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Abstract

We propose a fast batch learning method for linear-
chain Conditional Random Fields (CRFs) based on
Newton-CG methods. Newton-CG methods are a vari-
ant of Newton method for high-dimensional problems.
They only require the Hessian-vector products instead
of the full Hessian matrices.
To speed up Newton-CG methods for the CRF learn-
ing, we derive a novel dynamic programming procedure
for the Hessian-vector products of the CRF objective
function. The proposed procedure can reuse the byprod-
ucts of the time-consuming gradient computation for
the Hessian-vector products to drastically reduce the to-
tal computation time of the Newton-CG methods.
In experiments with tasks in natural language pro-
cessing, the proposed method outperforms a conven-
tional quasi-Newton method. Remarkably, the proposed
method is competitive with online learning algorithms
that are fast but unstable.

Introduction

Linear-chain Conditional Random Fields (CRFs) model the
conditional probability of output sequences (Lafferty, Mc-
Callum, and Pereira 2001). They are simple but have been
applied to a variety of sequential labeling problems, includ-
ing natural language processing (Sha and Pereira 2003) and
bioinformatics (Chen, Chen, and Brent 2008). The learning
task of CRFs can be regarded as the unconstrained min-
imization of the regularized negative log-likelihood func-
tion. Since training CRF models can be computationally
intensive, we want an optimization method that converges
rapidly.

In unconstrained optimization, we minimize an objective
function f : R

d → R that depends on the d dimensional
parameter vector θ ∈ R

d, without constraints on the val-
ues of θ. Optimization algorithms generate a sequence of
iterates {θk}∞k=0. In each iteration, typical algorithms try
to move from the current point θk to a new point θk+1

along a search direction sk such that fk+1 < fk where
fk ≡ f(θk). The gradient descent direction −gk ≡ −∇θfk
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is the most obvious choice for the search direction. An-
other choice is the Newton step−(Hk)

−1gk ∈ R
d×d, where

Hk ≡ ∇2
θfk is the Hessian matrix of f . The Newton step is

the minimizer of the second order Taylor approximation of
f : f(θk + s) ≈ fk + g�

k s+
1
2s

�Hks. Optimization meth-
ods using second order information have a fast rate of local
convergence.

Since the explicit computation of the d × d Hessian ma-
trix is not practical for large d, Newton-CG methods were
developed for large problems (Nocedal and Wright 2006).
The Newton step is the solution of the Newton equation:
Hks = −gk. Newton-CG methods use a Conjugate Gra-
dient (CG) method to solve the Newton equation. Since the
CG method only requires the Hessian-vector products of the
form Hkr ∈ R

d for an arbitrary vector r ∈ R
d, Newton-CG

methods are less resource demanding. In addition, Newton-
CG methods efficiently find a sufficiently good search direc-
tion using the adaptive control of the quality of the Newton
step.

Here are the contributions of this paper. First, to the best
of our knowledge, this is the first application of Newton-CG
methods to CRF learning. Second, we have devised a proce-
dure that computes the Hessian-vector products of the CRF
objective function in polynomial time. We show that the ad-
ditional computational costs for the Hessian-vector products
are relatively small compared to the computational costs for
the gradient computations. Finally, we show that the compu-
tations for the repetitive Hessian-vector products in the CG
iterations can be reduced by reusing the marginal probabil-
ities, which are the byproducts of the costly gradient com-
putation. Since the total effort for Newton-CG methods is
dominated by the cumulative costs of the CG iterations, the
proposed method can significantly accelerate Newton-CG
methods for CRF learning.

In experiments on natural language tasks, the proposed
method outperforms a conventional quasi-Newton method.
In addition, the experimental results also show the pro-
posed method is competitive with online learning algo-
rithms whose generalization/optimization performance is
task-dependent. Online learning algorithms have been at-
tracting attention because of their capabilities to handle huge
amounts of data with acceptable accuracy (Bottou and Bous-
quet 2008). However, they have considerable disadvantages
compared to batch learning, such as the lack of stopping cri-
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teria and the tuning efforts for learning-rates. Also, batch
algorithms show more stable and task-independent perfor-
mance. Therefore, the proposed fast method will broaden
the application field for batch CRF learning.

