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Abstract

Much evidence has shown that prediction markets, when used
in isolation, can effectively aggregate dispersed information
about uncertain future events and produce remarkably accu-
rate forecasts. However, if the market prediction will be used
for decision making, a strategic participant with a vested in-
terest in the decision outcome may want to manipulate the
market prediction in order to influence the resulting deci-
sion. The presence of such incentives outside of the market
would seem to damage information aggregation because of
the potential distrust among market participants. While this
is true under some conditions, we find that, if the existence
of such incentives is certain and common knowledge, then
in many cases, there exists a separating equilibrium for the
market where information is fully aggregated. This equilib-
rium also maximizes social welfare for convex outside payoff
functions. At this equilibrium, the participant with outside in-
centives makes a costly move to gain the trust of other partic-
ipants. When the existence of outside incentives is uncertain,
however, trust cannot be established between players if the
outside incentive is sufficiently large and we lose the separa-
bility in equilibrium.

Introduction

Prediction markets are powerful tools created to aggregate
information from individuals about uncertain events of in-
terest. As a betting intermediary, a prediction market allows
traders to express their private information through trading
shares of contracts and rewards their contributions based
on the realized outcome. The reward scheme in a predic-
tion market is designed to offer incentives for traders to re-
veal their private information. For instance, Hanson’s market
scoring rule (Hanson 2007) incentivizes risk-neutral, my-
opic traders to truthfully reveal their probabilistic estimates
by ensuring that truthful betting maximizes their expected
payoffs. Substantial empirical work has shown that predic-
tion markets produce remarkably accurate forecasts (Berg et
al. 2001; Wolfers and Zitzewitz 2004; Goel et al. 2010).

However, in many cases, the ultimate purpose of informa-
tion aggregation mechanisms is to inform decision making.
If the forecast of a prediction market is used to make a de-
cision, some market participants may stand to benefit if a
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particular decision outcome is reached. This creates strong
incentives from outside of the market for these participants
to strategically manipulate the market probability and de-
ceive other participants, especially when the outside incen-
tive is relatively more attractive than the payoff from inside
the market.

As a motivating example, suppose the US Centers for Dis-
ease Control and Prevention (CDC) wants to accurately pre-
dict the flu activity level for the next flu season in order to
purchase an appropriate amount of flu vaccine in advance.
To accomplish this, the CDC could run a prediction market
and base its purchasing decision on the final market forecast.
In this case, suppliers of flu vaccines, such as pharmaceuti-
cal companies, may have conflicting incentives inside and
outside of the market. A pharmaceutical company can profit
either by truthfully reporting their information in the market
or by driving up the final market probability to increase their
profit from selling flu vaccines. This outside incentive may
cause the pharmaceutical company to manipulate the market
probability in order to mislead the CDC about the expected
flu activity level.

When participants have outside incentives to manipulate
the market probability, it is questionable whether informa-
tion can be fully aggregated. In this paper, we investigate in-
formation aggregation in prediction markets when such out-
side incentives exist. We study a simple model of prediction
markets with two participants. Following a predefined se-
quence, each participant makes a single trade. With some
probability, the first participant has an outside payoff which
is an increasing function of the final market probability. We
analyze two cases: (1) the first participant has the outside
payoff with probability 1, and (2) the probability for the first
participant to have the outside payoff is less than 1. Our main
results are:

• For case (1), we give a necessary and sufficient condi-
tion for the existence of a separating equilibrium under
which information is fully aggregated despite the out-
side incentive. We characterize a separating equilibrium
where the first participant makes a costly move to gain
trust of the second participant.

• For case (2), we prove that there exists no separating or
semi-separating equilibrium where information is fully
aggregated if the outside incentive is sufficiently large.
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Information loss is inevitable since the first participant
can benefit by pretending to not have the outside payoff
when she actually does.

