
Constrained Coalition Formation

Talal Rahwan1, Tomasz Michalak1,2, Edith Elkind3, Piotr Faliszewski4, Jacek Sroka2,
Michael Wooldridge5, Nicholas R. Jennings1

1 School of Electronics and Computer Science, University of Southampton, UK
2 Institute of Informatics, University of Warsaw, Poland

3 Division of Mathematical Sciences, Nanyang Technological University, Singapore
4 Faculty of Elec. Eng., Automatics, Comp. Sci. and Elec., AGH University of Science and Technology, Poland

5 Department of Computer Science, University of Liverpool, UK

Abstract

The conventional model of coalition formation considers ev-
ery possible subset of agents as a potential coalition. How-
ever, in many real-world applications, there are inherent con-
straints on feasible coalitions: for instance, certain agents
may be prohibited from being in the same coalition, or the
coalition structure may be required to consist of coalitions of
the same size. In this paper, we present the first systematic
study of constrained coalition formation (CCF). We propose
a general framework for this problem, and identify an im-
portant class of CCF settings, where the constraints specify
which groups of agents should/should not work together. We
describe a procedure that transforms such constraints into a
structured input that allows coalition formation algorithms to
identify, without any redundant computations, all the feasible
coalitions. We then use this procedure to develop an algo-
rithm for generating an optimal (welfare-maximizing) con-
strained coalition structure, and show that it outperforms ex-
isting state-of-the-art approaches by several orders of magni-
tude.

Introduction

In multi-agent systems, agents can often benefit form work-
ing together, i.e., forming coalitions (Shehory and Kraus
1998). Generally speaking, the coalition formation process
involves three main activities (Sandholm et al. 1999): (1) de-
termining the value of each coalition; (2) finding a coalition
structure, i.e., a partition of the set of agents into disjoint
coalitions; and (3) dividing the payoffs from collaboration.

Now, the conventional model of coalition formation views
every possible subset of agents as a potential coalition. How-
ever, in many real-world applications, there are inherent con-
straints that enforce or, conversely, prohibit the co-existence
of certain agents in any coalition. For example, in many
countries, anti-trust laws prohibit the formation of certain
coalitions of companies (cartels) to prevent such coalitions
obtaining and exploiting an unfair market position (e.g., a
monopoly). Other types of constraints are also possible. For
example, constraints may be placed on coalition sizes, where
certain sizes are permitted/prohibited; and certain compa-
nies may have preferred contractors – companies they would
prefer to work with in a coalition. Clearly, whenever such

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constraints arise they must be accounted for during all three
activities of the coalition formation process.

To date, there have been a number of attempts in the
game-theoretic literature to analyze coalition formation with
constraints (see the Related Work section). However, this lit-
erature only deals with the strategic aspects of the problem.
In contrast, the computational aspects, which are of particu-
lar interest to the multi-agent systems research community,
have been largely ignored: the only work we are aware of
was carried out by Shehory and Kraus (1998). They consid-
ered limits on the size of the largest coalition that could be
formed, but did not consider any other types of constraints.
It seems likely that the lack of models, languages, or al-
gorithms for dealing with constraints on coalitional mem-
bership hindered the use of coalition formation techniques
in many realistic applications where such constraints are
present.

To fill this major gap in the literature, we provide: (1) a
framework for constrained coalition formation (CCF); and
(2) an algorithm for optimal coalition structure generation
for an important special case of this framework. Central to
our algorithmic endeavour is the ability to avoid checking
every possible coalition (2n in total, given n agents) to ver-
ify whether it is feasible, i.e., whether it satisfies the con-
straints. This is crucial, first, because the number of feasible
coalitions can be significantly smaller than 2n and, second,
because each one of those 2n coalitions requires performing
a potentially large number of operations—depending on the
number of constraints—before its feasibility is determined.
A desirable approach should, then, focus only on the feasi-
ble coalitions, and should be able to generate them directly
from the constraints. One of the main challenges here is
to avoid redundant computations, e.g., multiple generation
of any coalition that satisfies multiple constraints. Another
important challenge in CCF is how the feasible coalitions
can be combined to efficiently generate valid coalition struc-
tures. Indeed, going through every possible combination of
feasible coalitions, and checking whether this combination
contains mutually disjoint coalitions can be costly, even for
a relatively small domain.

