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Abstract

We propose influence games, a new class of graphical
games, as a model of the behavior of large but finite
networked populations. Grounded in non-cooperative
game theory, we introduce a new approach to the study
of influence in networks that captures the strategic as-
pects of complex interactions in the network. We study
computational problems on influence games, including
the identification of the most influential nodes. We char-
acterize the computational complexity of various prob-
lems in influence games, propose several heuristics for
the hard cases, and design approximation algorithms,
with provable guarantees, for the most influential nodes
problem.

Introduction

The influence of an entity on its peers is a commonly noted
phenomenon in both online and physical social networks.
This is also a common perception that such influences have
the potential to cause behavioral changes among the nodes
of the network. Indeed, the general perception that influ-
ences can instill new behavioral patterns in the network
is backed up by scientific evidence. For example, recent
works in medical social sciences posit the intriguing hypoth-
esis that smoking, obesity, and even happiness is contagious
within a social network (Fowler and Christakis 2008). The
underlying system under study in that research exhibits sev-
eral core features. First, it is often very large and complex,
with many individual entities exhibiting different behaviors
and interactions. The network structure of complex interac-
tions is central. The directions and strengths of local influ-
ences are highlighted as very relevant to the global behavior
of the system as a whole.

The prevalence of systems and problems like the ones just
described in the context of social medical science, combined
with the obvious issue of often limited control over indi-
viduals, raises immediate, broad, difficult, and longstanding
policy questions: e.g., Can we achieve a desired objective,
such as reducing the level of smoking, or controlling obe-
sity via targeted, minimal interventions in a system? How do
we optimally allocate our often limited resources to achieve
the largest impact in such systems? Clearly, these issues are
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not exclusive to obesity, smoking, or happiness; similar is-
sues arise in a large variety of settings: drug use, vaccination,
crime networks, security, marketing, markets, the economy,
and public policy-making and regulations, to name a few.

The work reported in this paper is in large part motivated
by such questions and their broader implication. Our ma-
jor contributions here are (1) a new approach to influence
in networks grounded in non-cooperative game theory; (2)
influence games, a new class of graphical games, to model
the behavior of individuals in networks; and (3) a study of
computational aspects of influence games, including an al-
gorithm for the identification of the most influential nodes.

Influence in Networks

A very important problem in social network analysis is the
identification of “influential” individuals (Wasserman and
Faust 1994; Kleinberg 2007). Roughly speaking, in our ap-
proach we consider a set of individuals S in a network to be
most influential, with respect to some objective of interest,
if S satisfies the following condition: were the individuals
in S to choose the behavior xS prescribed to them by some
stable outcome of the system x ≡ (xS ,x−S) that achieves
the given objective of interest, the only stable outcome of the
system that remains consistent with their choices xS is x it-
self. Said differently, once the most influential nodes follow
the behavior xS prescribed to them by a stable outcome x
achieving the objective of interest, they become collectively
so much influential that their behavior forces every other in-
dividual to a unique choice of behavior! Figure 1 provides
an example illustrating our concept of “most influential.” In
contrast to a mechanism-design approach, we are not inter-
ested in changing the system—the system is what it is—but
are rather interested in altering the behavior to “tip” the same
system to some desirable stable outcome.

On Diffusion Models. To date, the study of influence in
networks has concentrated mostly on analyzing the diffu-
sion (or “contagion”) processes induced by influences with
the goal of maximizing the spread of a new behavior (see
(Kleinberg 2007) for a comprehensive survey). A subtle as-
pect of the diffusion models is that each node in the net-
work behaves as an independent agent. Any observed influ-
ence that a node’s neighbors impose on the node is the result
of the same node’s “rational” or “natural” response to the
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Figure 1: Illustration of our approach to influence in networks.
Each node has a binary choice of behavior, {−1,+1}, and wants
to behave like the majority of its neighbors (and is indifferent if
there is a tie). The network is shown in (a) and the enumeration of
PSNE (a row for each PSNE, where black denotes node’s behav-
ior 1, gray −1) in (b). We want to achieve the objective of every
node choosing 1 (desirable outcome). Selecting the set of nodes
{1, 2, 3} and assigning these nodes behavior prescribed by the de-
sirable outcome (i.e., 1 for each) lead to two consistent stable out-
comes of the system, shown in (c) and (d). Thus, {1, 2, 3} cannot be
a most influential set of nodes. On the other hand, selecting {1, 6}
and assigning these nodes behavior 1 lead to the desirable outcome
as the unique stable outcome remaining. Therefore, {1, 6} is a most
influential set. Furthermore, note that {1, 6} is not most influential
in the diffusion setting, since it does not maximize the spread of be-
havior 1. (It should be mentioned that we study a much richer class
of games in this paper than the one shown in this example.)