Related Work An emerging line of research has studied in-
centive issues that arise when using prediction markets as a
decision tool. Once incorporated into the decision process,
prediction markets often unintentionally create incentives
for participants to manipulate the market probability. These
incentives could take the form of the potential to profit in
a subsequent market (Dimitrov and Sami 2010) or the abil-
ity to influence the decision being made in a decision mar-
ket (Chen and Kash 2011; Othman and Sandholm 2010) to
make more profit within the market. Other types of manipu-
lation in a prediction market include influencing the market
outcome through alternative means other than trading in the
market (Shi, Conitzer, and Guo 2009), and taking advantage
of the opportunity to participate multiple times and mislead
other traders (Chen et al. 2010)

Of this line of research, Dimitrov and Sami’s (2010) work
is the closest to our own. The main differences between
their work and ours are (1) the outside incentives in their
model take the form of the potential profit in a second mar-
ket whereas ours take the general form of any monotone
function of the final market probability, and (2) they show
some properties of players’ payoffs at the equilibria without
the explicit characterization of any equilibrium whereas we
characterize the equilibria of our game play.

Model

Consider a binary random variable X . We run a prediction
market to predict its realization x ∈ {0, 1}. Our market uses
a logarithmic market scoring rule (LMSR) (Hanson 2007),
which is a sequential shared version of the logarithmic scor-
ing rule

s(x, p) =

{
b log(p), if x = 1

b log(1− p), if x = 0
(1)

where b is a positive parameter and p is the reported proba-
bility for x = 1. We assume b = 1 without loss of general-
ity. Starting with an initial market probability f0, the LMSR
market sequentially interacts with each trader to collect his
probability assessment1. When a trader changes the market
probability from p to q, he is paid the scoring rule difference,
s(x, q) − s(x, p). It is known that LMSR incentivizes risk-
neutral, myopic traders to truthfully reveal their probabilistic
assessment.

Alice and Bob are two rational, risk-neutral participants
in the market. They receive private signals described by the
random variables SA and SB with realizations sA, sB ∈
{H,T} respectively. Let π denote a joint prior probability
distribution over X , SA and SB . We assume π is common
knowledge and omit it in our notation for brevity.

1Even though we describe the LMSR market in terms of updat-
ing probabilities, it can be implemented as a market where partic-
ipants trade shares of contracts (Hanson 2007; Chen and Pennock
2007).

We define fsA,0 = P(x = 1|SA = sA) and f0,sB =
P(x = 1|SB = sB) to represent the posterior probability for
x = 1 given the individual signal of Alice and Bob respec-
tively. Similarly, fsA,sB = P(x = 1|SA = sA, SB = sB)
represents the posterior probability of x = 1 given both sig-
nals. We assume that the H signal indicates a strictly higher
probability for x = 1 than the T signal. That is, we as-
sume fH,sB > f0,sB > fT,sB for any sB and fsA,H >
fsA,0 > fsA,T for any sA, which imply fH,0 > fT,0 and
f0,H > f0,T .

In the context of our flu prediction example, we can in-
terpret the realization x = 1 as the event that the flu is
widespread and x = 0 as the event that it is not. Then the
two private signals can be any information acquired by the
participants about the flu activity, such as the number of peo-
ple catching the flu in a local area or the person’s own health
condition.

Sequence of Play
Our game has two stages. In stage 1, Alice observes her sig-
nal sA and changes the market probability from f0 to rA.
In stage 2, Bob observes Alice’s report rA in stage 1 and
his private signal sB , and changes the market probability
from rA to rB . The market closes after Bob’s report. The
sequence of play is common knowledge.

Player Payoffs
In our model, both Alice and Bob can profit from the LMSR
market. Moreover, with a fixed probability α ∈ (0, 1], Alice
is of a type which has an outside payoff Q(rB), a continuous
and (weakly) increasing function of the final market proba-
bility rB . In the flu prediction example, this outside pay-
off may correspond to the pharmaceutical company’s profit
from selling flu vaccines. The outside payoff function Q(·)
and the value of α are common knowledge.

Solution Concept
Our solution concept is the Perfect Bayesian Equilibrium
(PBE) (Fudenberg and Tirole 1991), which is a refinement
of Bayesian Nash equilibrium. Informally, a strategy-belief
pair is a PBE if the players’ strategies are optimal given their
beliefs and the players’ beliefs can be derived from their
strategies using Bayes’ rule whenever possible.