The remainder of the paper is structured as follows. In
the following section, we present a general model of con-
strained coalition formation, and then we identify a simple,
but expressive set of constraints that allows for a practical

Proceedings of the Twenty-Fifth AAAI Conference on Artificial IntelligenceProceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

719

coalition structure generation algorithm. We then develop a
procedure that transforms the specified set of constraints into
another, isomorphic, set such that it is possible to identify,
without any redundant computations, all the feasible coali-
tions. Building upon this, we provide a novel algorithm for
optimal coalition structure generation in CCF. Specifically,
the algorithm exploits our new set of constraints to search
through only the feasible coalition structures (i.e., those in
which every coalition is feasible). We test our algorithm and
show that it outperforms other state-of-the-art algorithms for
several orders of magnitude. We conclude the paper by dis-
cussing related work, summarizing our results, and propos-
ing directions for future research.

General CCF Model

Given a finite set A of agents, let 2A denote the set of all
subsets of A, i.e., the set of all possible coalitions. Moreover,
let Π(A) denote the set of all partitions of A, i.e., the set of
all possible coalition structures.

Definition 1. A constrained coalition formation (CCF) game
is a tuple G = 〈A, CS, v〉 where:

• A = {a1, . . . , an} is the set of agents;
• CS ⊆ Π(A) is the set of feasible coalition structures;
• v : (∪C∈CS ∪C∈CS {C}) → R is the characteristic func-

tion, which assigns a real value to every coalition that
appears in some feasible coalition structure.

Note that, in general, the notion of feasibility is de-
fined for coalition structures rather that individual coali-
tions: for instance, if A = {a1, a2, a3, a4} and we de-
fine CS as the set of all coalition structures in which all
coalitions have the same size, then the coalition structure
{{a1}, {a2}, {a3, a4}} is not feasible, even though each of
its component coalitions may be a part of a feasible coali-
tion structure. However, in many settings of interest, the
constraints on coalition structures implied by CS can be re-
duced to constraints on individual coalitions. More formally,
we say that a CCF game G = 〈A, CS, v〉 is locally con-
strained if there exists a set of coalitions C ⊆ 2A such that
CS = {CS ∈ Π(A) | CS ⊆ C}. We will refer to the coali-
tions in C as feasible coalitions.

It is impractical to represent a CCF game by listing all fea-
sible coalition structures: such a representation is exponen-
tial in the number of agents. Indeed, constraints that arise in
practical domains usually have an inherent structure, and can
therefore be represented succinctly in a suitable language.
One obvious language is that of propositional logic in which
the Boolean variables of the language correspond to agents.
More formally, let us define the set of Boolean variables
BA = {bi | ai ∈ A}, i.e., for every agent ai we have a
corresponding Boolean variable bi. Now, let φ be a proposi-
tional formula over BA, constructed using the usual classical
connectives (∧,∨,¬,→, . . .). We say that a coalition C sat-
isfies φ (and write C |= φ) if φ is satisfied under the truth
assignment that sets all bi with ai ∈ C to true and all bi with
ai
∈ C to false. Furthermore, we say that a coalition struc-
ture CS satisfies φ (and write CS |= φ) if we have C |= φ
for all C ∈ CS . A CCF game G = 〈A, CS, v〉 is said to be

propositionally definable if there is a logical formula φ over
BA such that CS = {CS | CS |= φ}. Our next proposition
shows that not all CCF games are propositionally definable.

Proposition 1. The class of propositionally definable CCF
games is equal to the class of locally constrained CCF
games.

Proof. Let C ⊆ 2A be the set of feasible coalitions in a
locally constrained game. Then we can define the proposi-
tional constraint φ by

φ =
∨
C∈C

(
∧aj∈Cbj

)
∧
(
∧aj∈A\C¬bj

)
.

Conversely, given a propositional constraint φ, we can define
the set of local constraints C as C = {C | C |= φ}.

Proposition 1 shows that, in order to develop a represen-
tation for general CCF games, we would have to go beyond
propositional logic over BA. There are many obvious ex-
tensions to propositional logic that would be fully expres-
sive1. However, our aim in the present paper is to focus on
locally constrained games, and in particular, their tractable
instances.