neighbors’ behavior. If we select a set of nodes with the goal
of maximizing the spread of the new behavior then it might
very well happen that some of the selected nodes are “un-
happy” being the initial adopters of the new behavior relative
to their neighbors’ final behavior after diffusion. Thus, isn’t
it more natural to require that the desired final state of the
system be stable (in which everyone is “happy” with their
behavioral response)?

For the most part, the diffusion process has been modeled
as a “monotonic” process (in the sense that once an agent
adopts a behavior, it cannot go back) to address the question
of finding the most influential nodes. However, if we think of
an application such as reducing the incidence of smoking or
obesity, then a model that allows a “change of mind” based
on the response of the immediate neighborhood may make
more sense. While generalized versions of threshold models
that allow “reversals” have been derived in the social science
literature (Granovetter 1978), to the best of our knowledge,
there is no substantive work on the most influential nodes
problem in the context of such generalized diffusion models.

Although our model is inspired by the same threshold
models that are used in modeling diffusion processes, in
contrast to diffusion models, by concentrating on stable
outcomes in a strictly game-theoretic setting we capture
significant strategic aspects of complex interaction in net-
works that naturally appear in many real-world problems
(e.g., identifying the most influential senators in the US
Congress).

Influence Games

Inspired by the threshold models (Granovetter 1978), we de-
sign influence games as a model of influence in large net-
worked populations. Even though the model falls within
the general class of graphical games (Kearns, Littman, and
Singh 2001), a distinctive feature of influence games is its
compact, parametric representation.

General Game-Theoretic Model. Let us first formalize
influence games. Let n be the number of individuals in the
population and xi ∈ {−1, 1} denote the behavior of indi-
vidual i, where xi = 1 indicates that i “adopts” a particular
behavior and xi = −1 indicates i “rejects” it.
Definition 1. Denote by fi : {−1, 1}n−1 → R the func-
tion that quantifies the “influence” of other individuals on
i. In influence games, we define the payoff function ui :
{−1, 1}n → R quantifying the preferences of each player
i as ui(xi,x−i) ≡ xifi(x−i), where x−i denotes the vector
of all joint-actions excluding that of i.

For each player i in an influence game G, the best-
response correspondence BRGi : {−1, 1}n−1 → 2{−1,1} is,
by definition, BRGi (x−i) ≡ argmaxxi∈{−1,1}ui(xi,x−i),
for any x−i ∈ {−1, 1}n−1. Hence, for all individuals i, and
any possible behavior x−i ∈ {−1, 1}n−1 of the other indi-
viduals in the population, the best-response behavior x∗i of
individual i to the behavior x−i of others satisfies

fi(x−i) > 0 =⇒ x∗i = 1,

fi(x−i) < 0 =⇒ x∗i = −1, and
fi(x−i) = 0 =⇒ x∗i ∈ {−1, 1}.

Informally, “positive influences” lead an individual to adopt
the behavior, while “negative influences” lead the individ-
ual to “reject” the behavior; the individual is indifferent if
there is “no influence.” A stable outcome of the system,
by which we formally mean a pure-strategy Nash equilib-
rium (PSNE) of the corresponding influence game G, is a
behavior assignment x∗ ∈ {−1, 1}n that satisfies all those
conditions: Each player i’s behavior x∗i is a (simultaneous)
best-response to the behavior x∗−i of the rest. Denote by
NE(G) ≡ {x∗ ∈ {−1, 1}n | x∗i ∈ BRGi (x∗−i) for all i}
the set of PSNE of game G.

