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Abstract

Categories are often organized into hierarchical taxonomies,
that is, tree structures where each node represents a labeled
category, and a node’s parent and children are, respectively,
the category’s supertype and subtypes. A natural question is
whether it is possible to reconstruct category taxonomies in
cases where we are not given explicit information about how
categories are related to each other, but only a sample of ob-
servations of the members of each category. In this paper, we
introduce a nonparametric Bayesian model of multi-level cat-
egory learning, an extension of the hierarchical Dirichlet pro-
cess (HDP) that we call the tree-HDP. We demonstrate the
ability of the tree-HDP to reconstruct simulated datasets of
artificial taxonomies, and show that it produces similar per-
formance to human learners on a taxonomy inference task.

Introduction

Taxonomic structures are a ubiquitous part of the way that
people think about the world, appearing in biological phylo-
genies (Atran 1998), linguistic ontologies (Keil 1979), and
many natural kind concepts (Rosch et al. 1976). In a tax-
onomy, categories are organized into different hierarchical
levels, with the higher-level categories representing broader,
more inclusive groups of entities, and the lower-level con-
cepts representing narrower, more specific groups. When a
category is a direct descendent of another category in a tax-
onomy, most or all the members of the first are also members
of the second. For example, in our intuitive phylogenetic tree
for animals, all dogs are mammals, and all border collies are
dogs. This taxonomic structure supports efficient inferences
about the properties of entities belonging to these categories
(Collins and Quillian 1969).

The ubiquity of taxonomies raises a natural question: How
can such structures be learned? While we might get some
explicit information about the taxonomic relationships be-
tween categories, neither children nor artificial systems can
rely on such information. Consequently, in this paper we fo-
cus on the question of how taxonomies might be learned
just from labeled examples of category members. Consider
the problem faced by a learner who sees a collection of ob-
jects given the labels “animal”, “mammal”, “dog”, and “bor-
der collie”. The challenge is to induce an appropriate rep-
resentation for the categories associated with each of these
labels, supporting future generalizations, and to determine

how these categories are related to one another. For example,
our learner would need to identify categories corresponding
to “dog” and “border collie”, and learn that “border collie”
is a kind of “dog”. Since the objects can each be associ-
ated with multiple labels, and the categories are defined at
different levels of abstraction, we refer to this problem as
multi-level category learning.

The complex relationships between categories make the
problem of multi-level category learning quite different from
the standard treatment of category learning (or multi-class
classification) in cognitive science and machine learning.
Most methods for learning categories do not allow com-
plex relationships to exist between those categories. Typi-
cally, either categories are treated as independent (for exam-
ple, by learning conditional distributions over the observed
features of the objects separately for each category) or algo-
rithms consider only basic interactions between categories
(for example, discriminative methods attempt to discover the
boundaries between categories). Multi-level category learn-
ing is also different from unsupervised methods for induc-
ing hierarchies, such as hierarchical clustering (Duda, Hart,
and Stork 2000; Heller and Ghahramani 2005), structure
learning (Kemp and Tenenbaum 2009), learning ontologies
(Kemp et al. 2006), or learning hierarchies (Roy et al. 2007;
Blei, Griffiths, and Jordan 2010). These unsupervised meth-
ods find a way to organize a set of objects into a hierarchical
structure, but do so on the basis of the similarity of the ob-
jects, rather than using the category labels of those objects.

In this paper, we investigate multi-level category learn-
ing in both artificial and natural systems. First, we propose a
novel method of learning and representing categories which
are organized in taxonomic systems. Our model is a non-
parametric Bayesian statistical model which we call the tree-
HDP. We demonstrate that this model can recover simple
taxonomies from just labeled examples of category mem-
bers. We then turn to natural systems, conducting an experi-
ment studying the performance of human learners in a sim-
ilar task. A comparison of the model with the experiment
results shows that the tree-HDP is able to do just as well—
or better than—human learners.

The remainder of the paper is organized as follows. We
first present relevant background information, describing the
hierarchical Dirichlet process (HDP) and some previous re-
sults of using this model to explore aspects of human cat-
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egory learning. Next, we turn to the multi-level category
learning problem and discuss how ideas from previous work
can be extended to solve it. We define the tree-HDP, a non-
parametric Bayesian model designed to perform multi-level
category learning, and lay out an algorithm for performing
statistical inference with the model. Finally, we describe the
experiment we conducted with human learners and compare
their performance to that of the tree-HDP.

