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Abstract

We explore in this paper efficient algorithmic solutions to ro-
bust subspace segmentation. We propose the SSQP, namely
Subspace Segmentation via Quadratic Programming, to par-
tition data drawn from multiple subspaces into multiple clus-
ters. The basic idea of SSQP is to express each datum as
the linear combination of other data regularized by an overall
term targeting zero reconstruction coefficients over vectors
from different subspaces. The derived coefficient matrix by
solving a quadratic programming problem is taken as an affin-
ity matrix, upon which spectral clustering is applied to obtain
the ultimate segmentation result. Similar to sparse subspace
clustering (SCC) and low-rank representation (LRR), SSQP
is robust to data noises as validated by experiments on toy
data. Experiments on Hopkins 155 database show that SSQP
can achieve competitive accuracy as SCC and LRR in seg-
menting affine subspaces, while experimental results on the
Extended Yale Face Database B demonstrate SSQP’s superi-
ority over SCC and LRR. Beyond segmentation accuracy, all
experiments show that SSQP is much faster than both SSC
and LRR in the practice of subspace segmentation.

Introduction

Subspace segmentation is an important clustering problem
with numerous applications in machine learning and com-
puter vision literature, e.g. image compression (Hong et
al. 2006), motion segmentation (Tron and Vidal 2007;
Rao et al. 2008), and image clustering under varying illu-
minations (Ho et al. 2003). The problem is formally defined
as follows:
Definition 1. (Subspace Segmentation) Given sufficient data
X = [x1,x2, · · · ,xN ] ∈ R

D×N drawn from n (n is known
or unknown) linear subspaces S1,S2, · · · ,Sn ⊂ R

D of ar-
bitrary dimensions, the task is to segment the data according
to the underlying subspaces they are drawn from.

Prior work

Subspace segmentation problem has been widely studied
and many algorithms have been proposed in the past two
decades. These algorithms can be roughly divided into five
categories: matrix factorization based methods, algebraic
methods, iterative methods, statistical methods, and spectral
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clustering based methods. We give a brief review of these
categories of methods in this subsection. For more complete
descriptions, we refer the readers to a recent survey (Vidal
2010) and the references therein.

Matrix factorization based methods (Boult and Brown
1991; Costeira and Kanade 1998) factorize the data matrix
as the product of an orthogonal bases matrix and another low
rank representation matrix. These methods seek to reveal
the clusters from the structure of the factorization results,
and work well if the subspaces are linearly independent and
the data are noise free. These methods are however not ro-
bust to noises and outliers, and easy to fail if the independent
subspace assumption is violated.

Generalized PCA (GPCA) (Vidal, Ma, and Sastry 2005)
is a popular algebraic method for modeling and segmenting
mixed data using a collection of subspaces. GPCA is mo-
tivated by the fact that one can fit a union of n subspaces
with a set of polynomials of degree n, whose derivatives at
a point x give a vector normal to the subspace containing
point x. Thus the subspace segmentation is equivalent to
fitting the data with polynomials and feature clustering via
polynomial differentiation (Vidal and Hartley 2004). How-
ever, this method is also sensitive to noises and outliers, and
its practical performance is often not satisfactory.

Iterative methods, such as K-subspace clustering (Ho et
al. 2003; Agarwal and Mustafa 2004), iteratively assign data
to the nearest subspaces followed by updating the subspaces.
The advantages of K-subspace lie in its simplicity and finite
termination. The disadvantages are that the algorithmic con-
vergence is local and these methods are sensitive to outliers.

Random Sample Consensus (RANSAC) (Fischler and
Bolles 1981) and Agglomerative Lossy Compression (ALC)
(Ma et al. 2007) are two statistical approaches by making
explicit assumptions on the distribution of the data. Both
of them can handle noises and outliers, and they need not
to know the number of subspaces beforehand. However, for
both RANSAC and ALC, determining the number of sub-
spaces depends on one parameter, which needs to be care-
fully tuned for obtaining an right subspace number. Another
major disadvantage of RANSAC is that the dimensions of
the subspaces must be equal, which limits the application of
RANSAC to some extent. The most critical problem with
ALC is the lack of theoretic guarantee for the optimality of
the agglomerative procedure.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

519



SSC and LRR Sparse subspace clustering (SSC) (El-
hamifar and Vidal 2009) and low-rank representation
(LRR) (Liu, Lin, and Yu 2010) are two spectral clustering
based methods, and they are the most effective approaches
to subspace segmentation so far (Liu, Lin, and Yu 2010;
Vidal 2010). LRR may achieve even better performance
than SSC in presence of heavy noises.