Conditional Random Fields

We briefly review the linear-chain CRF models and their
parameter estimation problems (Lafferty, McCallum, and
Pereira 2001). Let x = (x1, · · · , xT ) ∈ X denote an ob-
served sequence of x ∈ X , y = (y1, · · · , yT ) ∈ Y denote a
label sequence of y ∈ Y , Φ(x,y) : X × Y → R

d denote
a map from a pair of x and y to an arbitrary feature vector
of d dimensions, and θ ∈ R

d denote the model parame-
ters. CRFs model the conditional probability of y given x
as Pθ(y|x) = exp

(
θ�Φ(x,y)

)
/Z where the denominator

is the normalization term: Z =
∑

y∈Y exp
(
θ�Φ(x,y)

)
.

Once θ has been estimated, the label sequence can be pre-
dicted as ŷ = argmaxy∈Y Pθ(y|x). In the sequel, the ar-
gument θ of functions is omitted unless required for clarity.

Using a training set D ≡ {(x(n),y(n))}Nn=1, the optimal
parameter is obtained as the minimizer of the regularized
negative log likelihood function:

f(θ) = −∑
(x,y)∈D

[
θ�Φ(x,y)− lnZ

]
+ ||θ||2

2σ2 ,

where the final term is a Gaussian prior with mean 0 and
variance σ2. This CRF learning is stated as an unconstrained
minimization problem for the convex non-linear function f .
The typical optimizers for CRFs use the gradient of f :

g = −∑
(x,y)∈D g(x,y) + θ

σ2 ,

where the instance-wise gradient is evaluated as

g(x,y) = Φ(x,y)− EPθ
(Φ(x,y))

with EPθ
(Φ(x,y)) =

∑
y∈Y Pθ(y|x)Φ(x,y).

Although EPθ
(Φ(x,y)) includes the sum of Y of expo-

nential size, a polynomial time algorithm, which is known as
the forward-backward algorithm, can be used for the linear-
chain CRFs. Without going into detail, the key ingredient is
the marginal probabilities of a label pair (yt−1, yt) at posi-
tion t which can be evaluated as

Pθ(yt−1=i, yt=j|x)=
exp

(
α[t− 1, i]+θ�φ(x, i, j) + β[t, j]− lnZ

)
, (1)

where we assume the feature function can be decomposed
as Φ(x,y) =

∑T+1
t=1 φ(x, yt−1, yt). Then we can eval-

uated EPθ
(Φ(x,y)) in O(T |Y |2) time when α[t, j] =

ln
∑

i∈Y exp
(
α[t− 1, i] + θ�φ(x, i, j)

)
and β[t, i] =

ln
∑

j∈Y exp
(
θ�φ(x, i, j) + β[t+ 1, j]

)
have been pre-

computed. Note that the marginal probabilities of a single
pair Pθ(yt|x) can also be evaluated in the same manner.

Newton-CG Methods

The essential idea of the Newton-CG methods is that we do
not need to compute Hessian exactly, but we only need a
good enough search direction.

The procedure of Newton-CG methods have two nested
layers of iterations: an inner conjugate gradient (CG) proce-
dure finds the Newton step, and an outer procedure modifies
the Newton step to ensure global convergence. In the sequel,
outer and inner iterates are indexed by k and �, respectively.

At each outer iteration, the CG procedure finds the ap-
proximation of the Newton step by solving the Newton equa-
tion:

Hs = −g, (2)

where we denote H ≡ Hk and g ≡ gk since the value of
θk does not change in the inner iterations. The CG method
is an iterative solver for linear systems, and generates a set
of conjugate directions {r�}d�=1, where r�� Hrh = 0 for all
� �= h. In fact, we can solve Eq. (2) in at most d steps of the
CG procedure. Since the total effort for Newton-CG meth-
ods is dominated by the cumulative sum of the CG iterations
performed, it is preferable to computing approximations to
the Newton step. The accuracy measure of the Newton step
is based on the norm of the residual p = ||Hr� + g|| of
Eq. (2). Typically, we terminate the CG iterations when
p ≤ ξk ||gk||, where the sequence {ξk|0 < ξk < 1}.

