sets

QPACE represents each achievable set as a set of m linear
inequalities with fixed coefficients. Recall that the achiev-
able set is closed and convex, and can be thought of as an
n-dimensional polytope (one dimension for each player’s
utility). Polytopes can be defined as an intersection of half-
spaces. Each of the m half-spaces j ∈ H consists of a nor-
mal Hj and an offset bj such that the achievable joint-utility
x is restricted by the linear inequality Hjx ≤ bj . The half-
space normals form a matrix H = [H1, . . . , Hm], and the
offsets a vector b = 〈b1, . . . , bm〉. For example, the poly-
tope depicted in Figure 3c can be represented by the equa-
tion Hx ≤ b where H and b are as shown.

While any achievable set may be represented by an inter-
section of half-spaces, it may require an unbounded number.
Such a growth in the complexity of achievable sets does in-
deed occur in practice; therefore, we compute an approxima-
tion using half-spaces sharing the same fixed set of normals.
Each of our polytopes differ only in their offsets, so QPACE
must only store the b vector for each V (s) and Q(s,�a). The
normals H are chosen at initialization to enable a regular
approximation of a Euclidean ball (Figure 3a).

To approximate an achievable set, we find the minimum
offsets such that our approximation completely contains the
original set; that is, we retain each hyperplane’s normal but
contract each offset until it barely touches the given poly-
tope. This process is shown for the game of chicken in Fig-
ure 3. We call this the regular polytope approximation (RPA)
of polytope P using normals H where RPA(H,P)j =
maxx∈P [Hj · x] for each offset j. We say that H permits
error ε if ‖RPA(H,P)− P‖ ≤ ε. RPA was first presented
in MacDermed and Isbell (2009).

Previous achievable set based methods have represented
their achievable sets in a number of different ways: con-
vex combinations of vertices (Mac Dermed and Isbell 2009;
Gordon 2007), polytopes of arbitrary complexity (Judd, Yel-
tekin, and Conklin 2003), and as unions of hypercubes
(Burkov and Chaib-draa 2010). QPACE’s representation al-
lows for quicker computation of each key step in Mac-
Dermed and Isbell’s (2009) approach leading to an algo-
rithm several orders of magnitude faster than previous al-
gorithms.

A) B)

C)

H =

1
½
0

-½
-1
-½

0
½

0
½
1
½
0

-½
-1
-½

b =

7
5.25

7
2.5
-2

-3.6
-2

2.5
 Player 1 Utility

Pl
ay

er
 2

 U
ti

lit
y

Hx ≤ b

0, 1

0, -1

½, ½

-½, -½

-½, ½

½, -½

1, 0-1, 0

Figure 3: The QPACE representation. A) A Euclidean ball sur-
rounded by half-spaces suitable for a regular polytope approxima-
tion (RPA). The normals of each half-space are illustrated. Note
that the half-spaces approximate the inscribed dotted circle. B) The
achievable set from Figure 1b being approximated using the RPA
from (A). Each half-space of the Euclidean ball is moved such that
it touches the achievable set at one point. C) The resulting polytope
approximation whose normals and offsets are specified in H and b.

+

x2 ≤ 9

x2 ≤ 7

x2 ≤ 2
=

7
5.25

7
2.5
-2

-3.6
-2

2.5

2
1.5

2
0.5

1
0.5

1
0.5

9
6.75

9
3

-1
-3.1

-1
3

Figure 4: An example approximate Minkowski sum of RPA poly-
topes. Our method is exact in two dimensions and permits only ε
error in higher dimensions.

3.2 Computing Action Achievable Sets

At the beginning of each iteration, QPACE calculates the
action-achievable set Q(s,�a) for each state s and each joint
action �a in the stochastic game. We do so by rewriting Equa-
tion 1 using Minkowski addition. Given two sets A and
B, their Minkowski sum A + B is defined as A + B =
{a+b | a ∈ A, b ∈ B}. Efficient computation of Minkowski
addition of two convex polytopes of arbitrary dimension d is
an open and active problem, with complexity O(|A|d) where
|A| is the number of half-spaces; however we can approxi-
mate a Minkowski sum efficiently using our representation
as the sum of the offsets (Figure 4). We prove this result:

Lemma 3.0.1. Suppose that A and B represent polytopes
(Hx ≤ bA) and (Hx ≤ bB) and H permits only ε error
as discussed in Section 3.1. Then the weighted Minkowski
sum αA + βB for constants α, β ∈ R

+ and α + β = 1 is

709

approximated by the polytope Hx ≤ α · bA + β · bB with at
most ε relative error.