Basic CCF Model

Given a succinctly represented CCF game, a key problem
is to find a coalition structure with the highest total value.
This is not an easy task, even if we limit ourselves to lo-
cally constrained games. Thus, in what follows, we will try
to identify a natural subclass of such games for which we
can develop practical algorithms for this problem. Proposi-
tion 1 suggests that we can approach this task by specifying a
class of relatively simple propositional formulas, and focus-
ing on coalition structures that can be defined by formulas
in this class. We will now describe a class of propositional
formulas that, in our opinion, provides a good balance be-
tween expressiveness and tractability. As a motivation, we
start with the following example.

Example 1. Suppose that eight web-service providers, A =
{a1, . . . , a8}, consider cooperation in order to provide
cloud-computing capabilities to a major client. The client
knows from prior experience that certain alliances of com-
panies are indispensable to perform this task, and these
are {a1, a5, a8}, {a2, a5, a7}, and {a5, a7, a8}. Thus, only
coalitions involving any of these alliances are considered to
be feasible. Furthermore, the client excludes any coalitions
involving alliances of {a1, a2, a3} or {a2, a3, a5} due to the
fact that, from prior experience, these specific combinations
of providers are known to under-perform.

The above example suggests that a natural way in which
constraints arise in coalition formation is in the form of sub-
sets of agents whose collective presence is viewed as use-
ful/harmful. Thus, a CCF game can be specified by:

1One example is to allow predicates of the form I(i, j), whose
semantics is “agents ai and aj should be in the same coalition”.
We leave it for the reader to see that such a language is indeed fully
expressive.

720

• a set of positive constraints P ⊆ 2A such that a coalition
C satisfies a constraint P ∈ P if P ⊆ C;

• a set of negative constraints N ⊆ 2A such that C satisfies
a constraint N ∈ N if N
⊆ C.

It remains to describe how to combine the constraints. We
will do so in the language of propositional logic over BA,
by associating every P ∈ P with a formula φP = ∧ai∈P bi,
and every N ∈ N with a formula φN = ¬(∧ai∈Nbi).

Observe that negative constraints usually mean that the re-
spective agents should never work together, so they should
be interpreted conjunctively: each coalition should satisfy
each negative constraint. However, for positive constraints
the conjunctive approach does not work: if we require that
each coalition satisfies each positive constraint, this effec-
tively means that only the grand coalition is feasible, since
no positive constraint can be satisfied by more than one
coaition simultaneously. Thus, we should interpret the posi-
tive constraints disjunctively, i.e., either by saying that each
coalition should satisfy at least one constraint, or by say-
ing that each constraint should be satisfied by at least one
coalition. In this paper, we focus on the former interpre-
tation, as it seems more closely tied to the issues of col-
lective performance considered in this work; the latter in-
terpretation, which views coalition formation from individ-
ual agents’ perspective, appears to be more relevant in the
context of coalitional stability. Thus, we say that a coalition
structure CS is feasible if CS |= φ, where

φ = (∨P∈PφP)
∧

(∧N∈NφN), (1)

Observe that not all locally constrained games can be de-
scribed by constraints of this restricted form: for instance,
a CCF game with 6 agents, where the feasible coalitions
are those of even size, cannot be encoded in this way (to
see this, observe that since the grand coalition is feasible,
we have N = ∅). In particular, constraints on the coalition
sizes, which are likely to be relevant in many real-life sce-
narios, cannot always be encoded. Thus, we explicitly add
size constraints, denoted S , to our model.

To summarize, we define a basic CCF game G as a tuple

G = 〈A,P,N ,S, v〉, (2)

where A = {a1, . . . , an} is the set of agents, v : 2A →
R is a characteristic function on A, P and N are sets of
subsets of A, and S ⊆ N. A coalition C ⊆ A is feasible
for G = 〈A,P,N ,S, v〉, if (i) P ⊆ C for some P ∈ P;
(ii) N
⊆ C for all N ∈ N ; and (iii) |C| ∈ S; we denote
by c(A,P,N ,S) the set of all feasible coalitions. This is
a locally constrained game, i.e, a coalition structure CS is
feasible if and only if CS ⊆ c(A,P,N ,S). Given a feasible
coalition structure CS , we set v(CS) =

∑
C∈CS v(C).