Most Influential Nodes: Problem Formulation. In for-
mulating the most influential nodes problem in a network,
we depart from the traditional model of diffusion and adopt
influence games as the model of strategic behavior among
the nodes in the network.
Definition 2. Let G be an influence game, g : {−1, 1}n ×
2[n] → R be the goal or objective function mapping a
joint-action and a subset of the players in G to a real num-
ber quantifying the general preferences over the space of
joint-actions and players’ subsets, and h : 2[n] → R be
the set-preference function mapping a subset of the play-
ers to a real number quantifying the a priori preference
over the space of players’ subsets. Denote by X ∗g (S) ≡
argmaxx∈NE(G)g(x, S) the optimal set of PSNE of G,
with respect to g and a fixed subset of players S ⊂
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[n]. We say that a set of nodes/players S∗ ⊂ [n] in
G is most influential with respect to g and h, if S∗ ∈
argmaxS⊂[n]{h(S), s.t., |{x ∈ NE(G) | xS = x∗S ,x

∗ ∈
X ∗g (S)}| = 1}.

As mentioned earlier, we can interpret the players in S∗
to be collectively so influential that they are able to restrict
every other player’s choice of action to a unique one: the
action prescribed by some desirable stable outcome x∗.

An example of the goal function g that captures our ob-
jective to achieve a specific stable outcome x∗ ∈ NE(G)
is g(x, S) ≡ 1[x = x∗]. Another example that captures
our objective to achieve a stable outcome with the largest
number of individuals adopting the behavior is g(x, S) ≡∑n

i=1
xi+1
2 . A common example of the set-preference func-

tion h that captures our preference for sets of small cardinal-
ity is to define h such that h(S) > h(S′) iff |S| < |S′|.
Linear Influence Games. A simple instantiation of the
general influence game model above is when the influences
are linear.

Definition 3. In a linear influence game (LIG), the influence
function of each individual i, which leads to a quadratic pay-
off function, is defined as fi(x−i) ≡

∑
j �=i wjixj−bi where

for any other individual j, wji ∈ R is a weight parame-
ter quantifying the “influence factor” that j has on i, and
bi ∈ R is a threshold parameter for i’s level of “tolerance”
for negative effects.

In general, the influence weights wji induce a directed
graph, where nodes represent individuals and there is a di-
rected edge from individual j to i iff wji �= 0, and therefore,
we obtain a graphical game having a linear representation
size, as opposed to the exponential representation size of
graphical games in normal form (Kearns, Littman, and Singh
2001). Furthermore, LIGs can be shown to be equivalent to
2-action poly-matrix games (Janovskaja 1968), modulo their
PSNE (details omitted).

Equilibria Computation in Influence Games

We first study the problem of computing and counting PSNE
in LIGs. We show that several special cases of LIGs present
us with attractive computational advantages, while the gen-
eral problem is intractable unless P = NP. We also give a
heuristic to compute PSNE in general LIGs that has pro-
duced promising empirical results.

Nonnegative Influences. When all the influence weights
are non-negative, an LIG is supermodular (Milgrom and
Roberts 1990). In particular, the game exhibits what is called
strategic complementarity. Hence, the best-response dynam-
ics converges in at most n rounds. From this, we obtain the
following result.

Theorem 4. The problem of computing a PSNE is in P for
LIGs on general graphs with only non-negative influences.

Special Influence Structures and Potential Games. Sev-
eral special subclasses of LIGs are potential games (Mon-
derer and Shapley 1996). This connection guarantees the ex-
istence of PSNE in such games.

Proposition 5. If the influence weights of an LIG G are sym-
metric (i.e., wji = wij , for all i, j), then G is a potential
game.
Proof Sketch. We show that the game has a cardinal potential
function, Φ(x) =

∑n
t=1 xt(

∑
i �=t

xiwit

2 − bt).

If, in addition, the threshold bi = 0 for all i, the game
is a party-affiliation game, and computing a PSNE in such
games is PLS-complete (Fabrikant, Papadimitriou, and Tal-
war 2004).

The following result is on a large class of games that we
call indiscriminate LIGs, where for every player i, the influ-
ence factor, wij ≡ δi �= 0, that i imposes on every other
player j is the same.
Proposition 6. Indiscriminate LIGs having either all posi-
tive or all negative influence factors are potential games.
Proof Sketch. Let G be an indiscriminate LIG in which all
δi for all i, have the same sign, denoted by ρ ∈ {−1,+1}.
Then G is an ordinal potential game with the potential
function Φ(x) = ρ[(

∑n
i=1 δixi)

2 − 2
∑n

i=1 biδixi].

