
Latent Semantic Learning by Efficient
Sparse Coding with Hypergraph Regularization

Zhiwu Lu and Yuxin Peng∗
Institute of Computer Science and Technology, Peking University, Beijing 100871, China

{luzhiwu,pengyuxin}@icst.pku.edu.cn

Abstract

This paper presents a novel latent semantic learning al-
gorithm for action recognition. Through efficient sparse
coding, we can learn latent semantics (i.e. high-level
features) from a large vocabulary of abundant mid-level
features (i.e. visual keywords). More importantly, we
can capture the manifold structure hidden among mid-
level features by incorporating hypergraph regulariza-
tion into sparse coding. The learnt latent semantics can
further be readily used for action recognition by defin-
ing a histogram intersection kernel. Different from the
traditional latent semantic analysis based on topic mod-
els, our sparse coding method with hypergraph regular-
ization can exploit the manifold structure hidden among
mid-level features for latent semantic learning, which
results in compact but discriminative high-level features
for action recognition. We have tested our method on
the commonly used KTH action dataset and the uncon-
strained YouTube action dataset. The experimental re-
sults show the superior performance of our method.

Introduction

Automatic recognition of human actions in videos has a
wide range of applications such as video summarization,
human-computer interaction, and activity surveillance. Al-
though many impressive results have been reported on action
recognition, it still remains a challenging problem (Turaga
et al. 2008) owing to viewpoint changes, occlusions, and
background clutters. To handle these challenges, one com-
monly used strategy is to adopt an intermediate represen-
tation based on spatio-temporal interest points (Schuldt,
Laptev, and Caputo 2004; Dollar et al. 2005). In particu-
lar, recent work has shown promising results when the lo-
cal spatio-temporal descriptors are used for bag-of-words
(BOW) models (Laptev et al. 2008; Kovashka and Grauman
2010), where the local spatio-temporal features are quan-
tized to form a visual vocabulary and each video clip is thus
summarized as a histogram of visual keywords. In the fol-
lowing, we refer to the visual keywords as mid-level fea-
tures to distinguish them from the low-level spatio-temporal
features and high-level action categories.

∗Corresponding author.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, this BOW representation may suffer from the
redundancy of mid-level features, since typically thousands
of visual keywords are formed to obtain better performance
on a relatively large action dataset. Here, it should be noted
that the large vocabulary size means that the BOW repre-
sentation would incur large time cost in not only vocabulary
formation but also later action recognition. Moreover, the
mid-level features are applied to action recognition indepen-
dently and mainly the first-order statistics is considered. In-
tuitively, the higher-order semantic correlation between mid-
level features is very useful for bridging the semantic gap in
action recognition. Although the semantic information can
be incorporated into the visual vocabulary using either local
descriptor annotation or video annotation, the manual label-
ing is too expensive and tedious for a large action dataset.
Therefore, to reduce the redundancy of mid-level features, in
this paper, we focus on automatically extracting high-level
features that are compact in size but more discriminative in
terms of descriptive power for action recognition.