Now, we can state the optimization problem that we
would like to solve: given a basic CCF game G, the goal
is to find a feasible coalition structure CS∗ that maximizes
v(CS) among all feasible coalition structures. In the rest
of the paper, we present and evaluate an algorithm for this
problem.

Constraint Transformation

In this section, we present a procedure that transforms the
specified set of constraints into another, isomorphic, set: this
enables us to identify, without any redundant computations,
all the feasible coalitions. We first present the theoretical ba-
sis for our transformation, and then describe an algorithm
that performs this transformation.

Theoretical Basis

Given two arbitrary sets of sets, X and Y , let

X ⊗Y =

{
{X ∪ Y | X ∈ X , Y ∈ Y} if X
= ∅,Y
= ∅,
∅ otherwise.

Further, for any ai ∈ A, let Pai = {C ∈ P | ai ∈ C} and
Pai = P \ Pai . Similarly, let N ai = {C ∈ N | ai ∈ C}
and N ai = N\N ai . Finally, define P̃ai and Ñ ai as follows:

P̃ai = {C ∈ 2A \ {ai} | C ∪ {ai} ∈ Pai}, (3)

Ñ ai = {C ∈ 2A \ {ai} | C ∪ {ai} ∈ N ai}. (4)

For example, given P = {{a1, a2}, {a1, a3}, {a4, a5}},
we would have P a1 = {{a1, a2}, {a1, a3}}, Pa1 =

{{a4, a5}}, and P̃a1 = {{a2}, {a3}}.
With these definitions in place, we can now present the

main theorem for subdividing the set c(A,P,N ,S). Intu-
itively, this theorem allows us to decompose the constraints,
without losing any information, by choosing a branching
agent ai and dividing the problem into two smaller sub-
problems—with and without ai, respectively. We omit the
proof due to space limitations.

Theorem 1. For any agent ai ∈ A, the following holds:
c(A,P,N) = c(A \ {ai},Pai ,N ai)⋃ (

{ai} ⊗ c(A \ {ai},Pai ∪ P̃ai ,N ai ∪ Ñ ai)
)
.

Transformation Algorithm

Our algorithm is based on Divide and Conquer — a design
paradigm that involves breaking a problem into several sub-
problems such that they are similar to the original one but
smaller in size. This process repeats recursively until the
sub-problems become base cases, i.e., sub-problems that are
small enough to be solved in a straightforward manner. The
solutions to those base cases are then combined to create a
solution to the original one. Particularly, in our case:

• The problem is how to generate c(A,P,N ,S).
• The division is performed according to Theorem 1.

• A base case is a problem where c(A,P,N ,S) satis-
fies the following conditions: |P| = 1, ∩N = ∅, and
|{N ∈ N | |N | > 1}| ≤ 1.

Our choice of the base case is motivated as follows. Let gs
be a function that takes as input a set of agents C ⊆ A, and
returns all the possible subsets of C that are of size s. That is,
gs(C) = {C ′ : C ′ ⊆ C, |C ′| = s}.2 Then, given a base case

2This can be implemented efficiently using the techniques in
(Rahwan and Jennings 2007).

721

with c(A,P,N ,S), we can generate the required coalitions
directly, i.e., without checking any constraints, based on the
following lemma:
Lemma 1. Let us define N ′ = {N ∈ N | |N | > 1} and
N ′′ = N \ N ′. Moreover, let us define A′ = ∪N ′ and
A′′ = A \ ∪(P ∪ N ′ ∪ N ′′). Then, given a base case, the
following holds (where × denotes the cartesian product):

c(A,P,N) = P×
⋃

s∈S∪{0},s<|A′|
gs(A

′)×
⋃

s∈S∪{0},s≤|A′′|
gs(A

′′)