The motivations of these two methods are similar: they
express each datum xi ∈ Sα as the linear combination of all
other data xi =

∑
j �=i zijxj , and implicitly enforce those

coefficients zij to be zero for all xj �∈ Sα under certain as-
sumptions. That is to learn a coefficient matrix Z ∈ R

N×N

such that zij = 0 if xi and xj belong to different subspaces.
Both SSC and LRR solve the subspace segmentation prob-
lem by optimizing certain convex criteria to learn such a co-
efficient matrix Z. Formally, SSC solves Problem (1),

minZ ‖XZ−X‖2F + λ‖Z‖1
s.t. diag(Z) = 0 ,

(1)

and LRR solves Problem (2),
minZ ‖XZ−X‖1 + λ‖Z‖∗, (2)

where ‖X‖F =
√∑

i

∑
j x

2
ij is the Frobenius norm of X ,

‖X‖1 =
∑

i

∑
j |xij | denotes �1-norm, diag(Z) is the di-

agonal vector of matrix Z, and the nuclear norm ‖X‖∗ is
defined to be the sum of all singular values of X.

SSC and LRR are characterized as two-step algorithms.
In the first step, they both obtain the coefficient matrix Z
via convex optimization. The difference between these two
methods lies in the regularization on Z: SSC enforces Z to
be sparse by imposing an �1-norm regularization on Z, while
LRR encourages Z to be of low-rank by the nuclear norm
regularization. The second step is generally to take the ma-
trix |Z+ZT |/2, which is symmetric and entrywise nonneg-
ative, as the affinity matrix upon which spectral clustering is
applied to get the ultimate segmentation results. Both SSC
and LRR are robust against considerable noises and outliers.

Despite the good performance and robustness, SSC and
LRR both suffer from heavy computational burdens when
calculating Z. In the optimization step, SSC solves the con-
strained lasso regression problem, which is non-smooth and
demands much more computational cost each iteration than
general smooth problems. The LRR solves an even more
complicated convex optimization problem of minimizing a
weighted sum of nuclear norm and �1-norm (or �2,1-norm).
Though the augmented lagrange multiplier method (ALM)
(Lin et al. 2009) is an efficient approach to solve this kind of
problems, LRR still requires one singular value decomposi-
tion operation each iteration and often iterates hundreds of
times before convergence. When applied to large scale prob-
lems, optimizing Problem (1) and Problem (2) is quite time
consuming. For this reason, we seek to propose a new solu-
tion which is computationally cheap while its performance
is competitive with SSC and LRR.

Our contributions

In this paper, we propose a novel subspace segmentation
method, Subspace Segmentation via Quadratic Program-
ming (SSQP), which is efficient while only requires to solve

a convex quadratic programming problem for optimization.
In analog to SSC and LRR, our motivation is to find an opti-
mization formulation for learning an affinity matrix Z such
that zij = 0 if xi and xj lie in different subspaces. With
the affinity matrix Z learned, spectral clustering can be em-
ployed to segment the data into clusters targeting the consis-
tency with the underlying subspaces they are drawn from.

The major contribution of SSQP is the new regulariza-
tion item ‖ZTZ‖1. Such a regularizer can be theoretically
proven to enforce Z to have diagonal structure under cer-
tain assumptions, as will described shortly in Theorem 2.
Different from SSC and LRR that require time consuming
sparse or low rank optimization techniques, SSQP solves a
quadratic program with box constraints, for which several
off-the-shelf scalable solvers are publicly available.