We use the notion of separating and pooling equilib-
rium (Spence 1973) in our analysis. In our model, if two
types of Alice separate at a PBE, then these types of Alice
must report different values. Otherwise, these two types of
Alice pool at the PBE and report the same value. An equi-
librium can be semi-separating, in which case some types
separate and other types pool. If all types of Alice separate
at a PBE, then information can be fully aggregated since Bob
can distinguish Alice’s signals and always make the optimal
report. Note that, in our model, when α ∈ (0, 1) Alice has
4 types based on whether she has the outside payoff and her
realized signal. However, if α = 1, then Alice only has 2
types distinguished by her signal.

Strategies and Beliefs
In stage 1, The market starts with the probability f0. For a
given signal sA, Alice moves the market probability from
f0 to rA ∈ [0, 1]. When Alice does not have an outside
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payoff, since she only participates once, her optimal strat-
egy facing the market scoring rule is to report fsA,0 with
probability 1 after receiving the sA signal. If Alice has
an outside payoff, we denote her strategy as a mapping
σ : {H,T} → Δ([0, 1]), where Δ(S) denotes the space
of distributions over a set S. We further assume that the sup-
port of Alice’s strategy is finite2. We use σsA(rA) to denote
the probability for Alice to report rA after receiving the sA
signal.

In stage 2, Bob moves the market probability from rA
to rB . We denote Bob’s belief function as a mapping μ :
[0, 1] × {H,T} → Δ({H,T}), and we use μsB ,rA(sA)
to denote the probability that Bob assigns to Alice having
received the sA signal given that she reported rA. Since
Bob participates last in our game, his optimal strategy is
uniquely determined by Alice’s report rA, his realized signal
sB and his belief μ; he will report rB = μsB ,rA(H)fH,sB +
μsB ,rA(T )fT,sB .

In the rest of the paper, we simplify our PBE represen-
tation by only describing Alice’s strategy and Bob’s belief
since Alice plays first and Bob has a dominant strategy.

Known Outside Incentive

In this section, we analyze the special case of our model
when α = 1, that is, Alice’s incentive is common knowl-
edge. Due to the presence of the outside payoff, Alice has
an incentive to mislead Bob in order to drive up the final
market probability. In equilibrium, Bob recognizes this in-
centive, and discounts Alice’s report accordingly. Therefore,
we naturally expect information loss in equilibrium due to
Alice’s manipulation. However, from another perspective,
Alice’s welfare is also hurt by her manipulation since she
cannot fully convince Bob when she has a favorable signal
H . In the following analysis, we characterize a necessary
and sufficient condition under which there exists a separat-
ing equilibrium that achieves full information aggregation
and maximizes social welfare with a convex Q(·). At this
separating equilibrium, Alice makes a costly statement, in
the form of a loss in the market scoring rule payoff, in order
to convince Bob that she is revealing her signals, despite the
incentive to manipulate. If the condition is violated, we show
that there does not exist any separating equilibrium and in-
formation loss is inevitable.

Non-Existence of Truthful Equilibrium

Before we begin our equilibrium analysis, we present a sim-
ple argument that when certain types of outside incentives
are present Alice’s truthful strategy cannot be part of any
PBE. By Alice’s truthful strategy, we mean the strategy of
reporting fsA,0 with probability 1 after receiving the sA sig-
nal, i.e.

σH(fH,0) = 1, σT (fT,0) = 1. (2)

Suppose that Alice uses the truthful strategy at some PBE.
Then Bob’s belief on the equilibrium path must be derived

2This assumption is often used to avoid the technical difficulties
that PBE has for games with a continuum of strategies, e.g. in (Cho
and Kreps 1987).

from Alice’s strategy using Bayes’ rule, that is,

μsB ,fH,0
(H) = 1, μsB ,fT,0

(T ) = 1. (3)

Given Bob’s belief, Alice can reason about her potential
loss and gain by misreporting the T signal. In general, if
Alice reports rA with positive probability after receiving the
sA signal, her expected loss in market scoring rule payoff is

LsA(rA) = fsA,0 log
fsA,0

rA
+ (1− fsA,0) log

1− fsA,0

1− rA
(4)

So her loss by reporting fH,0 with probability 1 after re-
ceiving the T signal is LT (fH,0). Based on Bob’s belief, her
gain by such misreporting is EsB [Q(fH,sB ) − Q(fT,sB ) |
sA = T ]. As a result, if the outside payoff function Q(·) sat-
isfies LT (fH,0) < EsB [Q(fH,sB ) − Q(fT,sB ) | sA = T ],
then Alice can derive positive net payoff by deviating to the
strategy σH(fH,0) = 1, σT (fH,0) = 1. Therefore, Lemma 1
follows.