We omit the proof due to space limitations.
The pseudo-code of our divide-and-conquer procedure is

presented in Algorithm 1, and an example of how the algo-
rithm works is illustrated in Figure 1. To save space, where
there is no risk of confusion, we omit commas and brackets,
and refer to agents by using their indices only (e.g. we write
{12}{3} as a shorthand for {{a1, a2}, {a3}}). The main
idea is to divide the problem of generating c(A,P,N ,S)
into two sub-problems, where the coalitions that contain a
certain agent ai are separated from those that do not. Based
on Theorem 1, when generating the coalitions that contain
ai, we can remove ai from every constraint in P and N . Fur-
thermore, when generating the coalitions that do not contain
ai, we can remove every constraint in P and N that con-
tains ai. Since this division is performed recursively in our
algorithm, we introduce two sets, P∗ and N ∗, to keep track
of the agents that must (respectively, must not) be contained
in the coalitions. This is depicted in Figure 1, where we ini-
tially have P = {158}{257}{578}, N = {123}{235}, and
P∗ = ∅ and N ∗ = ∅. In this example, we divide the coali-
tions into those that contain agent 1 and those that do not:

• For the coalitions that contain agent 1, we update P ,
N , and P∗ as follows: P = {{58}{257}{578}}, N =
{{23}{235}} and P∗ = {{1}}.

• For the coalitions that do not contain agent 1, we update
P , N , and N ∗ as follows: P = {{257}{578}}, N =
{{235}}, and N ∗ = {{1}}.

Note that the coalitions in every sub-problem must satisfy
not only the updated constraints in P and N , but also those
in P∗ and N ∗.

Next, we provide a brief description of the main stages of
Algorithm 1:
• Removing Redundant Constraints: here we remove ev-

ery negative constraint that is a superset of another nega-
tive one, and every positive constraint that is a superset of
another positive. This occurs at every call of the recursive
function.

• Dealing with Special Cases: here we deal with two spe-
cial cases, where only one constraint, either positive or
negative, is left to be satisfied.

• Checking Termination Conditions: these are based on
the definitions of P and N , which imply that the con-
straints in P are always satisfied if P � ∅, and the con-
straints in N are always satisfied if N = ∅. Now, if both
P and N are satisfied, then we store (P∗,N ∗) in a set
called T ∗. The definitions of P and N also implies that

Algorithm 1 : f(A,P,N ,P∗,N ∗)
{--------------- REMOVE REDUNDANT CONSTRAINTS ----------------}

1: for N ∈ N do

2: if ∃N ′ ∈ N : N ′ ⊃ N then

3: N ← N\{N ′} {remove N′ from N}
4: end if

5: end for

6: for P ∈ P do

7: if ∃P ′ ∈ P : P ′ ⊃ P then

8: P ← P\{P ′} {remove P ′ from P}
9: end if

10: end for

{------------------ DEAL WITH SPECIAL CASES ------------------}
11: for N ∈ N : |N | = 1 {if there is a constraint in N with

exactly one agent} do

12: A ← A\N {remove the agent from A}
13: N∗ ← N∗ ∪ N

14: N ← N\{N} {remove the constraint from N}
15: end for

16: if P
 ∅ and |N | = 1 then

17: N∗ ← N∗ ∪ N
18: N ← ∅
19: end if

20: if |P| = 1 and N = ∅ then

21: P∗ ← {∪P∈P∪P∗P}
22: P ← {∅}
23: end if

{--------------- CHECK TERMINATION CONDITIONS ----------------}
24: if P
 ∅ and N = ∅ then

25: T ∗ ← T ∗ ∪ {(P∗,N∗)}
26: exit {because we have satisfied all membership constraints}
27: end if

28: if P = ∅ or N
 ∅ then

29: exit {because the membership constraints cannot be satisfied}
30: end if

31: if (|∪P∗| > Max(S)) or (|A| − |N∗| < Min(S)) then

32: exit {because the size constraints cannot be satisfied}
33: end if

{---------------- INITIALIZE DIVIDE & CONQUER ----------------}
34: ai ← select(A,P,N ,P∗,N∗) {select an agent}
35: if P∗ = ∅ then