We compare SSQP with SSC and LRR in both segmenta-
tion error rate and computation time. Experiments on Hop-
kins 155 Database (Tron and Vidal 2007) and the Extended
Yale Face Database B (Georghiades, Belhumeur, and Krieg-
man 2001) show that SSQP method can achieve competi-
tive segmentation accuracy as SSC and LRR, while SSQP is
much more efficient in computation than SSC and LRR.

Subspace Segmentation via Quadratic

Programming

In this section, we first formally describe SSQP as a
quadratic program whose solution Z∗ can be further used
as the affinity matrix for spectral clustering. Then we prove
that Z∗ is a product of a block diagonal matrix and a permu-
tation matrix if the subspaces are orthogonal or the weight-
ing parameter λ is large enough. We then present a proce-
dure for solving this quadratic programming problem.

Quadratic programming formulation

The basic idea of SSQP is to express each datum xi ∈ Sα

as the linear combination xi =
∑

j �=i zijxj along with an
overall regularization term on Z to enforce the coefficients
of vectors xj �∈ Sα to be zero under certain assumptions.
To take the possible noises into consideration, we express X
to be X = XZ + Y, where Y is the noise term. We take
the Frobenius norm on Y as the loss function to penalize
misfit and use ‖ZTZ‖1 to enforce the block diagonal struc-
ture of Z∗. The final formulation is given by the following
constrained optimization problem:

minZ f(Z) = ‖XZ−X‖2F + λ‖ZTZ‖1
s.t. Z ≥ 0;

diag(Z) = 0 .
(3)

Note that ‖ZTZ‖1 is equivalent to eTZTZe, where e is
an all-one vector. Thus Problem (3) is a linear constrained
quadratic programming, which can be solved by several off-
the-shelf solvers efficiently.

We now give some justifications on the regularization and
constraints on Z. First, as shown later in Theorem 2, the
regularization term ‖ZTZ‖1 with Z being nonnegative can
enforce zij to be zero if xi and xj lie in different subspaces.

Secondly, minimizing ‖ZTZ‖1 may potentially enforce
the sparsity of Z∗ . Since Z is nonnegative, ‖ZTZ‖1 =
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∑
i,j z

T
i zj , minimizing which encourages zi and zj to be

both sparse such that the inner product of zi and zj tends
to be zero. Though there is currently no theoretic proof that
the regularization ‖ZTZ‖1 can guarantee the sparsity of the
solution Z∗, our off-line experiments empirically show that
Z∗ is very sparse (even “sparser” than the solution of SSC).

Finally, the nonnegativity of the coefficient matrix Z pro-
vides better interpretations for the consequent clustering
process. The nonnegative constraint requires the data to be
the nonnegative linear combination of other data, which de-
picts a “positive” correlation between any two data vectors.
It is thereby more interpretable when applied to problems
such as face clustering where two faces are clustered into the
same group only if the two faces are positively correlated.

Block diagonal property

The following theorem indicates the block diagonal struc-
ture of the solution to Problem (3) under the orthogonal lin-
ear subspaces assumption. We will also show that without
the orthogonal subspace assumption, the solution may still
enjoys the block diagonal property when λ is large enough.
Theorem 2. Let X ∈ R

D×N be a matrix whose columns
are drawn from a union of n orthogonal linear subspaces
{S1,S2, · · · Sn}. Let Γ be a permutation matrix such that
X̃ = XΓ = [X̃1, X̃2, · · · , X̃n], where X̃i is an D × Ni

matrix whose columns lie in the same subspace Si, and N1+
· · ·+Nn = N . The solution to the optimization Problem (3)
satisfies the property that Γ−1Z∗Γ is block diagonal

Z̃∗ = Γ−1Z∗Γ =

⎛
⎜⎜⎜⎝

Z̃∗
1 0

Z̃∗
2

. . .
0 Z̃∗

n

⎞
⎟⎟⎟⎠

N×N

where submatrix Z̃∗
i ∈ R

Ni×Ni .