The interesting aspect of this result is that such indiscrim-
inate LIGs are potential games despite being possibly asym-
metric and exhibiting strategic substitutability if ρ = −1.
If, for some δ ∈ R, we have δi = δ and bi = 0 for all
i, then best-response dynamics converges in a number of
rounds polynomial in the number of players.

Tree-Structured Influence Graphs. The next result fol-
lows from a careful modification of the TreeNash algo-
rithm (Kearns, Littman, and Singh 2001). Note that a naive
application of TreeNash over the space of pure strategies
has a running time of O(n2d), exponential in the maximum
degree d of a node, and thus also in the representation size
of the LIG!
Theorem 7. There exists an O(nd) time algorithm to find a
PSNE, or to decide that there exists none, in LIGs with tree
structures, where d is the maximum degree of a node.
Proof Sketch. We use similar notations as in (Kearns,
Littman, and Singh 2001). The modification of the
TreeNash involves efficiently (in O(d) time) determining
the existence of a witness vector and constructing one, if
exists, at each node during the downstream pass, in the fol-
lowing way.

Suppose that an internal node i receives tables Tki(xk, xi)
from its parents k, and that i wants to send a table Tij(xi, xj)
to its unique child j. We first partition i’s set of parents into
two sets in O(d) time: Pa1(i, xi) consisting of the parents
k of i that have a unique best response x̂k to i’s playing xi

and Pa2(i, xi) consisting of the remaining parents of i. We
show that Tij(xi, xj) = 1 iff

xi(xjwji +
∑

k∈Pa1(i,xi)

x̂kwki+

∑

t∈Pa2(i,xi)

(2× 1[xiwti > 0]− 1)︸ ︷︷ ︸
t’s action in witness vector

wti) ≥ 0,

from which we get a witness vector, if exists.
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Hardness Results

Computing PSNE in a general graphical game is known to
be an intractable problem (Gottlob, Greco, and Scarcello
2003). However, that result does not imply intractability in
our problem, primarily because LIGs are a special type of
succinctly representable graphical game with quadratic pay-
offs.

Theorem 8. (1) It is NP-complete to decide the following
questions in LIGs: (a) Does there exist a PSNE? (b) Given
a designated set of k ≥ 1 players, does there exist a PSNE
consistent with those k players playing 1? (c) Given a num-
ber k ≥ 1, does there exist a PSNE with at least k players
playing 1?
(2) Given an LIG and a designated set of k ≥ 1 players, it
is co-NP-complete to decide if there exists a unique PSNE
with those players playing 1.
(3) It is #P-complete to count the number of PSNE, even if
the graph of the LIG is a star.

Proof Sketch. To enhance the clarity of the hardness proofs
we have reduced existing NP-complete problems to LIGs
with binary actions {0, 1}, instead of {−1, 1}. It can be
shown, via a simple linear transformation, that any LIG with
actions {0, 1} can be reduced to an LIG with the same un-
derlying graph, but with actions {−1, 1}.

1(a). Let I be a 3-SAT instance with m clauses and n
variables. Let Ci be the set of clauses in which variable i
appears and Vk be the set of variables appearing in clause k.
We construct an LIG J with the variables and the clauses of
I as players; the influence factor from each “clause player”
k to each “variable player” i ∈ Vk being 1 − 2lk,i where
lk,i = 1[i appears non-negated in k] and that in the reverse
direction being 2lk,i − 1; the threshold of each clause k and
variable i being 1 − ε − ∑

i∈Vk
(1 − lk,i) for 0 < ε < 1

and
∑

k∈Ci
(1− 2lk,i), respectively. We show that there ex-

ists a satisfying truth assignment in I iff there exists a PSNE
in J . The forward direction is easy to verify (by translating
the truth assignments true and false to actions 1 and 0, re-
spectively). For the reverse direction, we first show, by con-
tradiction, that at any PSNE of J , every clause player must
play 1. We then show, also by contradiction, that for every
clause player k, there exists a variable player i ∈ Vk such
that xi = lk,i. We map the actions to truth values in I to ob-
tain a satisfying truth assignment. Due to the construction,
we obtain, as a corollary, that the NP-completeness of the
PSNE-existence question holds even for LIGs with bipartite
graphs.