36: A∗ ← A∗ ∪ {ai}
37: end if

38: Nai ← ∅, and ˜Nai ← ∅ {initialize Nai and ˜Nai}
39: for N ∈ N do

40: if ai ∈ N then

41: ˜Nai ← ˜Nai ∪ {N\{ai}}
42: else

43: Nai ← Nai ∪ {N}
44: end if

45: end for

46: Pai ← ∅, and ˜Pai ← ∅ {initialize Pai and ˜Pai}
47: for P ∈ P do

48: if ai ∈ P then

49: ˜Pai ← ˜Pai ∪ {P\{ai}}
50: else

51: Pai ← Pai ∪ {P}
52: end if

53: end for

{------------------- APPLY DIVIDE & CONQUER ------------------}
54: f(A\{ai},Pai ∪ ˜Pai ,Nai ∪ ˜Nai , {∪P∈P∗∪{ai}P},N ∗)
55: f(A\{ai},Pai ,Nai ,P∗,N ∗ ∪ {ai})

722

Figure 1: How the elements in T ∗ are generated given A = {1, 2, 3, 4, 5, 6, 7, 8}, P = {1, 5, 8}{2, 5, 7}{5, 7, 8}, and N =
{1, 2, 3}{2, 3, 5}.

the constraints cannot be satisfied if P = ∅ or N � ∅.
Thus, we check if this is the case. We also check whether
the size constraints can no longer be satisfied (Note that
the size constraints are also dealt with once a base case is
reached, see Lemma 1).

• Initializing Divide & Conquer: First, we select a branch-
ing agent, which is stored in an ordered set A∗ only if
P∗ = ∅ (see Figure 1). The element at the ith location
in A∗ will be denoted a∗i , and the rationale behind using
A∗ will be made clear in the next section. Finally, in this
stage, we set Pai , N ai , P̃ai and Ñ ai , as they are needed
in the next stage.

• Applying Divide & Conquer: We divide the current
problem into two sub-problems based on Theorem 1.

Due to the way the constraints (i.e., subsets) in P and N are
updated, which involves either the removal of agents from
subsets or the removal of entire subsets, the algorithm is
guaranteed to reach one of the following termination condi-
tions: P = ∅, N � ∅, or P � ∅∧N = ∅. Also note that if the
constraints in P and N are satisfied, i.e., if P � ∅ ∧N = ∅,
then the only constraints that need to be satisfied are those
in P∗ and N ∗. Furthermore, the way P∗ and N ∗ are con-
structed guarantees that these constraints, i.e., (P∗,N ∗), are
always base cases.

Coalition Structure Generation in CCF

Recall that our goal is to find a coalition structure CS∗ that
maximizes v(CS) among all feasible coalitions. One of the
main challenges when tackling this problem is how to com-
bine the feasible coalitions in order to efficiently generate
valid coalition structures. Indeed, going through every possi-
ble combination of feasible coalitions, and checking whether
it contains mutually disjoint coalitions can be costly, even
for a relatively small problem. Our approach makes use of
the transformation outlined in the previous section. Specifi-
cally, we divide the set of feasible coalitions c(A,P,N ,S)
into lists L1, . . . , L|A∗|+1, where Li = {(P∗,N ∗) : P∗ �
a∗i } for i = 1, . . . , |A∗|, and L|A∗|+1 = {(P∗,N ∗) :
P∗ ∩ A∗ = ∅}. The rationale behind this division is the
following lemma.

723

Figure 2: The order by which the sub-spaces are searched
when searching for the optimal coalition structure

Lemma 2. Every feasible coalition structure CS contains
exactly one coalition from L1 and at most one coalition from
every Li, where i ∈ {2, . . . , |A∗|+ 1}.

The pseudo code of our algorithm is presented in Al-
gorithm 2, and an example of how it operates is illus-
trated in Figure 2. Basically, the algorithm fills the lists
L1, . . . , L|A∗|+1 and computes an upper bound UBLi

on
the values of the coalitions from every list Li (see Steps 1-
14). In the next step it calls the function searchLists which
works as follows. It keeps adding coalitions to a variable CS
until this variable becomes a feasible coalition structure, in
which case it updates, if needed, the best solution found so
far (denoted CS∗∗ in the algorithm). More specifically, for
every coalition C1 from L1, the coalition is added to CS
and its members are added to N ∗ for every (P∗,N ∗) ∈ L2.
This places further constraints on the coalitions in L2, and
that is not to contain any agent in C1. If CS is not yet a fea-
sible coalition structure, then the process is repeated for L2,
i.e., for every coalition C2 from L2, the coalition is added to
CS and the agents in C1 and C2 are added to N ∗ for every
(P∗,N ∗) ∈ L3, and so on. To speed up the search, the al-
gorithm applies a branch and bound technique. Specifically,
before moving into a list Li, the algorithm compares the up-
per bounds of all remaining lists to the current best solution
see whether it is worthwhile to make that move (see Step 8).