Since the objective function of CRFs is not a quadratic
form, the function value may not be guaranteed to de-
crease in each Newton step. For non-linear problems, the
line search strategy or trust-region strategy is commonly
employed in the outer iterations. In both strategies, if
limk→∞ ξk = 0, we have superlinear convergence (Nocedal
and Wright 2006). In our experiments, we used the trust-
region strategy. In addition, the stopping condition of the
outer loop is typically the magnitude of ||gk||.

The advantage of Newton-CG methods is that they adap-
tively control the accuracy of the solution without loss of
the rapid convergence properties of the Newton method. In
addition, the CG procedure only requires the Hessian-vector
products Hr for an arbitrary vector r. In the next section,
we describe an efficient algorithm for the Hr computations
of the CRF objective function.

Hessian-vector Products of CRFs

In this section, we propose a novel dynamic program-
ming (DP) procedure which can calculate the Hessian-
vector product in O(T |Y |κ+1) time and space for the κ-th
order CRFs. This procedure computes the Hessian-vector
products using the marginal probabilities computed in the
performance-critical point of the CRF gradient computa-
tions. Since, in the inner CG loop, the Hessian with a fixed
θ is iteratively multiplied by different kinds of vectors, the
proposed method accelerates the Newton-CG methods by
reusing the same marginal probabilities.

Let r be an arbitrary vector, then the product of the Hes-
sian H and r is stated as

Hr =
∑

(x,y)∈D H(x,y)r + r
σ2 ,

where the instance-wise Hessian-vector product is defined
as

H(x,y)r=
∑
y∈Y

Pθ(y|x)Φ(x,y)g(x,y)�r. (3)
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Since Eq. (3) also includes the sum of all of the possible
configurations Y of exponential size, we propose a DP pro-
cedure. In addition, instead of Φ(x,y)g(x,y)� ∈ R

d×d,
g(x,y)�r ∈ R is evaluated at first to avoid materializing
matrixes in the procedure.

Eq. (3) can be restate as a point-wise summation:

H(x,y)r =

T∑
t=1

∑
i,j∈Y

φ(x, i, j)M(t, i, j)

with a scalar valued function

M(t, i, j) =
∑

ỹ:ỹt−1=i∧ỹt=j

P(ỹ|x)g(x, ỹ)�r,

where
∑

ỹ:ỹt−1=i∧ỹt=j indicates summation over all of the
label sequences with the (t−1)-st and t-th labels fixed as i
and j, respectively. Without loss of generality, we assume
the first order Markov model. Under this assumption, the
conditional probability P(y|x) can also be decomposed into

P(y|x) = P(y1|y2,x) · · ·P(yt−2|yt−1,x)

P(yt−1, yt|x)P(yt+1|yt,x) · · ·P(yT |yT−1,x).

Note that P(S)P(S|y1,x) = 1 and P(E)P(E|yT ,x) = 1
are omitted where S and E are special label variables to
encode the start and end of a sequence, respectively. Then
we can restate M(t, i, j) in a recursive form as

M(t, i, j) = Pθ(yt−1=i, yt=j|x)[
A[t−1, i] + φ(x, i, j)�r + B[t, j]−EPθ

(Φ(x,y))
�
r
]
.

The tables A[t, j] and B[t, i] are defined as

A[t, j]=

⎧⎪⎪⎨
⎪⎪⎩

0 if t = 0

φ(x, S, j)�r else if t=1∑
i∈Y Pθ(yt−1=i|yt=j,x)(
φ(x, i, j)�r+A[t−1, i]) otherwise, and

B[t, i]=

⎧⎪⎨
⎪⎩
φ(x, i, E)�r if t=T∑

j∈Y Pθ(yt+1=j|yt=i,x)(
φ(x, i, j)�r+B[t+1, j]

)
otherwise.

When we pre-compute the entries of A for {t|0 ≤ t ≤ T}
and B for {t|1 ≤ t ≤ T + 1}, the evaluation of Eq. (3) re-
quires O(T |Y |2) time. In general, the Hessian-vector prod-
ucts require (O(T |Y |κ+1)) time and space for the κ-th order
Markov model.