Proof. Let Z̃ = Γ−1ZΓ. From the properties of permuta-
tion matrices, we have Γ−1 = ΓT and Γe = e, thus

f(Z) = ‖XZ−X‖2F + λeTZTZe

= ‖X̃Z̃− X̃‖2F + λeT Z̃T Z̃e .
(4)

Hence if we take X̃ as the the data matrix instead of X, then
the solution to Problem (3) is Z̃∗.

Therefore we assume, without loss of generality,
the columns of X are in general position: X =
[X1,X2, · · · ,Xn], where all the columns of submatrix Xα

lie in the same subspace Sα.
Assume Z∗ is the optimal solution, and we decompose Z∗

to be the sum of two matrices
Z∗ = ZD + ZC

=

⎛
⎜⎜⎝

Z∗
11 0

Z∗
22

. . .
0 Z∗

nn

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 Z∗
12 · · · Z∗

1n
Z∗

21 0 · · · Z∗
2n

...
...

Z∗
n1 Z∗

n2 · · · 0

⎞
⎟⎟⎠

(5)

where Z∗
i,j ∈ R

Ni×Nj . Note that both ZD and ZC are non-
negative.

According to the decomposition of Z∗, any column of Z∗
can be written as z∗i = zDi + zCi , with zDi and zCi supported
on disjointed subset of indices. We can write ‖XZ∗ −X‖2F
as

‖XZ∗ −X‖2F
=

∑N
i=1 ‖Xz∗i − xi‖22

=
∑N

i=1 ‖XzDi − xi +XzCi ‖22
=

∑N
i=1 ‖XzDi − xi‖22 +

∑N
i=1 ‖X zCi ‖22

+ 2
∑N

i=1 cos θi · ‖XzDi − xi‖2 · ‖XzCi ‖2

(6)

where θi is the angle between vector XzDi − xi and XzCi .
Since the matrix X = [X1, · · ·Xn] is well arranged, any

column xi ∈ Xα and xj ∈ Xβ lie in different subspaces if
α �= β. Let xi ∈ Sα, according to the definition of zDi and
zCi , we have XzDi ∈ Sα and XzCi �∈ Sα. Based on the or-
thogonal subspace assumption, we have (XzDi − xi)⊥XzCi
and θi = π/2, thus

‖XZ∗ −X‖2F = ‖XZD −X‖2F + ‖XZC‖2F
≥ ‖XZD −X‖2F .

(7)

Based on the nonnegativity of Z∗, ZC , and ZD, we have

‖Z∗TZ∗‖1 =
∑

i,j |z∗i T z∗j | =
∑

i,j z
∗
i
T z∗j

=
∑

i,j (z
D
i + zCi )

T
(zDj + zCj )

≥ ∑
i,j z

D
i

T
zDj +

∑
i,j z

C
i
T
zCj

= ‖ZDT
ZD‖1 + ‖ZCT

ZC‖1
≥ ‖ZDT

ZD‖1 .

(8)

From inequalities (7) and (8) we have f(Z∗) ≥ f(ZD).
Because Z∗ is the optimal, we have f(Z∗) = f(ZD) and
ZC = 0, thus Z∗ = ZD. Hence the optimal solution to
Problem (3) is block diagonal and Theorem 2 holds.

Though Theorem 2 guarantees the block diagonal struc-
ture of the solution to Problem (3), its orthogonal subspace
assumption is often too strong to be satisfied in practice. On
the other hand, without the orthogonal subspace assumption,
we may still claim that: when the weighting parameter λ
in the objective function is large enough, the optimal solu-
tion to Problem (3) may also possibly be block diagonal.
From (6) and (8), the objective function f(Z∗) ≥ f(ZD) +

λ‖ZCT
ZC‖1 + ‖XZC‖2F +2

∑N
i=1(cos θi · ‖XzDi −xi‖2 ·

‖XzCi ‖2). If λ is large enough such that λ‖ZCT
ZC‖1 +

‖XZC‖2F − 2
∑N

i=1(| cos θi| · ‖XzDi −xi‖2 · ‖XzCi ‖2) = 0
(or ≥ 0) holds, then we could come to the conclusion that
Z∗ must be block diagonal.