Performance Evaluation

In this section, we empirically evaluate our algorithm, and
benchmark it against the state of the art in the literature. In
particular, we run our experiments given: (i) different num-
bers of agents, ranging from 15 to 30; (ii) different numbers
of randomly generated constraints varying from 100 to 1000;
and (iii) different coalition-value distributions. Specifically,

Figure 3: Given different numbers of agents, the figure
shows on a log scale the time (in milli-seconds) to gener-
ate, or search for, the feasible coalitions.

we use the standard test distributions that are widely used in
the Coalition Structure Generation (CSG) literature, namely:
Normal, Uniform, and NDCS (Rahwan et al. 2009). Our ex-
periments were carried out on a PC with 8 Intel 2.67GHz
processors and 12GB of RAM.
ALGORITHM1: Given different numbers of agents, Fig-
ure 3 shows, on a log scale, a comparison between the time
to generate the feasible coalitions (using our divide-and-
conquer procedure), and the time to search for the feasi-
ble coalitions (by checking every coalition in 2A against the
constraint to verify whether it is a feasible one). As can be
seen, our procedure is faster by orders of magnitude. For in-
stance, given 30 agents, ours takes less than 1% of the time,
and that is for both the 100-constraints case and the 1000-
constraints one.
ALGORITHM2: We test our algorithm against:

• Rahwan et al. (2009) — the state-of-the-art algorithm for
solving the CSG problem when all coalitions are feasible;

• Ohta et al. (2009) — the state-of-the-art for CSG prob-
lems with compact representations of coalitional games.

For fairness, all 3 algorithms (including ours) were given
the same input: the coalition values and a list of constraints.
Rahwan et al.’s algorithm was implemented such that it
checks every possible coalition against the list of constraints,
and stores the feasible ones in memory. After that, it pro-
ceeds as usual, except that every branch in the search tree
is pruned if it contains a coalition that is not feasible. The
process of checking the feasibility of coalitions is done very
efficiently (using a logarithmic number of operations). As
for Ohta et al., the MIP formulation for Synergy Coalition
Groups was implemented using ILOG’s CPLEX — a stan-
dard mixed integer programming (MIP) package.

Given different numbers of agents, Figure 4 shows on a
log scale the termination time given the Normal distribu-
tion.3 As shown in the figure, our algorithm is faster by
several orders of magnitude, and that is for all distribu-
tions. Given 30 agents, for example, the algorithm takes only
0.002% compared to Rahwan et al. in the 100-constraints
case, and only 0.4% int the 1000-constraints one. Similarly,
when comparing against Ohta et al. given 30 agents, we find

3Similar patterns were observed for the other distributions.

724

Figure 4: The time to solve the CSG problem given different
algorithms, and different numbers of agents (log scale).

that our algorithm takes only 0.07% of the time given a 100
constraints, and only 0.01% given a 1000. As can be seen,
these improvements grow exponentially as the number of
agents increases.

It should be noted that many of these problem instances
were indeed very challenging due to the large number of
feasible coalitions. For instance, the average number feasi-
ble coalitions in our experiments was nearly 8 × 107 given
100 constraint with 30 agents, and nearly 6×108 given 1000
constraints.

Related Work

Coalitional games with constraints have been analyzed by a
number of authors from a game-theoretic perspective. The
dominant approach in this literature is to define the set of
feasible coalitions based on convenient mathematical struc-
tures such as distributive lattices (Faigle 1989), convex ge-
ometries (Bilbao and Edelman 2000), antimatroids (E. Al-
gaba and Jimenez-Losada 2004), and augmenting systems
(Bilbao and Ordez 2009). In the general case, however, none
of these structures is able to model the coalitional game with
arbitrary positive and negative constraints as defined in this
paper. The work that is most closely related to our setting
is (Demange 2009), where a set of all feasible coalitions is
entirely arbitrary. Nevertheless, this game-theoretical study
focuses solely on strategic, core-related issues rather than
computational analysis.