1(b). We reduce a monotone one-in-three SAT instance I
with m > 1 clauses and n variables to an LIG instance J in
a similar way. In this case, the thresholds of the variable and
clause players are defined to be 0 and ε, for 0 < ε < 1, re-
spectively. There are arcs with influence factors −1 between
two variable players iff they appear in the same clause. There
is an arc with an influence factor 1 from each variable player
to each clause player in which it appears, and there is no arc
in the reverse direction. Assign k = m, and let the desig-
nated set of players be the set of clause players. A solution to
I easily leads to a PSNE of J with the clause players playing
1. To show the reverse direction, we first show that at most

one variable player connected to each clause player can play
1 at any PSNE. Furthermore, for each clause player to play
1, at least one variable player connected to that clause must
play 1. Thus, for each clause player, exactly one variable
player connected to it plays 1, which leads to a solution to I .

1(c). The proof is similar to 1(b). We augment the con-
struction of 1(b) by adding m(m − 1) extra players, each
with threshold ε, and add arcs, each with an influence factor
1, from each clause player to distinct m − 1 extra players
(so that no two clause players have arcs to the same extra
player), and set k = m2. We show that there exists a solu-
tion to I iff there exists a PSNE in J with at least k players
playing 1.

2. Again, we augment the construction of 1(b) by adding
the following players: an all-satisfied-verification player vall
(with threshold m − ε), a none-satisfied-verification player
vnone (with threshold −ε), and m2 extra players (each with
threshold ε). We add arcs from each clause player to vall and
vnone with influence factors 1 and −1, respectively. We also
add arcs from vall and vnone to each extra player with influ-
ence factor 1. Let the set of k ≡ m2 extra players be the
designated set of players. First, we show that at any PSNE,
vall plays 1 iff every clause player plays 1, vnone plays 1 iff
no clause player plays 1, and every extra player plays 1 iff
either vall or vnone plays 1. Let x0 be the following PSNE:
vnone playing 1, every extra player playing 1, and every other
player playing 0. We show that there exists another PSNE in
the LIG instance with every extra player playing 1 iff there
exists a solution to the monotone one-in-three SAT instance.

3. Given a #KNAPSACK instance I with n items, along
with weight ai ∈ Z+ of every item i and the maximum
capacity of the sack W ∈ Z+, we construct an LIG
instance J having a star-structure where the influence
factor from the central player v0 to every other player
is 1 and that in the reverse direction is −ai. In addition,
the threshold of v0 is defined to be −W and that of
every other player 1. We first show that at every PSNE,
v0 must play 1. We then show that the number of PSNE
in J is the same as the number of feasible solutions to I .

Note that the #P-completeness result for LIGs is in con-
trast to that for general graphical games with tree graphs, for
which not only deciding the existence of a PSNE is in P but
also counting PSNE on general graphical games with tree
graphs is in P (due to the representation size).

Heuristics for Computing and Counting Equilibria

The fundamental computational problem at hand is that of
computing PSNE in LIGs. We have just seen that vari-
ous computational questions pertaining to LIGs on general
graphs, sometimes even on bipartite graphs, are NP-hard.

A natural approach to finding all the PSNE in an LIG
would be to perform a backtracking search. However, a naive
backtracking method that does not consider the structure of
the graph would be destined to failure in practice. Thus, we
need to order the node selections in a way that would facili-
tate pruning the search space.

The following is an outline of a backtracking search pro-
cedure that we have used in practice. The first node selected
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by the procedure is a node with the maximum outdegree.
Intuitively, this node is the “most constraining” in terms of
the number of nodes that a node directly influences. Subse-
quently, we select a node i that will most likely show that
the current partial joint action cannot lead to a PSNE and
explore the two actions of i, xi ∈ {−1, 1} in a suitable or-
der. A good node selection heuristic that has worked well in
our experiments is to select the one that has the maximum
influence on any of the already selected nodes.