It is known that SSC and LRR work under the assump-
tion that the linear subspaces are independent. Our SSQP
method makes stronger assumption that the subspaces are
orthogonal or λ in Problem (3) is large enough. However,
the experiment results on toy data show that SSQP also per-
forms well when subspaces are simply independent and λ
is properly set. Furthermore, all these three methods show
reasonably good performances in practical problems where
independent subspace assumption is possibly violated.
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Algorithm 1 Spectral Projected Gradient Method
Input: data matrix X, parameter λ,
Output: Z.
Z ← Z0 (initial guess of Z),
σ ← 1,
repeat
D ← PC(Z− σ∇f(Z))− Z,
Compute the step length ρ using line search,
Znew ← Z+ ρD,
s ← vec(Znew − Z),
y ← vec(∇f(Znew)−∇f(Z)),
σ ← yTy/sTy,

until converged

Optimization

SSQP need to solve a convex quadratic programming prob-
lem with box constraints, which can be effectively solved
by many existing solvers. The gradient projection methods
are simple but efficient, and they are most efficient when the
constraints are simple in form especially when there are only
bounds on variables – that coincides with the formulation of
Problem (3).

We choose to use Spectral Project Gradient method
(SPG) (Birgin, Martı́nez, and Raydan 1999), as shown in Al-
gorithm 1, for its simplicity and efficiency. To apply SPG,
we need to calculate the gradient of objective function and
the projection operator.

Gradient of objective function. Let E be an all-one ma-
trix. Because Z is element-wise nonnegative, the objective
function can be re-expressed as the following smooth func-
tion

f(Z) = ‖XZ−X‖2F + λ‖ZTZ‖1
= tr[(XZ−X)T (XZ−X)] + λeTZTZe
= tr(ZTXTXZ)− 2tr(XTXZ)

+tr(XTX) + λtr(ZTZE).
(9)

The gradient of the objective function is then given by

∇Zf(Z) = 2XTXZ− 2XTX+ 2λZE. (10)

Projection onto the feasible set. Let C = {Z ∈
R

N×N | zii = 0 and zij ≥ 0 ∀ i, j} be the feasible set.
We define the projection operator PC : RN×N �→ C as:

[PC(Z)]ij =
{

zij if i �= j and zij ≥ 0;
0 if i = j or zij < 0 . (11)

It’s easy to prove that PC(Z) = argminY∈C‖Z−Y‖F .
Implementation details. Several criteria can be used to

examine the convergence, e.g. ‖Znew − Z‖2F < τ1 or σ <
τ2, where τ1 and τ2 are pre-defined convergence tolerance.
Empirically speaking, the convergence tolerance τ and the
weighting parameter λ should be set small if the data are
“clean” and they should be relatively large if the data are
contaminated with heavy data noises.

Algorithm 2 Subspace Segmentation via Quadratic Pro-
gramming (SSQP)

Input: data matrix X.
Output: segmentation result.

1. Call Algorithm 1 to solve Problem (3), return Z,
2. Adjacency matrix: W ← (Z+ ZT )/2,
3. Compute graph Laplacian matrix L using W,
4. Segmentation result ← SpectralClustering(L).

Solving the subspace segmentation problem

Theorem 2 guarantees that under the orthogonal subspace
assumption or λ is large enough, it is enforced to have that
z∗ij = 0 if xi and xj are from two different subspaces. With
the affinity matrix Z∗ learned, the ultimate segmentation re-
sults can be obtained by applying spectral clustering on Z∗.
The entire procedure of SSQP is depicted in Algorithm 2.

Experiments

In this section, we carry out three sets of experiments to eval-
uate the performance of SSQP in comparison with SSC and
LRR. The source codes of SSC1 and LRR2 are released by
(Elhamifar and Vidal 2009) and (Liu, Lin, and Yu 2010) re-
spectively.

We first generate some toy data to evaluate the algorith-
mic robustness to data noises. Then we apply SSQP for mo-
tion segmentation and face clustering under varying illumi-
nations. All experiments were performed on a PC with a
quad-core 2.83HZ CPU and 8GB RAM.