Previously, unsupervised methods (Niebles, Wang, and
Fei-Fei 2008; Wang and Mori 2009) have been developed
to learn latent semantics based on topic models. Moreover,
information theory has also been applied to latent seman-
tic analysis for action recognition in (Liu and Shah 2008;
Liu, Luo, and Shah 2009). The success of latent topic or in-
formation theoretic models may be due to that the semanti-
cally similar mid-level features generally have a higher prob-
ability of co-occurring in a video across the entire dataset. In
other words, the mid-level features generated from similar
video contents tend to lie in the same geometric or manifold
structure. However, this intrinsic information is not consid-
ered by the latent topic or information theoretic models. In
the literature, very few attempts have been made to explic-
itly preserve the manifold geometry of the mid-level feature
space when learning latent semantics from abundant mid-
level features. To our best knowledge, (Liu, Yang, and Shah
2009) can be regarded as the first attempt to extract latent se-
mantics from videos for action recognition using a manifold
learning technique based on diffusion maps (Lafon and Lee
2006). Although this method has been shown to achieve bet-
ter results than the information theoretic models, it requires
fine parameter tuning for graph construction which can sig-
nificantly affect the performance and has been noted as an
inherent weakness of graph-based methods.
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To address the above problems, we propose a novel la-
tent semantic learning algorithm by efficient sparse coding
with hypergraph regularization, which can capture the man-
ifold structure hidden among mid-level features similar to
(Liu, Yang, and Shah 2009) but without the need to tune
any parameter for hypergraph construction. Specifically, we
first formulate latent semantic learning as a sparse coding
problem which can be solved efficiently similar to locality-
constrained linear coding (Wang et al. 2010), and then cap-
ture the manifold structure of mid-level features by adding
a hypergraph regularization term into the objective func-
tion of sparse coding. The hypergraph (Zhou, Huang, and
Schölkopf 2007) used for such regularized optimization is
constructed through defining the incidence matrix with the
occurrences of mid-level features within videos. That is,
each video clip that contains multiple mid-level features is
regarded as a hyperedge, and its weight can be estimated
based on the original cluster centers associated with mid-
level features. This means that the hypergraph is constructed
in a parameter-free manner. To summarize, we actually for-
mulate latent semantic learning as quadratic optimization,
other than time-consuming L1-norm optimization for the
traditional sparse coding. We thus can develop a very effi-
cient algorithm for this quadratic optimization.

In this paper, we apply the learnt latent semantics to action
recognition with support vector machine (SVM) by defin-
ing a histogram intersection kernel. We have evaluated our
method for action recognition on the commonly used KTH
action dataset (Schuldt, Laptev, and Caputo 2004) and the
unconstrained YouTube action dataset (Liu, Luo, and Shah
2009). The experimental results have demonstrated the su-
perior performance of our method. Finally, we summarize
the following advantages of our method:

• Our method has made the first attempt to combine sparse
coding with hypergraph regularization for latent semantic
learning in the application of action recognition.

• Our method has been shown to significantly outperform
other latent semantic learning methods, which turns to be
more impressive given that we do not use feature pruning,
multiple types of features, or spatio-temporal structural
information for action recognition.

• Our method for latent semantic learning is scalable with
respect to the data size and then can be applied to action
recognition on large video datasets.

The remainder of this paper is organized as follows. Sec-
tion 2 proposes a novel sparse coding algorithm for learning
compact but discriminative latent semantics. In Section 3,
we present the details of action recognition with SVM us-
ing the learnt latent semantics. In Section 4, our method is
evaluated on the KTH and YouTube action datasets. Finally,
Section 5 gives our conclusions.

The Proposed Algorithm

In this section, we first formulate latent semantic learning as
a sparse coding problem, and then incorporate hypergraph
regularization into sparse coding. Finally, we develop an ef-
ficient algorithm for the proposed sparse coding.

Latent Semantic Learning by Sparse Coding

Given a vocabulary of mid-level features Vm = {mi}Mi=1,
each video clip can be represented as a histogram of mid-
level features {cn(mi) : i = 1, ...,M}, where cn(mi) is the
count of times that mi occurs in video n (n = 1, ..., N).
Based on this BOW representation, our goal is to learn a
compact set of high-level features Vh = {hj}Kj=1 from Vm,
where K < M . This latent semantic learning problem can
be formulated by sparse coding as follows.

Since each mi can denoted as a vector xi = {cn(mi) :
n = 1, ..., N} ∈ RN , we have X = [x1, ...,xM ] ∈ RN×M .
Given a codebook B = [b1, ...,bK ] ∈ RN×K with K en-
tries (i.e. each entry denotes a high-level feature), a sparse
coding scheme can convert each xi into a K-dimensional
code with most elements being zeros. The corresponding
L1-norm optimization problem is defined as:

min
B,U

M∑

i=1

||xi −Bui||22 + λ||ui||1, (1)

where U = [u1, ...,uM ] ∈ RK×M is the set of sparse codes
for X , and λ > 0 is a regularization parameter. The first
term of the above objective function denotes the reconstruc-
tion error, while the second term denotes the sparsity con-
straint. It should be noted that the sparsity constraint allows
the learned representation for X to capture salient patterns
and thus achieve much less reconstruction error than the tra-
ditional clustering methods such as k-means.