Proof. Noting RPA(H,A) ≤ ε and RPA(H,B) ≤ ε,

RPA(H,αA+ βB) = max
x∈A

max
y∈B

[α(Hi · x) + β(Hj · y)]
= α ·max

x∈A
[Hj · x] + β ·max

y∈B
[Hj · y]

= α ·RPA(H,A) + β ·RPA(H,B)

≤ ε · (α+ β) ≤ ε,

Note that multiple additions do not increase relative er-
ror. Equation 1 rewriten as a weighted Minkowski sum be-
comes: Q(s,�a) =

∑
s′ P (s′|s,�a)V (s). To improve the per-

formance of subsequent steps we scale the set of continua-
tion utilities by the discount factor γ and add the immediate
reward (translating the polytope). The final offsets for the
action-achievable sets may be computed for each j ∈ H as:

Q(s,�a)j = R(s,�a) ·Hj + γ
∑

s′
P (s′|s,�a)V (s′)j (2)

3.3 Defining the Set of Correlated Equilibria

Calculating the set of CE in a normal form stage game (e.g.
Figure 1b) is straightforward. A probability distribution X
over joint-actions (with x�a being the probability of choosing
joint-action �a) is in equilibrium if and only if the reward of
following the prescribed action is no worse than taking any
other action. More formally, X is a CE if and only if in state
s, for each player i, for distinct actions α, β ∈ Ai, where
�a(α) means joint-action �a with player i taking action α:∑

�a
x�a(α)R(s,�a(α))i ≥

∑
�a
x�a(α)R(s,�a(β))i (3)

These rationality constraints are linear inequalities and
together with the probability constraints

∑
x�a = 1 and

x�a ≥ 0 define a polytope in R
n. Any point in this polytope

represents a CE which yields a value-vector
∑

�a x�aR(s,�a).
The union of all such value-vectors (the polytope projected
into value-vector space) is the achievable set of state s when
agents do not consider utilities gained from future states.

Agents do not play a single normal form game. Instead
they play the augmented game where in order for an agent to
make a decision in the current state, they must know which
utility among the many possible in Q(s,�a) they will receive
in each successor state. Therefore, a CE of the augmented
stage game consists of both a probability x�a for each joint-
action and an expected continuation utility −→cu�ai for each
player and joint-action, resulting in (n + 1)|A|n variables.
Given a state s, the set of possible CEs over the variables x�a
and −→cu�ai of the augmented game becomes:

For each player i, distinct actions α, β ∈ Ai,∑
�a∈An

x�a(α)
−−−→cu�a(α) i ≥

∑
�a∈An

x�a(α) [
−−−→
gt�a(β) i +R(s,�a(β))i] (4)

For each joint-action �a ∈ An, and j ∈ H:
−→cu�a ∈ Q(s,�a) (i.e. Hj

−→cu�a ≤ Q(s,�a)j) (5)

The rationality constraints (4) are quadratic because we
have a variable for the continuation utility (−→cu�ai) which must
be scaled by our variable for the probability of that joint-
action occurring (x�a). We can eliminate this multiplication
by scaling the action-achievable set Q(s,�a) in inequality 5
by x�a, making the value of −→cu�ai already include the mul-
tiplication by x�a. This gives us our polytope in R

(n+1)|A|n

over variables −→cu�ai and x�a of feasible correlated equilibria:

For each player i, distinct actions α, β ∈ Ai,∑
�a∈An

−−−→cu�a(α) i ≥
∑

�a∈An

x�a(α) [
−−−→
gt�a(β) i +R(s,�a(β))i]

∑
�a∈An

x�a = 1 and ∀�a ∈ An, x�a ≥ 0

For each joint-action �a ∈ An,
−→cu�a ∈ x�a Q(s,�a) (i.e. Hj

−→cu�a ≤ x�a Q(s,�a)j)