Background
The hierarchical Dirichlet process (HDP) (Teh et al. 2006),
on which the tree-HDP is based, was originally introduced
in machine learning. More recently, this model has been
used to characterize human category learning (Griffiths et al.
2007). In this section we introduce the HDP and summarize
its application to category learning.

The Hierarchical Dirichlet Process

A basic problem that arises in clustering a set of observa-
tions is determining the number of clusters to use. Recent
work in Bayesian statistics has addressed this problem by
defining the probability distribution over observations to be
a nonparametric mixture model (Neal 1998). These models
are based on the Dirichlet process, a stochastic process that
defines a distribution on discrete measures. We can describe
a discrete measure G in terms of a (possibly infinite) set of
atoms θk and weights βk, with G =

∑
k βkθk. In a Dirichlet

process mixture model (DPMM), the atoms are the parame-
ters of each mixture component and the weights indicate the
probability of observations being generated from that com-
ponent. The Dirichlet process defines a distribution on θ and
β, with each θi ∼ H being drawn from a base measure H
and β∼Stick(α) being drawn from the stick-breaking pro-
cess (an infinite version of the Dirichlet distribution) with
concentration parameter α. As α gets larger, it becomes
more likely that more mixture components will be used. The
DPMM induces a posterior distribution on the number of
mixture components used to explain a set of observations.

Some intuitions for the behavior of the Dirichlet process
can be obtained by considering the distribution that it in-
duces on partitions of observations. If we integrate out the
weights β and just consider the discrete variables zi indi-
cating which component an observation is drawn from, we
obtain a simple and intuitive stochastic process. The proba-
bility distribution over the component from which the next
observation will be drawn is given by

P (zi = k) ∝
{
nk if k ≤ K

α if k = K + 1,
(1)

where K is the number of occupied clusters and nk is the
number of observations assigned to cluster k. This stochastic
process is known as the Chinese restaurant process (CRP),
based on a metaphor in which clusters correspond to tables
in a restaurant, and observations are customers who take
seats at different tables (Aldous 1985). The CRP represen-
tation is useful when performing inference in the DPMM,
playing a key role in Markov chain Monte Carlo (MCMC)
algorithms that are used to sample from the posterior distri-
bution over partitions of the observations (Neal 1998).

The hierarchical Dirichlet process (HDP) extends this ap-
proach to allow the same clusters to be used in multiple
probability distributions. The basic idea is to model each
probability distribution as a DPMM, but to assume that those
Dirichlet processes share another Dirichlet process as their
base measure. This guarantees that some of the parameters
for the mixture components will be shared across distribu-
tions, making it possible to capture shared statistical struc-
ture. The concentration parameter of the higher-level, shared
Dirichlet process determines the extent to which compo-
nents are likely to be shared across distributions. The HDP
has been used to develop nonparametric models that go be-
yond simple clustering, making it possible to infer the num-
ber of topics in a topic model or the number of states in a
hidden Markov model (Teh et al. 2006).

Modeling Human Category Learning

A substantial literature in cognitive psychology has explored
models of human categorization. Influential models include
prototype models, which represent a category by a single
central member (Reed 1972), and exemplar models, which
store in memory all objects and labels in order to predict the
category membership of new objects (Medin and Schaffer
1978; Nosofsky 1986). More recently, researchers have be-
gun to explore representations that are intermediate between
these extremes, where each category is represented by a few
clusters of objects rather than all exemplars (Love, Medin,
and Gureckis 2004; Vanpaemel and Storms 2008). These
models have been evaluated through experiments in which
people learn a small number of independent categories from
labeled examples and then form generalizations about the
category membership of new objects.