Toy data

We construct three independent but not orthogonal linear
subspaces {Sk}3k=1 ⊆ R

200, and randomly sample 200
data vectors from each subspace. The bases of each sub-
space are computed by U(k+1) = TU(k), 1 ≤ k ≤ 2,
where T ∈ R

200×200 is a random rotational matrix and
U(k) ∈ R

200×5 is random matrix with orthogonal columns.
The data matrix X = [X1, X2, X3] is randomly sam-
pled from the three subspaces by Xk = U(k)Q(k), where
Q(k) ∈ R

5×200 is a random matrix with entries uniformly
distributed q

(k)
ij ∼ U(0, 1). We add Gaussian noise of

N (0, 0.3) to a fraction of the entries of matrix X.
Then we use the data matrices to compare the perfor-

mances of SSQP with LRR and SSC. We run each algorithm
10 times and record the average accuracies. All parameters
are set best. The segmentation accuracies are shown in Fig-
ure 1 and the time elapsed is shown in Table 1.

The results show that all the three methods are robust to
data noises. On segmentation accuracy, as can be seen from
Figure 1 that SSQP and LRR are comparable, both better
than SSC. On computational time, SSQP is considerably
faster than LRR and SSC, as shown in Table 1. And this
experiment empirically shows that SSQP converges faster in
presence of data noises.

1http://www.vision.jhu.edu/code
2http://apex.sjtu.edu.cn/apex wiki/gcliu
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Table 1: Comparison of average elapsed time (seconds) on
toy data experiment. The data matrices are noise free, 50%
entries with noises and 100% with noises, respectively.

Method SSC LRR SSQP
noise-free 884.1 426.3 36.2
50% noises 1114.6 362.8 4.1
100% noises 1169.6 359.0 3.4
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Figure 1: Error rate (%) in presence of noise on the toy data
experiment.

Motion segmentation

We also apply SSQP to motion segmentation problem and
evaluate its performance on the Hopkins 155 database3

(Tron and Vidal 2007). We only compare our result with
SSC and LRR, which are reported as the state-of-the-art
by (Vidal 2010; Liu, Lin, and Yu 2010). For those results
by GPCA, RANSAC, ALC and others, please refer to (Vi-
dal 2010).

For the SSQP method, we project the data onto 8-
dimension and 12-dimension subspaces by the principal
component analysis (PCA), then perform Algorithms 1 to
learn the coefficient matrix Z∗ (the parameter is fixed for
all sequences). Then we use (Z∗ + (Z∗)T )/2 as the affin-
ity matrix and perform spectral clustering. We compare the
clustering results with SSC (preprocessed by random pro-
jection) and LRR (without projection, which lead to better
results because LRR is an implicit dimension reduction pro-
cedure). The results are listed in Table 2.

The Hopkins155 data are nearly noise-free, therefore
SSC, LRR, and SSQP all achieve quite good perfor-
mance. Note that here we apply different data preprocessing
schemes to make sure that each individual method works
best on this data set.

We also compare the elapsed time of different methods.
For all of the three methods, data vectors are projected onto
12-dimension subspaces by PCA. SSQP takes 4627 seconds
to go through all the 155 sequences, while the computational
time is 13661 seconds for SSC and 14613 seconds for LRR.

3http://www.vision.jhu.edu/data/hopkins155

Table 2: Motion segmentation error rate (%). SSC uses
Bernoulli and normal random projection, denoted as SSC-B
and SSC-N, respectively. LRR does not use data projection.
SSQP uses PCA to project the data onto 8-dimension and
12-dimension subspaces, denoted as PCA-8 and PCA-12.