(6)

3.4 Computing the Achievable Set Function

The polytope defined above in (6) is the set of CE in
joint-action-probability (x�a) and continuation-utility (−→cu�ai)
space; however, we do not ultimately want the set of CEs
only the set of resulting value-vectors V (s). The value that
a particular correlated equilibrium presents to a player i is∑

�a
−→cu�ai. Recall that we are approximating our achievable

sets with a fixed set of half-spaces, where each half-space
touches a vertex of the exact polytope (Figure 3b). This ver-
tex will correspond to the CE with value-vector that maxi-
mizes a weighted average of the agents’ utilities, weighted
by the half-space’s normal. We can find this CE using a lin-
ear program where the feasible set is as defined in (6) and the
objective function is a dot product of the value to each player
and the half-space’s normal. The optimal weighted average
found will equal the offset for that half-space in the approx-
imating polytope. In every state s, we compute one linear
program for each approximating half-space and update its
offset to the optimal value found. For each half-space j with
normal Hj we compute offset V (s)j as the maximum ob-
jective function value to the following LP:

V (s)j =

{
max

∑
�a

∑
i∈I

Hj,i · −→cu�ai
subject to inequalities in (6)

(7)

3.5 Linear Program Solution Caching

Every iteration, QPACE solves one LP (equation 7) for each
half-space in every state. Depending on the value of ε, the
number of half-spaces and hence the number of LPs can
become very large. Solving these LPs is the main bottle-
neck in QPACE. Fortunately, we can dramatically improve
the performance of these LPs by taking advantage of the
fact that the solutions of many of the LPs do not tend to
“change” significantly from iteration to iteration. More pre-
cisely, the maximum offset difference for a given achievable
set in consecutive iterations is small. For a fixed state, we
can therefore expect the solution corresponding to the LP
of one iteration to be quite close to that of the previous it-
eration. LPs typically spend the bulk of their running time

710

Algorithm 1 The QPACE Algorithm.
Inputs: stochastic game G

half-spaces H permitting ε error
Output: achievable sets {V }
1: for all s ∈ S, j ∈ H do
2: V (s)j ⇐ maxs′,�a(R(s′,�a) ·Hj)/γ
3: repeat
4: for all s,�a, j ∈ H do
5: Q(s,�a)j = equation (2)
6: for all s, j ∈ H do
7: V (s)j ⇐ LP (7) starting at BFS-cache(s, j)
8: BFS-cache(s, j) ⇐ optimal BFS of the LP
9: until ∀s : V (s)j changed less than ε/2

10: return {V }

searching over a space of basic feasible solutions (BFS), so
choosing an initial BFS close to the optimal one dramatically
improves performance. QPACE caches the optimal BFS of
each state/half-space calculation and uses the solution as the
starting BFS in the next iteration. Empirical tests confirm
that after the first few iterations of QPACE the LPs will find
an optimal BFS very near the cached BFS (see Figure 5f).
In fact, a majority of cached BFSs are already optimal for
the new LP. Note that even if the optimal BFS from one it-
eration is exactly the optimal BFS of the next, the optimal
values may be different as the offsets change.

This optimization only applies if a BFS from one itera-
tion, x∗, is a valid BFS in the next. Every LP has identical
variables, objectives, and constraints, with subsequent itera-
tions differing only in the offsets b; therefore, x∗ is a basic
solution for the new LP. While x∗ is basic, it may not be fea-
sible for the new LP. However, LP sensitivity analysis guar-
antees that an optimal BFS from one iteration is a BFS of
the dual problem in the next iteration when only b changes.
Therefore, we alternate each iteration between solving the
primal and dual problems.

3.6 Correctness

In the QPACE algorithm (Algorithm 1) each step except for
line 5 performs an equivalent operation to MacDermed and
Isbell’s (2009), albeit using a different representation. The
Minkowski sums in line 5 can now introduce ε error into the
action achievable sets, doubling the potential error induced
at each iteration. To mitigate this factor we run QPACE with
twice the precision when there are three or more players.
Convergence and error bounds are therefore the same as in
Mac Dermed and Isbell (2009). Interestingly even with three
or more players our empirical tests show that LP (7) with
exact Minkowski sums and LP (7) with our approximate
Minkowski sums give identical results.