The important property is that we use the marginal
probabilities Eq. (1) in the proposed procedure. The con-
ditional probabilities in the definition of A and B can
be obtained by the division of the marginal probabil-
ities: Pθ(yt−1|yt,x) = Pθ(yt−1, yt|x)/Pθ(yt|x) and
Pθ(yt+1|yt,x) = Pθ(yt, yt+1|x)/Pθ(yt|x). Note that the
proposed procedure is composed of only simple arithmetic
except for the computations of the marginal probabilities.
The performance-critical point of the CRF gradient com-
putation is O(T |Y |κ+1) exponential operations in Eq. (1),
since they are more expensive computations than simple

arithmetic operations (Chen, Chen, and Brent 2008). For ex-
ample, an exponential operation is 15 times more expensive
than simple addition on our experimental platform. Thus, the
additional costs of the Hessian-vector product computations
are relatively smaller than the cost of the gradient computa-
tions.

This property is highly effective for the repetitive compu-
tations of the Hessian-vector product Hkr� in the inner CG
loop of the Newton-CG methods. For all of the different r�,
we can share the same marginal probabilities calculated in
the evaluation of gk. The reuse of the marginal probabili-
ties can significantly reduce the computation time of the CG
loop compared to the repetition of the marginal probability
computations. Note that, since the storage for the marginal
probabilities requires Ω(NT |Y |κ+1) space where N is the
number of instances, it may not fit in physical memory for a
large data set. In such cases, we can store the marginal prob-
abilities for c < N instances, which is a subset of D, and
compute the marginal probabilities for the remaining (N−c)
instances in the CG loop.

Related Work

The most popular offline algorithm for CRF learning is the
limited-memory BFGS (LBFGS) which is a quasi-Newton
method that approximates the inverse of the Hessian H−1

from the m most recent changes of the parameters and the
gradients where m 	 d (Sha and Pereira 2003). Thus, it
stores only 2m vectors of length d that implicitly represent
the approximations. However, Lin et al. (2008) show that
a Newton-CG method outperforms the LBFGS method for
large learning tasks of binary logistic regression. To the best
of our knowledge, this is the first application of Newton-CG
methods to the training of CRFs, which are the generaliza-
tions of logistic regression.

Recently, online learning algorithms have received great
attention in the machine learning communities. One of the
popular online learning algorithms is Stochastic Gradient
Descent (SGD) which is applicable to the learning task of
any differentiable loss function including the CRF loss func-
tion. For each iteration k, SGD for CRFs uses a gradient
evaluated as gk = −g(x,y)+θ/(Nσ2), where (x,y) ∈ D
is a random sample. For each instance, the SGD updates
the parameter θ with this stochastic gradient: θk+1 = θk −
ηkgk, where ηk > 0 is the learning rate parameter. Although
the optimization accuracy of SGD is lower than that of batch
algorithms, it may find acceptable solutions in terms of test-
ing performance. Major drawbacks of SGD are the tuning
effort on the learning-rate parameter and the lack of the stop-
ping criteria (Spall 2003). Meanwhile, for batch algorithms,
there are the established problem-independent values for the
tuning parameters and the stopping conditions.

Collins et al. (2008) proposed an interesting Exponenti-
ated Gradient (EG) algorithm for log-linear models includ-
ing CRFs. Although, the EG algorithm is similar to SGD in
that both process one instance at a time, the EG corresponds
to block-coordinate ascent using the dual formulation of the
CRF objective function, and therefore uses a deterministic
gradient with respect to the coordinate being updated. Since
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y

x Wolff   ,  currently  a   journalist  in  Argentina  ,   played with  Del  Bosque …

B-PER O       O       O         O       O    B-LOC    O      O      O  B-PER  I-PER …

…

Figure 1: The named entity labels for an example sentence:
Words labeled with O are non-named entities. The B–XXX
label is used for the first word in a named entity of type
XXX and I–XXX is used for all other continued words in
named entities of type XXX. PER represents persons and
LOC represents locations.

the deterministic value of the dual function is also avail-
able, the learning-rate of the EG can be adjusted based on
the improvement of the dual. Note however, that there is
no theoretical justification for this learning-rate adjustment.
Another drawback of the EG is that it requires storing all
of the Ω(NT |Y |κ+1) dual variables for κ-th order CRFs,
though not all of them may fit in memory for large prob-
lems. Note that the proposed method does not necessarily
store the marginal probabilities for all of the N examples.