Suppose that the nodes are selected in the order 1, 2, ..., n
(wlog). After selecting node i+ 1 and assigning it an ac-
tion xi+1, we determine if the partial joint action x1:(i+1) ≡
(x1, . . . , xi+1) can possibly lead to a PSNE and prune the
corresponding search space if not. Note that a desirable “no”
answer to this requires a proof that one of the players j,
1 ≤ j ≤ i + 1, can never play xj according to the partial
joint action x1:(i+1). A straightforward way of doing this is
to consider each player j, 1 ≤ j ≤ i + 1, and compute the
quantities γ+

j ≡ ∑i+1
k=1,k �=j xkwkj +

∑n
k=i+2 |xkwkj | and

γ−j ≡ ∑i+1
k=1,k �=j xkwkj −

∑n
k=i+2 |xkwkj |, and then test if

the logical expression ((γ−j > bj) ∧ xj = −1) ∨ ((γ+
j <

bj) ∧ xj = 1) holds, in which case we can discard the par-
tial joint action x1:(i+1) and prune the corresponding search
space. Furthermore, it may happen that due to x1:(i+1), the
choices of actions of some not-yet-selected players have be-
come restricted. To this end, we apply NashProp (Ortiz and
Kearns 2002) with x1:(i+1) as the starting configuration, and
see if the choices of the other players have become restricted
because of x1:(i+1). Although each round of updating the
table messages in NashProp takes exponential time in the
maximum degree in general graphical games, we can show
in a way similar to Theorem 7 that we can adapt the table
updates to the case of LIGs so that it takes polynomial time.

A Divide-and-Conquer Approach. To further exploit the
structure of the graph in computing the PSNE, we propose
a divide-and-conquer approach that relies on the following
separation property of influence games.
Property 9. Let G = (V,E) be the underlying graph of an
influence game and S be a vertex separator of G such that
removing S from G results in k ≥ 2 disconnected compo-
nents: G1 = (V1, E1), ..., Gk = (Vk, Ek). Let G′i be the
subgraph of G induced by Vi ∪ S, for 1 ≤ i ≤ k. Consider
the influence games on these (smaller) graphs G′i’s, where
we retain all the weights of the original graph, except that
we treat the nodes in S to be indifferent (that is, we remove
all the incoming arcs to these nodes and set their thresholds
to 0). Computing the set of PSNE on G′i’s and then merging
the PSNE (by performing outer-joins of joint actions and
testing for PSNE in the original influence game), we obtain
the set of all PSNE of the original game.

To obtain a vertex separator, we first find an edge sepa-
rator (using well-known tools such as METIS (Karypis and
Kumar 1995)), and then convert the edge separator to a ver-
tex separator (by computing a maximum matching on the
bipartite graph spanned by the edge separator). We then
use this vertex separator to compute all PSNE, as outlined
in Property 9. The benefits of this approach are two-fold:

(1) for graphs that have good separation properties (such
as preferential-attachment graphs), we have found this ap-
proach to be computationally effective in practice; and (2)
this approach leads to an anytime algorithm for enumerat-
ing or counting PSNE: Observe that ignoring some edges
from the edge separator may result in a smaller vertex sep-
arator, which greatly reduces the computation time of the
divide-and-conquer algorithm at the expense of producing
only a subset of all PSNE (Note that the edges that are ig-
nored from the edge separator are not permanently removed
from the original graph, and that after merging, every joint
action is tested for PSNE in the original game). We can ob-
tain progressively better result as we ignore less number of
edges from the edge separator.

Computing the Most Influential Nodes

We now focus on the problem of computing the most influ-
ential set of nodes with respect to a specified desirable PSNE
and a preference for sets of minimal size. In the discussion
below, we also assume, only for the purpose of establishing
the equivalence to the minimum hitting set problem (Karp
1972), that we are given the set of all PSNE. (As we will see,
a counting routine is all that our algorithm requires, not an
enumeration.) We give a hypergraph representation of this
problem that would lead us to a logarithmic-factor approxi-
mation by a natural greedy algorithm.

(1, 1) (2, 1) (3, 1)

(4, 1) (5, 1) (6, 1)

(7, 1) (8, 1) (9, 1)

(1, −1) (2, −1)

(4, −1) (5, −1)

(3, −1)

(6, −1)

(7, −1) (8, −1) (9, −1)

Figure 2: A hypergraph representation of three PSNE in a
9-player game with binary actions. The PSNE shown here
are the followings: (1,−1,−1, 1,−1,−1, 1,−1,−1) (tri-
angle), (−1,−1,−1,−1,−1,−1, 1, 1, 1) (rectangle), and
(−1,−1,−1,−1,−1, 1,−1, 1, 1) (6-gon).