In the computer science literature, constraints on coali-
tion sizes have been considered in the context of coali-
tion value calculation (Shehory and Kraus 1998; Rahwan
and Jennings 2007), but no other types of constraints have
been explored. Also, the extensive literature on (anytime)
coalition structure generation, e.g., (Rahwan et al. 2009;
Sandholm et al. 1999), always treats all coalitions as feasi-
ble. Another active stream of relevant research concerns de-
veloping succinct and expressive representations for coali-
tional games (Deng and Papadimitriou 1994; Ieong and
Shoham 2005; Conitzer and Sandholm 2006). Indeed, for lo-
cally constrained games any such formalism could be used
to encode the constraints. However, it can be shown that
none of these formalisms is succinct for the class of basic
CCF games considered in this paper. Therefore, approaches
that work directly with such representations, such as that of
(Ohta et al. 2009) perform poorly compared to ours.

Conclusions and Extensions

We have introduced the framework of Constrained Coalition
Formation and identified a special case of this framework,
which we called basic CCF games, that captures many types
of constraints typical of multiagent settings. We developed
a procedure that transforms the constraints of a basic CCF
game into a structured input that allows coalition formation
algorithms to identify, without any redundant computations,
all the feasible coalitions. Building upon this we proposed
an algorithm for optimal Coalition Structure Generation in
basic CCF games.

Our work makes the first steps towards a study of con-
strained coalition formation in the multi-agent systems do-
main, where agent cooperation plays a key role. Important
directions of future research include generalizing our results
to richer classes of constrained games and analyzing com-
putational properties of the key stability concepts, e.g., the
Core and the Shapley, adapted to accommodate constraints.
Finally, it is very interesting to explore the relationship of
our work to the domain of combinatorial auctions.

References
Bilbao, J. M., and Edelman, P. H. 2000. The shapley value on
convex geometries. Discrete Appl. Math. 103(1-3):33–40.
Bilbao, J., and Ordez, M. 2009. Axiomatizations of the shapley
value for games on augmenting systems. European Journal of
Operational Research 196(3):1008–1014.
Conitzer, V., and Sandholm, T. 2006. Complexity of construct-
ing solutions in the core based on synergies among coalitions.
Artificial Intelligence (AIJ) 170(6-7):607–619.
Demange, G. 2009. The strategy structure of some coalition
formation games. Games and Economic Behavior 65(1):83–
104.
Deng, X., and Papadimitriou, C. 1994. On the complexity of
cooperative solution concepts. Mathematical Oprerational Re-
search (19):257–266.
E. Algaba, J. M. Bilbao, R. v. d. B., and Jimenez-Losada, A.
2004. Cooperative games on antimatroids. Discrete Mathemat-
ics 282:1–15.
Faigle, U. 1989. Cores of games with restricted cooperation.
Mathematical Methods of Operations Research 33(6).
Ieong, S., and Shoham, Y. 2005. Marginal contribution nets: A
compact representation scheme for coalitional games. In Pro-
ceedings of the 6th ACM EC’05.
Ohta, N.; Conitzer, V.; Ichimura, R.; Sakurai, Y.; Iwasaki, A.;
and Yokoo, M. 2009. Coalition structure generation utiliz-
ing compact characteristic function representations. In CP’09,
623–638.
Rahwan, T., and Jennings, N. R. 2007. An algorithm for
distributing coalitional value calculations among cooperative
agents. Artificial Intelligence (AIJ) 171(8–9):535–567.
Rahwan, T.; Ramchurn, S. D.; Giovannucci, A.; and Jennings,
N. R. 2009. An anytime algorithm for optimal coalition struc-
ture generation. Journal of Artificial Intelligence Research
(JAIR) 34:521–567.
Sandholm, T. W.; Larson, K.; Andersson, M.; Shehory, O.; and
Tohme, F. 1999. Coalition structure generation with worst case
guarantees. Artificial Intelligence (AIJ) 111(1–2):209–238.
Shehory, O., and Kraus, S. 1998. Methods for task alloca-
tion via agent coalition formation. Artificial Intelligence (AIJ)
101(1–2):165–200.

725