The literature on human category learning can be linked
with the work in machine learning summarized above by ob-
serving that many existing models can be expressed in terms
of probability density estimation (Ashby and Alfonso-Reese
1995). Prototype models can be shown to be equivalent to
parametric density estimation methods, exemplar models are
closely related to kernel density estimation, and intermedi-
ate representations are similar to mixture models (Rosseel
2002). This connection means that nonparametric models
based on the Dirichlet process may also be relevant to as-
pects of human category learning. Indeed, a model equiva-
lent to the DPMM was suggested by Anderson (1991), and
has recently been explored in more detail (Sanborn, Grif-
fiths, and Navarro 2006; Zhu et al. 2010).

The HDP also has interesting links to human category
learning, having been suggested as a general framework that
subsumes these different approaches (Griffiths et al. 2007).
In this framework, each category is represented by a DPMM,
and the common base measure provides a way to share mix-
ture components across categories. This approach provides
a way to extend existing models to incorporate more com-
plex relationships between categories. Sharing components
between categories, rather than treating categories as inde-
pendent, supports a form of transfer learning in which peo-
ple can generalize knowledge formed by learning one cate-
gory to another category. Recent work suggests that a simi-
lar kind of transfer learning can be seen when people learn
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a set of related categories (Canini, Shashkov, and Griffiths
2010). This ability to share components across distributions
is the key to being able to solve the problem of multi-level
category learning, which is our focus in the rest of the paper.

Multi-Level Categories and the Tree-HDP

The multi-level category learning problem reduces to being
provided with a set of observations drawn from different cat-
egories, together with the information that these categories
form a taxonomy, and estimating the probability distribution
associated with each category and the structure of the tax-
onomy. In this section, we introduce the tree-HDP model,
describe an efficient inference algorithm, and demonstrate
that it can be used to solve this problem.

The Tree-HDP Model

The tree-HDP is a generalization of the HDP, described
above. In the typical formulation of the HDP, the latent struc-
ture Gj of each category j is a draw from a Dirichlet pro-
cess (DP) with a base measure G0 that is shared between
all the categories. In turn, G0 is a draw from a higher-level
DP with base measure H , a hyperparameter chosen by the
modeler. Although the HDP is typically used to model col-
lections of categories arranged in a flat hierarchy, the same
statistical definitions can be recursively applied to multiple
levels of hierarchy. That is, instead of all the categories in-
heriting from G0, some of them can inherit from others.

In practice, each draw from a DP yields a refinement
or specialization of its base measure. In the flat HDP, this
means that each category is a specialization of the global
base measure H , which is typically chosen to give broad,
flat coverage over a wide range of parameters. Although the
categories will exhibit random fluctuations in their degree
of specialization, the use of a flat hierarchy means that each
one is, a priori, at the same level of refinement. By contrast,
if we push some of the categories down into deeper levels
of the tree, they become specializations of their respective
parent categories. This is the mechanism that the tree-HDP
uses to model taxonomy systems. Intuitively, the tree struc-
ture of the HDP is intended to mirror the true hierarchical
relationships between the categories.

Formally, we relax the assumption that the random mea-
sures Gj are drawn from a Dirichlet process with a common
base measure G0. Instead, we allow the categories to form
any valid tree structure with G0 as the root. We introduce a
new set of random variables τ = {τ1, . . . , τJ} to describe
the tree structure, with τj denoting the index of category j’s
parent. If Gj is a child of G0, then τj = 0, and if it is a child
of some other category Gj′ , then τj = j′. We restrict τ to
form a valid tree structure, i.e., cycles are not allowed.

To specify the full Bayesian probability model of the tree-
HDP, it is necessary to choose a prior distribution for the ran-
dom variables τ . Since the number of nodes is fixed, there
are only a finite number of possible tree structures. Any dis-
crete distribution over these tree structures is valid; in this
paper, we use a uniform distribution over all trees in order
to simplify the inference and reveal the model’s underlying
strengths and weaknesses. By performing Bayesian infer-

ence on the τ variables along with the other hidden parame-
ters of the HDP, we can infer the posterior distribution over
taxonomy structures for any set of observed data.

The tree-HDP takes a different strategy than previous
work for combining hierarchical structure with nonparamet-
ric Bayesian models, such as the nested CRP (Blei, Grif-
fiths, and Jordan 2010). In the nested CRP, objects are asso-
ciated with paths in an infinitely deep, infinitely wide tree,
and overlapping paths represent similarities between objects
at multiple levels of abstraction. In contrast, in the tree-HDP,
objects are associated with nodes in a finite tree, and edges
represent subset relations between categories. This latter
strategy is what makes the tree-HDP natural for modeling
multi-level category learning, where an object can have high
probability under distributions at multiple levels of the tree.