Let us start by building a hypergraph that can represent
the PSNE of a binary-action game. The nodes of this hyper-
graph are the player-action tuples of the game. That is, for
each player i of the game, there are two nodes in the hy-
pergraph: one in which i plays −1 (tuple (i,−1), colored
gray in Figure 2) and the other in which i plays 1 (tuple
(i, 1), colored black). For every PSNE x we construct a hy-
peredge {(i, xi) | 1 ≤ i ≤ n}. Let us call this hypergraph the
game hypergraph. By construction, a set of players S play
the same joint-action aS ∈ {−1, 1}|S| in two distinct PSNE
x and y of the influence game iff both of the corresponding
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hyperedges ex and ey (resp.) of the game hypergraph con-
tains T = {(i, ai) | i ∈ S}.

We can use the above property to translate the most influ-
ential nodes selection problem, given all PSNE, to an equiv-
alent combinatorial problem on the corresponding game hy-
pergraph H . Let ex∗ be the hyperedge in H corresponding
to the desirable PSNE x∗. Let us call ex∗ the goal hyper-
edge. Then the most influential nodes selection problem is
the problem of selecting a minimum-cardinality set of nodes
T ⊆ ex∗ such that T is contained in no other hyperedge
of H . Let us call the latter problem the unique hyperedge
problem.

Theorem 10. The unique hyperedge problem having 2n
nodes and h hyperedges is equivalent to the minimum hit-
ting set problem having n nodes and h hyperedges.

Proof Sketch. Let J be an instance of the minimum hitting
set problem, specified by a hypergraph G′ = (V,E). Wlog,
we assume that E contains the hyperedge e∗ ≡ V . We now
construct an instance I of the unique hyperedge problem,
specified by the hypergraph G = (V ×{1,−1}, {e∗×{1}}∪
{ē × {1} ∪ e × {−1} | e ∈ E and e �= e∗}) and the goal
hyperedge e∗ × {1}. We show that S ⊆ V is a feasible
solution to J iff S × {1} is a feasible solution to I .

For the reduction in the reverse direction, let us con-
sider an instance I of the unique hyperedge problem,
given by a hypergraph G = (V,E), along with the goal
hyperedge ex∗ . We construct an instance J of the min-
imum hitting set problem, specified by the hypergraph
G′ = (ex∗ , {ex∗} ∪ {ē ∩ ex∗ | e ∈ E and e �= ex∗}) and
show that a set S of nodes is a feasible solution to I iff it is
a feasible solution to J .

Immediate consequences of Theorem 10 are that the
unique hyperedge problem is not approximable within a fac-
tor of c log h for some constant c > 0, and that it admits
a (1 + log h)-factor approximation (Raz and Safra 1997;
Johnson 1974), where h is the total number of PSNE. The
approximation algorithm in our case can be outlined as fol-
lows: At each step, select the least-degree node v of the goal
hyperedge, remove the hyperedges that do not contain v,
remove v from the game hypergraph, and include v in the
solution set, until the goal hyperedge becomes the last re-
maining hyperedge in the hypergraph. In the context of the
original influence game, at every round, this algorithm is es-
sentially picking the node whose assignment would reduce
the set of PSNE consistent with the current partial assign-
ment the most. Hence, the algorithm only requires a sub-
routine to count the PSNE extensions for some given partial
assignment to the players’ actions, not an a priori full list or
enumeration of all the PSNE.

Experimental Results

We have performed empirical studies on three different types
of LIGs—random LIGs, preferential-attachment LIGs, and
the LIGs among the US senators that has been learned from
the real-world voting data of the US Congress using machine
learning techniques (Honorio and Ortiz 2010).

Random Influence Games. We have studied LIGs on uni-
form random directed graphs. While constructing the ran-
dom graphs, we have independently chosen each arc with a
probability of 0.50, and assigned it a weight of −1 with a
probability p (named flip probability) and 1 with probability
1 − p. Several interesting findings have emerged from our
study of this parameterized family of LIGs on uniform ran-
dom graphs. For various flip probabilities, we have indepen-
dently generated 100 uniform random graphs of 25 nodes
each, and for each of these random graphs, we have first
computed all PSNE using our heuristic. We have then ap-
plied the greedy approximation algorithm to obtain a set of
the most influential nodes in each graph and compared the
approximation results to the optimal ones.
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Figure 3: PSNE computation on random LIGs. The vertical bars
denote 95% confidence intervals.