Lemma 1. There exists an outside payoff function Q(·) such
that Alice’s truthful strategy (2) is not part of any PBE.

A Condition for Separation

In this part, we derive a condition that, as we will show,
is necessary and sufficient for the existence of a separating
equilibrium. This allows us to divide our subsequent equi-
librium analysis into two cases. This condition involves YH ,
the unique value in [fH,0, 1] satisfying equation (5), and YT ,
the unique value in [fT,0, 1] satisfying equation (6):

LH(YH) =EsB [Q(fH,sB )−Q(fT,sB ) | sA = H], (5)
LT (YT ) =EsB [Q(fH,sB )−Q(fT,sB ) | sA = T ]. (6)

The RHS of equations (5) and (6) are nonnegative be-
cause fH,sB > fT,sB and Q(·) is an increasing func-
tion. LT (YH) and LH(YT ) are monotonically increasing
for YH ∈ [fH,0, 1] and YT ∈ [fT,0, 1], and has the range
[0,+∞]. Hence, YH and YT are well defined.

Intuitively, YH and YT are the maximum values that Al-
ice might be willing to report after receiving the H or T
signal respectively. The RHS of equations (5) or (6) is Al-
ice’s maximum possible gain in outside payoff by reporting
some value rA when she has the H or T signal. These maxi-
mum gains would be achieved if Bob had the (hypothetical)
belief that Alice has the H signal when she reports rA and
the T signal otherwise. Given the H or T signal, Alice can
not possibly report any value higher than YH or YT because
doing so is dominated by reporting fH,0 or fT,0.

When YH ≥ YT , if Alice chooses to, it is possible for
her to credibly reveal that she has the H signal by reporting
a value that is too high to be profitable given the T signal.
However, when YH < YT , this is not possible. While we
focus on understanding information aggregation in markets
with outside incentives, interestingly, our problem is essen-
tially a signaling game (see (Fudenberg and Tirole 1991)
for a definition and examples). In fact, our condition that
YH > YT is analogous to the requirement in the applicant
signaling game (Spence 1973) that education is cheaper for
better workers, without which education is not useful as a
signal of worker quality.
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In what follows, we divide our analysis into these two
cases. When YH ≥ YT , we characterize a separating equi-
librium of our game. When YH < YT , we prove that no
separating equilibrium exists and derive a pooling equilib-
rium.

Separating Equilibrium

We assume YH ≥ YT in this section. Whether this condition
is satisfied depends on the prior probability distribution π
and the external payoff function Q(·). As a special case, if
signals SA and SB are independent, the condition is trivially
satisfied.

We will characterize a separating PBE of our game and
show that it maximizes social welfare when Q(·) is convex.
In our equilibrium, Bob has the following belief μS ,

μS
sB ,rA(H) =

{
1, if rA ∈ [YT , 1]

0, if rA ∈ [0, YT )
. (7)

This belief says that if Alice makes a report that is too
high to be consistent with the T signal (rA ≥ YT ), then Bob
believes that she received the H signal. This is reasonable
since Alice has no incentive to report YT or higher when she
receives the T signal by the definition of YT . If Alice reports
a value that is low enough such that it is still profitable for
her to report the value with a T signal (rA < YT ), then Bob
believes that she received the T signal.

We now show that Bob’s belief (7) and Alice’s strategy

σS
H(rA) = 1, σS

T (fT,0) = 1, rA = max (YT , fH,0) (8)
form a PBE of our game. Intuitively, when fH,0 < YT , Al-
ice is willing to incur a high enough cost by reporting YT

after receiving the H signal, to convince Bob that she has
the H signal. Since Bob can perfectly infer Alice’s signal
by observing her report, he would report fsA,sB in stage 2
and information is fully aggregated. So Alice is essentially
letting Bob take a larger portion of the market scoring rule
payoff in exchange for a larger outside payoff. Theorem 1
describes this separating PBE.
Theorem 1. When YH ≥ YT , Alice’s strategy (8) and Bob’s
belief (7) form a separating PBE.

Proof. First, we show that if YH ≥ YT , then Alice’s strat-
egy (8) is optimal given Bob’s belief.