4 Empirical Results

We ran tests to determine the scalability of QPACE across
a number of different dimensions: precision (Figure 5a),
number of states (Figure 5b), number of joint-actions (Fig-
ure 5c), and number of players (Figure 5d). We ran the algo-

rithms over generated games, random in the state transition
and reward functions. Unless otherwise indicated, the games
were run with 10 states, 2 players, 2 actions each, and with
ε = 0.05 and γ = 0.9. We used the GLPK library as our
linear programming solver, and used the FFQ-Learning al-
gorithm (Littman 2001) to compute grim trigger threats.

As users specify more precision, the number of hyper-
planes in our approximate Euclidean ball increases expo-
nentially. So, wall clock time increases exponentially as ε
decreases as Figures 5a confirms. The QPACE algorithm be-
gins to do worse than MacDermed and Isbell (MI09) for very
low values of ε, especially in QPACE without caching (Fig-
ure 5a). To see why, note that if an achievable set can be
represented by only a few verticies or half-spaces (e.g. a hy-
percube) than MI09 will only use those verticies necessary
while QPACE will always use all half-spaces in H .

Both MI09 and QPACE scale linearly with the number of
states independent of other parameters (Figure 5b), however
QPACE is about 240 times faster than MI09 with the de-
fault parameters. The number of variables used in each LP
is linear with respect to the number of joint-actions. LP’s in
turn are polynomial with respect to the number of variables.
Therefore as expected, both algorithms are polynomial with
respect to joint-actions (Figure 5c). However, QPACE uses
significantly fewer variables per joint-action and therefore
has a lower rate of growth.

QPACE scales much better than MI09 with respect to the
number of players. The number of joint-actions grows ex-
ponentially with the number of players, so both algorithms
have exponential growth in the number of players; however,
the number of vertices needed to represent a polytope also
grows exponentially while the number of half-spaces only
grows polynomially. Thus, QPACE is able to handle many
more players than MI09.

A natural question to ask is how much each of QPACE’s
new aspects contribute to the overall efficiency. The change
of representation permits three key improvements: fewer
variables in the linear programs, an elimination of the need
to calculate vertices of the polytopes, fast Minkowski addi-
tion, and LP solution caching. By comparing QPACE with-
out caching to MI09 in Figures 5a-c we observe the im-
pact of the first two improvements. We now examine Fig-
ures 5e&f to determine the contribution of the last two im-
provements.

Both QPACE and MI09 employ Minkowski sums when
computing the expected continuation utility over future
states (when transitions are deterministic, neither algorithm
computes Minkowski sums). As the number of possible
successor states increases, both algorithms perform more
Minkowski additions. Figure 5e graphs the effect of addi-
tional successor states for both MI09 and QPACE and shows
that while MI09 suffers from a 10% increases in time when
the number of successors is large, QPACE is unaffected.

From Figure 5f, we observe that as the number of iter-
ations progresses, the average number of LP iterations in-
volved decreases quickly for QPACE with caching. The al-
gorithm initially takes around 100 LP iterations, and drops
to less than 3 LP iterations by the sixth iteration. On the
other hand, QPACE without caching starts at around 20 LP

711

0.1

1

10

100

1000

0 100 200 300 400

0.1

1

10

100

1000

10000

2 4 6 8 10

0

100

200

300

400

500

600

0 10 20 30

0

20

40

60

80

100

0 20 40 60

Joint-Actions

W
al

l T
im

e
(s

)
W

al
l T

im
e

(s
)

W
al

l T
im

e
(s

)

W
al

l T
im

e
(s

)
W

al
l T

im
e

(s
)

Precision (ε) States

Players

IterationSuccessor States

Av
g.