Algorithmic Differentiation (AD) can be used to eval-
uate the Hessian-vector products of CRFs, and requires
O(T |Y |κ+1) computations per instance (Pearlmutter 1994;
Vishwanathan et al. 2006). AD is a general technique to
compute derivatives using an algorithmic representation,
i.e., program code. In computer programs, any function
can be represented by a sequence of elementary operations.
Based on the chain rule, the procedure of a derivative com-
putation is evaluated by the sequence of the derivatives of the
elementary operations. However, since AD requires all of
the intermediate computational results of the gradient pro-
cedure to compute the Hessian-vector products, AD is re-
source intensive when trying to avoid the repetition of the
gradient computations in the Newton-CG method.

Experiments

Experimental Settings

To assess the performance of the proposed method, we con-
ducted experiments on two sequential labeling tasks: named
entity recognition (NER) and phrase chunking. For the NER
and chunking experiments, we used the data sets provided
for the shared tasks of CoNLL2002 (Tjong Kim Sang 2002)
and CoNLL2000 (Tjong Kim Sang and Buchholz 2000), re-
spectively. For example, the NER shared task concentrates
on four types of named entities: persons, locations, organi-
zations, and names of miscellaneous entities. The words in
the corpus are annotated with nine target labels, the begin-
ning and continuation of the named entities and non-named
entities. Figure 1 shows an example of named entity labels
encoded in the data. The phrase chunking task is similar to
the NER task, but the target labels are the beginning and con-
tinuation of the phrases such as noun phrases, verb phrases,
and prepositional phrases. In addition, since the number of
labeled samples is limited in some real-world tasks, we used

Task Train Dev. Test |X| |Y |
NER 8,322 1,914 1,516 99,135 9
Chunking 8,936 N/A 2,012 338,539 23

Table 1: Statistics of the corpora.

the 1/4 sized phrase chunking data as a small-sized problem.
We used a linear-chain CRF with the first order Markov

model. The hyper-parameter σ of the CRF objective function
f is selected using the development set or a subset of the
training data. The features for the NER task are the same
as the S3 features in (Altun, Johnson, and Hofmann 2003),
and the features for the phrase chunking task are the same as
the features provided by CRF++ package1. The information
for the corpora, the features, and the labels is summarized in
Table 1.

We implemented three batch algorithms:

• NCG(c={0, 4K,ALL}): Newton-CG method using the
proposed procedure with varying the number of sentences
c for which the marginal probabilities are stored,

• LBFGS(m={5, 10, 50}): LBFGS storing 2m vectors and
combined with a line search strategy and strong Wolf con-
ditions (Nocedal and Wright 2006), and

• NCG(AD): Newton-CG method using algorithmic differ-
entiation for the Hessian-vector products.

We also implemented three online algorithms:

• SGD(1/k): SGD with time-varying learning-rates ηk =
η0

1+k/N (Collins et al. 2008),
• SGD(αk): SGD with time-varying learning-rates updated

by ηk = η0α
k/N where we set α = 0.85 as one of

the suggested values in (Tsuruoka, Tsujii, and Ananiadou
2009), and

• EG: EG with the same initial value and the same update
rule for the learning-rate as in (Collins et al. 2008).

The tuning parameter η0 for SGDs is selected from
{0.5, 0.1, 0.05, 0.01} using the first 1, 000 samples (500 for
training and 500 for evaluation). In addition, for efficient
sparse updates, the parameter vector of SGD is implemented
as θ = av where a is a scalar and v is a dense vec-
tor (Shalev-Shwartz, Singer, and Srebro 2007).

For each epoch, the performance was evaluated according
to the difference from the minimum function value on the
training sets2 and the standard F1 score on the test sets3. The
former measures the quality of the solution in terms of opti-
mization, and the latter measures the testing performance of
predictive models. The stopping condition of the batch algo-
rithms is the infinity norm of the gradient, ||gk||∞ ≤ 0.05.
For the online algorithms, we simply stopped at k = 200N .