Method SSC LRR SSQP
SSC-B SSC-N No Proj PCA-8 PCA-12

Checkboard with 2 motions: 78 sequences
Mean 0.83 1.12 1.45 0.95 0.88
Traffic with 2 motions: 31 sequences
Mean 0.23 0.02 1.57 0.14 1.66
Articulated with 2 motions: 11 sequences
Mean 1.63 0.62 1.44 2.64 7.68
Checkboard with 3 motions: 26 sequences
Mean 4.49 2.97 3.35 3.73 2.19
Traffic with 3 motions: 7 sequences
Mean 0.61 0.58 8.26 0.18 0.58
Articulated with 3 motions: 2 sequences
Mean 1.60 1.42 4.26 1.60 1.60
All 155 sequences
Mean 1.45 1.24 2.13 1.35 1.50
Median 0 0 0 0 0

Since the data is very “clean”, as aforementioned we set
SSQP’s λ = 10−5, and thus the convergence tolerance is
correspondingly very small. In this case, SSQP converges
slower, but is still much faster than SSC and LRR.

Face clustering under varying illuminations

Given p subjects, each of which is photoed under q poses and
m illumination, we need to segment the p×q×m = N pic-
tures into p× q = n clusters. Previous work shows that the
set of images of the same face in fixed pose under varying
lighting can be effectively approximated by low-rank linear
subspaces (Lee, Ho, and Kriegman 2005). Thus we can use
subspace segmentation to solve this problem.

We use the Extended Yale Face Database B (Yale
B) (Georghiades, Belhumeur, and Kriegman 2001) to eval-
uate the SSC, LRR, and SSQP methods on face clustering
under varying illuminations. For convenience, we use the
cropped images (Lee, Ho, and Kriegman 2005). The Yale B
contains 16128 images of 28 human subjects under 9 poses
and 64 illumination conditions each, thus the task is to seg-
ment the 16128 images into 28× 9 = 252 groups.

In this experiment, we use only 5 subsets of the 252
groups for convenience. Rather than choosing “good” data
set elaborately to facilitate SSQP’s high performance, we
simply use [1, 2], [1, 2, 3], · · · , [1, 2, 3, 4, 5, 6] for fair of
comparison, where each number from 1 to 6 is the index
of a group (among the 252 groups), each group contains 64
images. For computation efficiency, we resize the images to
smaller 32 × 32 images and then use PCA projection. Fol-
lowing the previous work (Lee, Ho, and Kriegman 2005),
we assume all 64 images in one group lie in a rank r sub-
space. From the linear independent assumption, we assume
different groups lie in independent subspaces. Therefore, we
project the subset [1, 2] onto 2r-dimension subspace, [1, 2, 3]
onto 3r, and so on. By searching within {1, 2, · · · , 10}, we
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Table 3: Face clustering error rates (%) and elapsed time
(seconds) on the Extended Yale Face Database B. (Note that
n denotes the number of groups in each subset).

Error Rate Time
n SSC LRR SSQP SSC LRR SSQP
2 1.56 3.12 0.78 29.0 4.6 0.1
3 1.56 10.41 2.08 57.5 9.0 0.3
4 2.73 7.81 1.95 87.0 21.3 0.6
5 2.81 10.31 2.19 116.4 36.8 0.9
6 2.86 10.16 2.86 148.7 63.9 3.1

choose to use r = 6 which is good for all of the three meth-
ods. Table 3 lists the error rates and running time of SSC,
LRR, and SSQP.

In this experiment, SSQP achieves the best performance
among the three methods, which could possibly be explained
by the nonnegativity of the coefficient matrix enforced by
SSQP. Rather than affine subspaces, all face vectors lies in
a polyhedral cone in the nonnegative orthant, thus the co-
efficients of the linear combination should be nonnegative.
SSQP addresses the face clustering problem by expressing
each face as the nonnegative linear combination of other
faces. If two faces are segmented into the same cluster,
they are positively correlated. Therefore SSQP is more in-
terpretable and effective in this dataset.

Conclusions

We propose in this paper the SSQP method to efficiently and
accurately solve the subspace segmentation problem. SSQP
is formulated as a convex quadratic program which can be
optimized with standard QP solvers, e.g., SPG used in our
implementation. Its time efficiency and robustness to noises
have been verified by extensive experiments on toy and real-
world data sets, with comparison to the state-of-the-art sub-
space segmentation methods SSC and LRR. In the setting
where the data vectors are drawn from a cone in the non-
negative orthant, such as the face clustering under varying
illuminations problem, SSQP is particularly more effective
then both SSC and LRR.
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