The above sparse coding problem is convex for B when
U is fixed, and is also convex for U when B is fixed. Similar
to (Lee et al. 2007), we can minimize the objective func-
tion with respect to B and U alternatively. However, solv-
ing the optimization problem with respect to U usually re-
quires computationally demanding procedures. For exam-
ple, through feature-sign search (Lee et al. 2007), the L1-
norm optimization problem with respect to U can be con-
verted to a series of quadratic optimization subproblems,
which incur too large computational cost.

We thus develop a much more efficient sparse coding al-
gorithm using the quadratic locality constraint instead, sim-
ilar to locality-constrained linear coding (Wang et al. 2010).
It should be noted that locality is more essential than spar-
sity, as locality must lead to sparsity but not necessary vice
versa. By replacing the sparsity constraint in equation (1)
with the locality constraint, we can define a new optimiza-
tion problem for sparse coding:

min
B,U

M∑

i=1

||xi −Bui||22 + λuT
i Diui, (2)

where Di is a K×K diagonal matrix with its (j, j)-element
Di(j, j) = exp(||xi − bj ||2/σ) and σ is used for adjusting
the weight decay speed for the locality constraint. Unlike the
traditional sparse coding, the solution of equation (2) with
respect to U can be derived analytically by

u∗
i = argmin

ui

||xi −Bui||22 + λuT
i Diui

= (BTB + λDi)\BTxi, (3)
which is different from (Wang et al. 2010), since the opti-
mization problem in equation (2) has no constraints.
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Figure 1: Illustration of the hypergraph constructed in a
parameter-free manner. In Figure 1(a), each dashed ellipse
denotes a hyperedge (i.e. video), and each red solid node de-
notes the vertex (i.e. mid-level feature). The incidence ma-
trix H of the hypergraph given by Figure 1(b) is computed
using the occurrences of mid-level features within videos.

Sparse Coding with Hypergraph Regularization

To exploit the manifold structure of mid-level features for
learning latent semantics from mid-level features, we fur-
ther incorporate a hypergraph regularization term into the
objective function of sparse coding. The hypergraph G =
{V, E , H,w} used for regularization can be constructed in a
parameter-free manner as follows.

Let the vertex set V = Vm = {mi}Mi=1 and the hyperedge
set E = {ej : ej = {mi : cj(mi) > 0, i = 1, ...,M}}Nj=1.
The incidence matrix H of G can be defined by

Hij = cj(mi)/
∑

mi′∈ej

cj(mi′). (4)

Here, we consider a soft incidence matrix (i.e. Hij ∈ [0, 1]),
which is different from (Zhou, Huang, and Schölkopf 2007)
with Hij = 1 or 0. Moreover, we define the hyperedge
weights w = {w(ej)}Nj=1 by

w(ej) =
1

|ej |
∑

mi∈ej ,mi′∈ej

Rii′ , (5)

where |ej | denotes the number of vertices within ej , and
R is the linear kernel matrix defined with the original clus-
ter centers associated with mid-level features. This ensures
that the weight of ej is set to a larger value when this hy-
peredge is more compact. Given these hyperedge weights,
we can define the degree of a vertex mi ∈ V as d(mi) =∑

ej∈E w(ej)Hij . For a hyperedge ej ∈ E , its degree is de-
fined as δ(ej) =

∑
mi∈V Hij . An example hypergraph is

shown in Figure 1.
The distinct advantage of the above hypergraph construc-

tion method is that it is parameter-free. More importantly,
according to (Zhou, Huang, and Schölkopf 2007), the high
order correlation between mid-level features can be ex-
ploited based on the hypergraph. To define the hypergraph
regularization term, we need to first compute the Laplacian
matrix just as (Zhou, Huang, and Schölkopf 2007):

L = I −D−1/2
v HWD−1

e HTD−1/2
v , (6)

where Dv, De, and W denote the diagonal matrices of the
vertex degrees, the hyperedge degrees, and the hyperedge
weights of the hypergraph, respectively.