1http://crfpp.sourceforge.net/
2We used the smallest function values of the systems as the ap-

proximation of the optimal function values.
3The F1 score is the harmonic mean of the precision and re-

call of entities or chunks, where the precision is the percentage of
found named entities or chunks that are correct and the recall is the
percentage of found named entities or chunks present in the corpus.
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(d) F1 on NER
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(e) F1 on chunking
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(f) F1 on chunking - 1/4 size

Figure 2: Difference from minimum function values with log-scale (a)–(c) and F1 scores (d)–(f) on the NER and chunking tasks

All of the algorithms were implemented using the same
JavaTM code base and ran on Java HotSpotTM 64-Bit Server
VM (1.6.0 18). We used a LinuxTM server with an Intel R©

CoreTM 2 Quad 2.4 GHz CPU and 8 GB of memory.

Experimental Results

First, we report the convergence speeds of the function val-
ues in Figures 2(a), (b), and (c). All of the primal function
values of the EG are omitted because they are relatively too
large to show as lines in the figures. In addition, the result
of NCG(c=4K) is omitted for the 1/4 sized chunking data
set in the sequel since the number of the training sentences
is less than 4, 000.

Overall, the proposed method, NCG(c=ALL), is the most
accurate and fast optimization algorithm. NCG(c=ALL)
is about 2–3 times faster than NCG(c=0) which do not
reuse the marginal probabilities. Compared with LBFGS,
although both LBFGS and NCG methods are fastest when
the most memory is used, the NCG method with c=0 is
even faster than LBFGS with m=50. The adaptive quality
control of the Newton step may be one of the reason why
the NCG is superior to LBFGS which fixes the number of

Data set batch method online method
NER NCG(c=ALL) EG
Chunking NCG(c=ALL) SGD(αk)
Chunking - 1/4 size NCG(c=ALL) SGD(αk)

Table 2: The fastest methods for each task: No online
method perform the best in all of the tasks

vectors for the inverted Hessian approximation. Note that
LBFGS with m > 50 could not fit in memory in the chunk-
ing task. NCG(c=ALL) also outperforms NCG with algo-
rithmic differentiation, NCG(AD). This is because the pro-
posed method can avoid the repeating the time-consuming
computations in the CG iteration. The decreasing speed of f
of the SGD methods is faster than NCG(c=ALL) at the be-
ginning. However, the improvement of the function values is
soon stalled. In contrast, the batch algorithms find accurate
solutions because of their superlinear convergence proper-
ties.

Next, Figures 2(d), (e), and (f) show the comparisons in
terms of the F1 scores on the test sets. We only show the best
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results for the proposed method and LBFGS: NCG(c=ALL)
and LBFGS(m=50). In terms of the speed to achieve the
high testing performance, the proposed method is 3–6 times
faster than LBFGS, and 2 times faster than NCG(AD). The
results of the online algorithms are mixed, and no one per-
form best in all of the tasks. Table 2 shows the list of the
best batch and online methods for each task. In addition, all
of the online algorithms do not achieve the best testing per-
formance on any of the data sets. The EG is the fastest algo-
rithm for the NER task (Figure 2(d)), but the slowest algo-
rithm on the chunking task (Figure 2(e) and 2(f)). SGD(αk)
is faster than SGD(1/k) at the beginning because of the ex-
ponentially decaying learning-rate. However, it always con-
verges to the suboptimal solutions. These task-dependent
performances of the online algorithms may come from the
deficiency of established learning-rate tuning methods.

Overall, the proposed method is faster than some of the
online algorithms for all of the data sets. Since we never
know the best online algorithm for each data set in advance,
we can argue that the proposed method is the best overall.

Conclusion

For the linear-chain CRF learning problem, we propose a
fast Newton-CG method employing a novel dynamic pro-
gramming procedure for the Hessian-vector products. The
proposed algorithm is suitable for Newton-CG methods
in the sense that it can avoid the repetition of the time-
consuming computations in the inner loop of the Newton-
CG methods.

The sparse learning for CRFs is one of the interesting re-
search directions. Recently, Newton-type algorithms were
proposed for the supervised learning with sparsity-induced
regularization (Schmidt et al. 2009; Kim, Sra, and Dhillon
2010; Tomioka et al. 2010). The proposed method may ac-
celerate these algorithms when learning CRF models with
the small number of non-zero parameters.
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