Inference in the Tree-HDP

We now give a brief review of the inference procedure de-
scribed by Teh et al. (2006) for the flat HDP and describe the
steps necessary to extend the algorithm for the tree-HDP. Let
zji denote the mixture component associated with xji, the
ith observation from category j. Let mjk denote the num-
ber of tables in category j assigned to mixture component
k. The weight of mixture component k is denoted by β0k in
the global measure G0 and by βjk in the measure Gj of cat-
egory j. Note that this differs from the notation of Teh et al.
(2006), where the global component weights are called βk

and the category-specific weights are called πjk. The index
of the parent of category j is given by τj . We relax the as-
sumption that all the categories share a common concentra-
tion parameter α0; instead, the concentration parameter for
category j is denoted αj , and the concentration parameter
for the global measure G0 is denoted α0 instead of γ.

We use the “posterior sampling by direct assignment”
method of Gibbs sampling inference, described in Section
5.3 of Teh et al. (2006). In this method, MCMC inference is
performed over the variables z = {zji}, m = {mjk}, and
β0 = {β0k}. In the flat HDP, the βjk variables can be inte-
grated out because the categories always occupy the leaves
of the tree. However, in the tree-HDP, because categories can
have other categories as children, the βj variables must be
explicitly represented and sampled in the MCMC algorithm.

For notational convenience, we also define the following
variables. Let njk denote the number of observations from
category j assigned to mixture component k. Let vjk =∑

j′:τj′=j mj′k denote the number of tables among the chil-
dren of category j that are assigned to mixture component
k. Each such table constitutes a “virtual” observation from
mixture component k in category j, and these counts are
necessary for computing many of the quantities used in the
inference algorithm. These counts do not appear in the stan-
dard HDP formulation because categories don’t have other
categories as children, making vjk = 0 for all categories.

The Gibbs sampling equations are as follows (Teh et al.
2006). The value of P (zji = k|z−ji,m,β, τ ) is{

(n−ji
jk + vjk + αjβτjk)f

−xji

k (xji) for old k,
αjβτjuf

−xji

knew (xji) for k=knew.
(2)
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Figure 1: Tree structures used to create the simulated data.

The expression for P (mjk=m|z,m−jk,β, τ ) is
Γ(αjβτjk

)

Γ(αjβτjk
+njk+vjk)

s(njk + vjk,m)(αjβτjk)
m, (3)

where s(n,m) are unsigned Stirling numbers of the first
kind. For β0 and βj , we have

(β01. . .β0K , β0u)|z,m,β−0, τ ∼ Dir(v01. . .v0K , α0) (4)

(βj1. . .βjK , βju)|z,m,β−j, τ ∼ Dir(pj1. . .pjK , αjβτju)

where Dir is the Dirichlet distribution and pjk is notational
shorthand for njk + vjk + αjβτjk. Finally, for sampling the
new τ variables, we have

P (τj= t|z,m,β, τ−j) (5)

∝ P (τj= t|τ−j)P (z,m,β|τj= t, τ−j).

Because we use a uniform prior, we have P (τj = t|τ−j) ∝
1, so
P (τj= t|z,m,β, τ−j) ∝ P (z,m,β|τj= t, τ−j) (6)
= P (β0·)

∏
j P (βj·|βτ j ·)P (zj·|βτj ·)P (mj·|βτj ·, zj·)

Now we break down each term in this product:
βj·|βτ j ·∼ Dir(αjβτj1, . . . , αjβτjK , αjβτju),

P (zj·|βτj ·) =
∏

k

Γ(njk+αjβτjk
)

Γ(αjβτjk
) , (7)

P (mj·|βτj ·, zj·) =
∏

k

Γ(αjβτjk
)s(njk,mjk)(αjβτjk

)mjk

Γ(αjβτjk
+njk)

.