If fH,0 < YT , then it is optimal for Alice to report YT af-
ter receiving the H signal because her gain in outside payoff
equals LH(YH) which is greater than her loss in the mar-
ket LH(YT ). Otherwise, if fH,0 ≥ YT , then it’s optimal for
Alice to report fH,0 after receiving the H signal. Therefore,
Alice’s optimal strategy after receiving the H signal is to
report max (fH,0, YT ).

When Alice receives the T signal, Alice would not report
any rA > YT by definition of YT , and furthermore she is
indifferent between reporting YT and fT,0. Any other report
is dominated by a report of fT,0. Therefore, it is optimal for
Alice to report fT,0 after receiving the T signal.

Moreover, we can show that Bob’s belief is consistent
with Alice’s strategy by mechanically applying Bayes’ rule
(argument omitted). Given the above arguments, Alice’s
strategy and Bob’s belief form a PBE of this game.

Other Equilibria

The separating equilibrium we have derived is not the only
one possible when YH ≥ YT . For example, beliefs can be
found for Bob such that there is a separating equilibrium
where Alice always reports fT,0 with the T signal and some
value in [YT , YH ] with the H signal. However, since all sep-
arating equilibria fully aggregate information, they all re-
sult in the same social welfare; all that changes is how Alice
and Bob split the resulting payoff. As the following theorem
shows, the particular equilibrium we have chosen is the one
that maximizes Alice’s payoff.

Theorem 2. Among all separating PBE of our game, the
separating PBE in Theorem 1 where Alice uses the strat-
egy (8) and Bob has the belief (7) maximizes Alice’s total
expected payoff.

Proof. In all separating PBE, Alice’s expected outside pay-
off is the same. We first show that Alice must report fT,0

after receiving the T signal at any separating PBE. Suppose
not and Alice reports rA �= fT,0 after receiving the T signal.
Bob’s belief must be μsB ,rA(H) = 0, and μsB ,fT,0

(H) ≥ 0.
However, given any μsB ,fT,0

(H) ≥ 0, Alice is strictly better
off reporting fT,0, which is a contradiction. Therefore, Al-
ice’s payoff after receiving the T signal is the same at any
separating equilibrium.

In Theorem 1, when fH,0 ≥ YT , Alice reports fH,0 after
receiving the H signal and this is the maximum payoff she
could get after receiving the H signal. When fH,0 < YT ,
Alice’s optimal strategy in Theorem 1 is to report YT . In any
equilibrium where she reports a value greater than YT , she
is strictly worse off. There does not exist a separating equi-
librium in which Alice reports rA ∈ [fT,0, YT ) after receiv-
ing the H signal. We show this by contradiction. Suppose
that there exists a separating equilibrium in which Alice re-
ports rA ∈ [fT,0, YT ) after receiving the H signal. Since
the PBE is separating, rA can not equal fT,0, which is the
report when Alice receives the T signal. In addition, Bob’s
belief must be μsB ,rA(H) = 1 to be consistent with Alice’s
strategy. We can also derive a contradiction or domination
by YT for the case when rA < fT,0 in a similar way (argu-
ment omitted). Therefore, when fH,0 < YT , reporting YT

maximizes Alice’s payoff after receiving the H signal.
Therefore, the separating PBE in Theorem 1 maximizes

Alice’s expected total payoff among all separating PBE of
our game.

In addition to other separating equilibria, there may also
exist pooling equilibria. In terms of the efficiency of the mar-
ket, the separating PBE is superior since it achieves the max-
imum total market scoring rule payoff. Moreover, if we fo-
cus on convex Q(·) functions, we can show that the sepa-
rating PBE maximizes the social welfare. Situations with a
convex Q(·) function arise, for example, when manufactures
have increasing returns to scale, which might be the case in
our flu prediction example.

Theorem 3. For any convex Q(·) function, if YH ≥ YT ,
then among all PBE, any separating PBE maximizes social
welfare.
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Proof. The separating PBE maximizes the total market scor-
ing rule payoff. Next, we show that the separating PBE also
maximizes Alice’s outside incentive payoff.