 L
P

Ite
ra

tio
ns

A) B)

D)C)

E) F)

QPACE QPACE - without caching MI09

0

10

20

30

40

0.00020.0020.020.2

0

200

400

600

800

1000

0 5000 10000

Figure 5: Performance evaluation. A-E) An illustration of how
our algorithm scales along a number of variables. Note that some
axis are logarithmic. F) Average number of iterations each LP runs
for with and without caching over iterations of QPACE.

iterations and plateaus to a consistent 70 LP iterations. The
graphs demonstrate that LP caching does in fact make a sig-
nificant difference in running time. After the tenth iteration,
caching consistently reduces the time per iteration from 1.5
seconds down to 0.2 seconds. In the long run, LP caching
contributes an order of magnitude speed boost.

5 Conclusion and Extensions

QPACE finds all correlated equilibria of a stochastic game
orders of magnitude more efficiently than previous ap-
proaches, while maintaining a guarantee of convergence.
Further, no returned equilibria provides more than ε incen-
tive to deviate. QPACE’s regular half-space representation
and LP caching scheme allows QPACE to solve larger and
more complex games.

QPACE can easily be modified to produce sub-game per-
fect equilibria by making the threat points

−→
gt�ai variables in

(6) and constraining them in a similar way to the −→cu�ai; we
then employ the same trick described in section 3.3 to re-
move the resulting quadratic constraints. QPACE can also be

extended to work in games of imperfect monitoring and im-
perfect recall. In these games player’s don’t observe actions
so they can’t use threats and can’t choose different continu-
ation points for each joint-action. Thus

−→
gt�ai =

−→cu�ai and the
values of Q(s,�a)j are interdependent across actions, forcing
equations (1) and (6) to become one large set of inequalities.

The empirical results suggest that a good estimate re-
quires many fewer half-spaces than a full Euclidean ball. A
straight forward extension would be to start with only a few
half-spaces and dynamically add half-spaces as needed.

References
Abreu, D. 1988. On the theory of infinitely repeated games
with discounting. Econometrica 56(2):383–96.
Amir, R. 2001. Stochastic games in economics and related
fields: an overview. CORE Discussion Papers 2001060.
Burkov, A., and Chaib-draa, B. 2010. An approximate
subgame-perfect equilibrium computation technique for re-
peated games. CoRR abs/1002.1718.
Cronshaw, M. B. 1997. Algorithms for finding repeated
game equilibria. Computational Economics 10(2):139–68.
Gordon, G. J. 2007. Agendas for multi-agent learning. Ar-
tificial Intelligence 171(7):392 – 401.
Greenwald, A., and Hall, K. 2003. Correlated-q learning. In
Proc. 20th International Conference on Machine Learning
(ICML), 242–249.
Horner, J.; Sugaya, T.; Takahashi, S.; and Vieille, N. 2010.
Recursivemethods in discounted stochastic games: an algo-
rithm for δ → 1 and a folk theorem. Econometrica.
Hu, J., and Wellman, M. 2003. Nash q-learning for general-
sum stochastic games. In Journal of Machine Learning Re-
search 4:1039-1069.
Judd, K. L.; Yeltekin, S.; and Conklin, J. 2003. Computing
supergame equilibria. Econometrica 71(4):1239–1254.
Littman, M. L. 2001. Friend-or-foe Q-learning in general-
sum games. In Proc. 18th International Conf. on Machine
Learning (ICML), 322–328.
Mac Dermed, L., and Isbell, C. 2009. Solving stochastic
games. In Advances in Neural Information Processing Sys-
tems 22. 1186–1194.
Murray, C., and Gordon, G. J. 2007. Multi-robot negotia-
tion: Approximating the set of subgame perfect equilibria in
general-sum stochastic games. In Advances in Neural Infor-
mation Processing Systems 19. 1001–1008.
Myerson, R. B. 1991. Game Theory: Analysis of Conflict.
Harvard University Press, Cambridge.
Nguyen, K. C.; Alpcan, T.; and Basar, T. 2010. Stochastic
games for security in networks with interdependent nodes.
CoRR abs/1003.2440.
Wolf, D. M., and Arkin, A. P. 2003. Motifs, modules
and games in bacteria. Current Opinion in Microbiology
6:125134.
Zinkevich, M.; Greenwald, A.; and Littman, M. L. 2005.
Cyclic equilibria in markov games. In Proceedings of Neu-
ral Information Processing Systems.

712