Combining these terms and dropping out the terms that don’t
depend on t, we have

P (τj= t|z,m,β, τ−j) (8)
∝ P (βj·|βt·)P (zj·|βt·)P (mj·|βt·, zj·)

∝ (βju)
αjβtu

∏
k(βjk)

αjβtk(αjβtk)
mjk .

Since τj can only take on a finite number of values, we can
compute the normalization factor by summing over t.

Evaluation on Recovering Taxonomies

To verify the ability of the tree-HDP to reconstruct tax-
onomies, we used it to infer some small taxonomies with
simulated data. We built four different hierarchies of four
categories each (see Figure 1) and used the HDP generative
model conditioned on these taxonomy structures to sample
1000 observations from each category. Each category was
modeled as mixture of Gaussian distributions with two in-
dependent dimensions. To make inference more tractable,
we used a conjugate base measure (Normal-scaled inverse
gamma) on each dimension, which had hyperparameters of
λ=0, ν=0.01, α=3, and β=1. λ and ν control the prior
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Figure 2: Inference results for the tree-HDP model on the
simulated datasets. Curves show the proportion of MCMC
samples which perfectly reconstruct the correct tree. The
four tree structures are depicted in Figure 1.

distribution over the mixture components’ locations, while
α and β control the prior distribution over the mixture com-
ponents’ variance parameters. The Dirichlet process concen-
tration parameter αj was set to 10 for every category.

For each of the four taxonomies, we ran the tree-HDP in-
ference algorithm on the generated data, where the number
of observations given to the model ranged from 10 to 1000.
The base measure hyperparameters were matched to those
used to generate the data. The Gibbs sampling procedure
was run for 51,000 iterations in total, with samples being
taken every 10 iterations after a burn-in period of 1000 iter-
ations. The tree structure was initialized to a flat hierarchy
(all τj variables set to 0), and sampling of the τj variables
was not performed until halfway through the burn-in period
to allow the model to find good clusterings of the observa-
tions before constraining the probabilities of the clusterings
by committing to a deep tree structure.

The results of the inference are summarized in Figure 2.
The model’s performance was similar for all four trees. The
proportion of samples which perfectly reconstructed the cor-
rect tree rose from less than 20% with 10 observations per
category, to close to 100% with 400 observations per cat-
egory. These results show that for these data, the method
is consistent: with enough observations, it converges to the
correct hidden taxonomy structure.

Experiment with Human Learners

In the previous section, we evaluated the performance of the
tree-HDP on simulated data. Since we know that people are
good at solving this problem, we were interested in com-
paring the model’s performance to that of human learners.
We conducted an experiment where the model and human
learners performed a multi-level category learning task.

Method

Participants We recruited 95 participants from Amazon
Mechanical Turk who received $1.00 as compensation. In
addition, 95 undergraduate students participated for course
credit. No significant differences were found between the
two participant pools, so their data were pooled for analysis.

Stimuli We constructed an artificial taxonomy of 14 cat-
egories (see Figure 3(a), with the black arrows comprising
the edges of the hierarchy). The categories were composed
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of a total of 8 clusters of visual stimuli from (Sanborn, Grif-
fiths, and Shiffrin 2010). The appearance of each stimulus
is controlled by six continuous-valued parameters, and each
cluster was defined by a multivariate Gaussian distribution
over the values of these six parameters. Each of the eight
categories at the leaves of the trees contained observations
from only a single cluster; each of the four categories in the
middle level contained observations from the two clusters
of its descendants, and each of the two top-level categories
contained observations from the four clusters below it.

Procedure Participants were first shown four examples of
each category, for a total of 56 observations. Within each
category, the examples were equally distributed among the
category’s clusters. An example of one round of training ob-
servations is shown in Figure 3(a). These observations were
grouped on the computer screen according to their category
labels, and they remained on-screen for the duration of the
experiment. After the 56 observations were presented, the
participants completed a test in which 28 stimuli were pre-
sented along with an attached category label. The partici-
pants were asked whether or not each category label was
correct, and their responses were recorded. If they answered
at least 26 of these trials correctly, they proceeded to the fi-
nal test session; otherwise they repeated another round of
observations and another 28-trial test session. Once the par-
ticipants reached the performance criterion, they were asked
to reconstruct the taxonomy corresponding to the categories
they had just learned. They accomplished this by arranging
14 labels on the screen which contained the names of the cat-
egories, and then drawing arrows between them to indicate
the parent-child hierarchical relationships. All participants
completed this same task on a known taxonomy of fruit and
vegetable categories beforehand to confirm that they prop-
erly understood the instructions.