Consider an arbitrary PBE of this game. Let K denote the
union of the supports of Alice’s strategy after receiving the
H and the T signals at this PBE. Let uG

A denote Alice’s ex-
pected outside payoff at this PBE and let uS

A denote Alice’s
expected outside payoff at any separating PBE. We prove
below that uG

A ≤ uS
A. Note that we simplify our notation by

using P(SA, SB) = P(sA = SA, sB = SB).

uG
A =

∑
v∈K

(P(H,H)σH(v) + P(T,H)σT (v)) (9)

Q

(
P(H,H)σH(v)

P(H,H)σH(v) + P(T,H)σT (v)
fHH

+
P(T,H)σT (v)

P(H,H)σH(v) + P(T,H)σT (v)
fTH

)

+ (P(H,T )σH(v) + P(T, T )σT (v))

Q

(
P(H,T )σH(v)

P(H,T )σH(v) + P(T, T )σT (v)
fHT

+
P(T, T )σT (v)

P(H,T )σH(v) + P(T, T )σT (v)
fTT

)

≤
∑
v∈K

(P(H,H)σH(v)Q(fHH) + P(H,T )σH(v)Q(fHT )

+P(T,H)σT (v)Q(fTH) + P(T, T )σT (v)Q(fTT )) (10)
= P(H,H)Q(fHH) + P(H,T )Q(fHT )

+ P(T,H)Q(fTH) + P(T, T )Q(fTT )

=uS
A

where inequality (10) was derived by applying the convexity
of the Q(·) function.

Therefore, among all PBE of this game, the separating
PBE maximizes the social welfare.

Our model is not unique in suffering from a multiplic-
ity of equilibria; multiple equilibria exist in many signal-
ing games as well (e.g. (Spence 1973)). There has been
some work in economics that considers equilibrium refine-
ments stronger than perfect Bayesian equilibrium to try
and identify one particular equilibrium as focal. Cho and
Kreps (1987) present a number of refinements, including one
they call “The Intuitive Criterion.” It is easy to show that our
separating equilibrium is the unique separating equilibrium
consistent with this refinement. However, there can still be
pooling equilibria consistent with it.

Pooling Equilibrium

In the previous parts, we characterized equilibria when
YH ≥ YT . Unfortunately, if YH < YT , there no longer ex-
ists a separating PBE. Intuitively, even if Alice is willing to
make a costly report of YH — which is the maximum value
she would be willing to report after receiving the H signal
— she cannot convince Bob that she will report her T signal
truthfully since her costly report is not sufficient to offset her
incentive to misreport the T signal, which is represented by
the fact that YH < YT . Lemma 2 gives this result.

Lemma 2. If YH < YT , then there does not exist a separat-
ing PBE.

Proof. Suppose for contradiction that YH < YT and there
exists a separating PBE. By definition, YH and YT are the
maximum values that Alice might be willing to report af-
ter receiving the H or T signal respectively. At this sepa-
rating PBE, suppose that Alice reports some rA ∈ [fT,0, 1]
with positive probability after receiving the H signal. We
must have rA ≤ YH by definition of YH . Since the PBE
is separating, Bob’s belief must be that μsB ,rA(H) = 1 to
be consistent with Alice’s strategy. As we saw in the proof
of Theorem 2, in any separating PBE, Bob’s belief must be
μsB ,fT,0

(H) = 0 and Alice must report fT,0 after receiving
the T signal. Thus, because rA ≤ YH < YT , by the defi-
nition of YT Alice would strictly prefer to report rA rather
than fT,0 after receiving the T signal, which is a contradic-
tion. We can also derive a contradiction for the case when
rA < fT,0. The argument for this case is symmetric so we
omit it.

To further illustrate Alice’s incentive to manipulate the
market probability, we characterize a pooling equilibrium of
this setting given a particular belief for Bob.

Bob’s belief
For this equilibrium, we define Bob’s belief which depends
on γ that will be defined shortly.

μP
sB ,rA(H) =

{
g(γ), if rA ∈ [fH,0, 1]

0, if rA ∈ [0, fH,0)
, (11)

where

g(γ) =
P(sA = H|sB)

P(sA = H|sB) + (1− P(sA = H|sB))γ . (12)

For this belief, Bob assumes that Alice received the T sig-
nal if her report is lower than what a truthful Alice would
have reported after receiving the H signal (rA < fH,0).
Moreover, if Alice’s report is greater than or equal to fH,0,
then Bob believes that Alice reports rA with probability γ
after receiving the T signal. γ is defined to be the maximum
value within [0, 1] such that the following inequality is sat-
isfied.