As shown in Figure 3, the number of PSNE usually in-
creases if we have more negative-weighted arcs than positive
ones, although the number of PSNE is very small relative to
the maximum possible number. We have further found that
although the approximation algorithm for influential nodes
selection problem has a logarithmic factor worst case bound,
most often the result of the approximation algorithm is very
close to the optimal solution. For example, for the random
games having all negative weights, in 87% of the trials the
approximate solution size ≤ optimal size +1, and in 99% of
the trials the approximate solution size ≤ optimal size +2.

Preferential-Attachment LIGs. We have also exper-
imented with LIGs based on preferential-attachment
graphs (Albert and Barabási 2002). In constructing these
graphs, we have started with three nodes in a triangle and
then progressively added each node to the graph, connecting
it with three existing nodes with probabilities proportionate
to the degrees. We have made each connection bidirectional
and imposed the same weighting scheme as above: with the
flip probability p, the weight of an arc is −1 and with prob-
ability 1− p it is 1. The threshold of each node has been set
to 0. We have observed that for 0 < p < 1, these games
have very few PSNE, while for p = 0 and p = 1 the number
of PSNE is considerably large. Furthermore, these games
show very good separation properties, making the computa-
tion amenable to the divide-and-conquer approach. We show
the average number of PSNE and the average computation
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time for graphs of sizes 20 to 50 nodes in Figure 4 for p = 1
(each average is over 20 trials). Note that in contrast to the
random LIGs, preferential-attachment graphs show an ex-
ponential increase in the number of PSNE as the number of
nodes increase, although the number of PSNE is still a small
fraction of the maximum possible number.
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Figure 4: PSNE computation on preferential-attachment LIGs
(log-log scale). The vertical bars denote 95% confidence intervals.

Congressional Voting. We will further illustrate our com-
putational scheme in a real-world scenario where the strate-
gic aspects of the agents’ behavior are of prime importance.
We have learned the LIGs among the senators of the 101st
and the 110th US Congress (Honorio and Ortiz 2010). The
101st Congress LIG consists of 100 nodes, each representing
a senator, and 936 weighted arcs among these nodes. On the
other hand, the 110th Congress LIG has the same number
of nodes, but it is a little sparser than the 101st one, hav-
ing 762 arcs. In these LIGs, each node can play one of the
two actions: 1 (yes vote) and −1 (no vote). First, we have
applied the divide-and-conquer algorithm that exploits the
nice separation properties of these LIGs, to find the set of
all PSNE (this has been done for convenience; as discussed
earlier, counting alone would have been sufficient). We have
obtained a total of 143,601 PSNE for the 101st Congress
graph and 310,608 PSNE for the 110th one. Note that the
number of PSNE in these games is extremely small rela-
tive to the maximum possible 2100. Regarding the computa-
tion time, solving the 110th Congress using the divide-and-
conquer approach takes about seven hours, whereas solving
the same without this approach, simply relying on the back-
tracking search, takes about 15 hours.

Next, we have computed the most influential senators us-
ing the approximation algorithm outlined earlier. We have
obtained a solution of size five for the 101st Congress graph,
which we have verified to be an optimal solution. The solu-
tion consists of the following senators: Rockefeller (Demo-
crat, WV), Sarbanes (Democrat, MD), Thurmond (Repub-
lican, SC), Symms (Republican, ID), and Dole (Republi-
can, KS). Interestingly, none of the maximum-degree nodes
has been selected. Similarly, the six most influential senators
of the 110th Congress are: Kerry (Democrat, MA), Bennett
(Republican, UT), Sessions (Republican, AL), Enzi (Repub-
lican, WY), Rockefeller (Democrat, WV), and Lautenberg
(Democrat, NJ).

Conclusion

We have studied the problem of identifying the most influen-
tial nodes in a network from a new game-theoretic perspec-
tive. To that end, we have introduced a rich class of games,
named influence games, to capture the core strategic com-
ponent of complex interactions in a network. Our computa-
tional complexity and algorithmic results carry over to other
areas of game theory such as poly-matrix games.
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