Results

Out of the 190 participants, 78 (41%) perfectly reconstructed
the correct tree structure. The total number of incorrect
edges among all participants was 1401, an average of 7.37
errors per subject. Figure 3(a) depicts the aggregate re-
sponses from all the subjects. Black arrows, corresponding
to edges in the correct taxonomy, were chosen 61–72% of
the time, while gray arrows were chosen 5–15% of the time.
The gray arrows are those that are not in the correct taxon-
omy but appeared with statistically significant frequency.1

These results show that human learners are able to accu-
rately reconstruct taxonomy structures from a limited num-
ber of examples. The types of errors made are very system-
atic and give insight into the mental representations that peo-
ple use to solve the problem. With one exception, all of the
incorrect edges either point in the wrong direction (towards
a category’s ancestor) or point in the right direction but skip
a level. The first type of error can be explained by peo-
ple not adequately understanding the meaning of the arrows
they were drawing; perhaps they had accidentally reversed

1p < 0.05 according to an exact binomial test with success
probability equal to the overall average frequency of edges across
all human results.
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Figure 4: Performance of the tree-HDP on the experimen-
tal data. Results are shown for five different settings of r,
the inverse temperature of the sampling distribution over
tree structures. Each curve shows the proportion of samples
which perfectly reconstruct the correct tree structure.

the meaning of parent-child relationships. The second type
of error shows that people sometimes do not classify cate-
gories at the lowest possible level, but occasionally produce
taxonomies which are “flatter” than they could be otherwise.

Modeling

We simulated the tree-HDP model on the same task that the
human learners completed. In order to explore the variability
of the model’s performance, we trained it on a range of 4–
80 observations per category. The human learners observed
5.3 examples per category, on average. As with the simu-
lated data, the model represented each category as a mix-
ture of Gaussian distributions with six independent dimen-
sions. The hyperparameters of the the conjugate base mea-
sure (again, Normal-scaled inverse gamma) were fit to the
training data, with parameters λ = 0, ν = 0.01, α = 1.6,
and β=6.3. The Dirichlet process concentration parameters
were inferred from the data separately for each category, us-
ing a Gamma(1, 0.01) prior distribution. To focus the pos-
terior more on high-probability trees, we ran versions of the
model at “temperatures” of 1/r for values of r between 1
and 20, corresponding to raising the Gibbs sampling distri-
bution for τj in the MCMC algorithm to the power of r.

The model results are shown in Figure 4. In general, more
observations per category and higher values of r both led to
better performance. The model’s performance covers a wide
range of values (4–91%) depending on these two parame-
ters. The aggregated samples from one version of the model
(with 8 observations per category and r=3) is shown in Fig-
ure 3(b). In general, the model very accurately reconstructed
the taxonomy, and interestingly, the mistakes it makes are
very similar to those of the human learners. Ignoring the
“backwards” edges produced by the human learners, there
is only a single difference in the significant mistakes made
by the model and the people: the edge from “lar” to “zim”.
The correlation between the edge frequencies in people’s re-
constructed hierarchies and the model’s samples was 0.988.

Conclusion

Learning the conceptual structures that characterize our
world requires being able to induce relationships between
categories from examples of their members. We have pre-
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Figure 3: Results for Experiment 1 for the (a) human learners, and the (b) tree-HDP model. Black arrows were chosen by a
majority of participants (or model samples), and gray arrows were chosen by a small but statistically significant number of
participants (or samples).

sented a nonparametric Bayesian model that can be used
to solve the problem of multi-level category learning and
shown that its performance is similar to that of humans. This
analysis helps explain how it is possible for learners to in-
duce taxonomies from only labeled observations, and pro-
vides a new tool for learning categories in contexts where the
assumption that categories are independent of one another is
invalid. In future work, we hope to extend this analysis to
incorporate direct statements of the relations between cate-
gories, as might be provided in verbal instruction or found
through text mining, and consider how our approach can be
extended to more complex conceptual structures.
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