LT (fH,0) ≤ EsB [Q(g(γ)fH,sB + (1− g(γ))fT,sB )

−Q(fT,sB ) | sA = T ] (13)

First, γ is well defined. The RHS of equation (13) is
strictly monotonically decreasing in γ. When γ = 0, the
RHS reduces to LT (YT ). Because fH,0 < YH < YT , we
know that γ > 0.

PBE characterization
We now show in Theorem 4 that Bob’s belief (11) and

Alice’s strategy (14) form a PBE of our game.

σP
H(fH,0) = 1, σP

T (fH,0) = γ, σP
T (fT,0) = 1− γ (14)

Theorem 4. Alice’s strategy (14) and Bob’s belief (11) form
a pooling PBE.
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Proof. First, we show that Alice’s strategy (14) is optimal
given Bob’s belief (11).

Given Bob’s belief, when Alice receives the H signal, she
would optimally report fH,0. This is because, reporting any
value higher than fH,0 will increase her loss in the market
and will not change the outside payoff, while reporting any
value lower than fH,0 will reduce her outside payoff and
increase her loss in the market.

When Alice receives the T signal, for any rA ∈ [0, fH,0),
Alice maximizes her total payoff by reporting fT,0. For any
rA ∈ [fH,0, 1], Alice maximizes her total payoff by report-
ing fH,0. Thus, the support of Alice’s equilibrium strategy
after receiving the T signal includes at most fT,0 and fH,0.
By the definition of γ, Alice is either indifferent between the
two or strictly prefers to report fH,0. Enforcing the consis-
tency of Bob’s belief, we know that, after receiving the T
signal, Alice’s optimal strategy must be reporting fH,0 with
probability γ and reporting fT,0 with probability 1−γ. Note
that γ > 0 by definition of Bob’s belief (11).

Moreover, we can show that Bob’s belief is consistent
with Alice’s strategy by mechanically applying Bayes’ rule
(argument omitted). Given the above arguments, Alice’s
strategy and Bob’s belief form a PBE of our game.

Uncertain Outside Incentive

In the previous section, we characterized a separating PBE
with full information aggregation when α = 1 and YH ≥
YT . In this section, however, we will show that any uncer-
tainty about Alice’s outside incentive could be detrimental
to information aggregation. This distrust arises when we al-
low α ∈ (0, 1), which introduces uncertainty about Alice’s
incentive. In this case, even if the value of α is common
knowledge, information loss in equilibrium is inevitable if
Alice has a sufficiently large outside incentive. In particu-
lar, when Alice has an outside payoff and has received the
T signal, she can report fH,0 to pretend not to have the out-
side payoff and to have received the H signal. This results
in these two types pooling, so the overall equilibrium is, at
best, semi-separating and there is information loss.

Theorem 5. If fH,0 < YT and α ∈ (0, 1), then there does
not exist any PBE in which Alice’s type with the H signal
and no outside payoff separates from her type with the T
signal and the outside payoff.

Proof. Proof by contradiction. Suppose that a separating
PBE exists. At this separating PBE, with probability (1−α),
Alice reports fH,0 after receiving the H signal and reports
fT,0 after receiving the T signal. To be consistent with Al-
ice’s strategy, Bob’s belief on the equilibrium path must be
μsB ,fH,0

(H) = 1 and μsB ,fT,0
(H) = 0. Given this be-

lief, however, when Alice has the outside payoff, she strictly
prefers to report fH,0 after receiving the T signal since
YT > fH,0, which is a contradiction.

Conclusion and Future Direction

We study the strategic play of prediction market participants
when there exist outside incentives. Our analysis brings out
the insight that conflicting incentives inside and outside of

a prediction market do not necessarily damage information
aggregation in equilibrium. In particular, under certain con-
ditions, there are equilibria in which full information aggre-
gation can be achieved. However, there are also many situa-
tions where information loss is inevitable.

In light of this, one important future direction is to bet-
ter understand information aggregation mechanisms in the
context of decision making, and design mechanisms to mini-
mize or control potential loss in information aggregation and
social welfare when there are conflicting incentives within
and outside of the mechanism.
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