Based on this Laplacian matrix L of the hypergraph, we
can define the following optimization problem for sparse
coding with hypergraph regularization:

min
B,U

(
M∑

i=1

||xi −Bui||22 + λuT
i Diui) + γtr(ULUT ), (7)

where γ > 0 is another regularization parameter. The third
term of the above objective function denotes hypergraph reg-
ularization, which can help to preserve the consistence of
sparse codes for similar mid-level features. In other words,
the local manifold structure hidden among mid-level fea-
tures can be exploited for latent semantic learning.

Efficient Sparse Coding Algorithm

The optimization problem for sparse coding with hyper-
graph regularization can be solved by minimizing the objec-
tive function with respect to B and U alternatively, similar to
(Lee et al. 2007). It should be noted that we actually formu-
late latent semantic learning as quadratic optimization, other
than time-consuming L1-norm optimization for the tradi-
tional sparse coding. We thus can develop a very efficient
algorithm for this quadratic optimization.

More specifically, when U is fixed in equation (7), we can
update the codebook B by solving the following quadratic
optimization problem using the conjugate gradient decent
method (Lee et al. 2007):

min
B

M∑

i=1

||xi −Bui||22. (8)

To handle the scale issue associated with the codebook,
we add extra normalization constraints ||bj ||2 ≤ 1(j =
1, ...,K) into the above optimization.

When B is fixed in equation (7), we then minimize the ob-
jective function with respect to each ui alternatively and do
not consider all the sparse codes U = [u1, ...,uM ] simul-
taneously. That is, when we focus on ui, the other sparse
codes are forced to be fixed. Hence, the optimization prob-
lem in equation (7) is equivalent to:

min
ui

||xi −Bui||22 + λuT
i Diui + γL(ui), (9)

where L(ui) = 2(UL.i)
Tui − uT

i Liiui, with L.i and Lii

being the i-th column and (i, i)-element of L, respectively.
This optimization problem has a analytical solution:

u∗
i = argmin

ui

||xi −Bui||22 + λuT
i Diui + γL(ui)

= (BTB + λDi + γLiiI)\(BTxi + γΔi), (10)
where Δi = Liiui − UL.i based on the old version of U .

In the following, our latent semantic learning algorithm
by efficient sparse coding (ESC) with hypergraph regular-
ization will be denoted as LapESC, given that the Lapla-
cian matrix L plays a key role in hypergraph regulariza-
tion. When only our efficient sparse coding (without hy-
pergraph regularization) is used for latent semantic learn-
ing, the corresponding algorithm is denoted as ESC. Since
the worst-case time complexity of our LapESC algorithm is
O((N +M)K3) (K � N and K � M ), it can be run very
efficiently even on a large video dataset.
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Figure 2: Retrieval examples using mid-level and high-level
features on the YouTube action dataset (Liu, Luo, and Shah
2009). For each query, four videos with the highest values
of the histogram intersection kernel are retrieved. The incor-
rectly retrieved videos (which do not come from the same
action category as the query) are marked with red boxes.

Action Recognition with SVM

This section presents the details of action recognition with
SVM using the latent semantics learnt by the proposed al-
gorithm. We first derive a new semantics-aware representa-
tion (i.e. histogram of high-level features) for each video clip
from the original BOW representation, and then define a his-
togram intersection kernel based on this new representation
for action cognition with SVM.

Let Vh = {hj}Kj=1 be the vocabulary of high-level fea-
tures learnt from the vocabulary of mid-level features Vm =
{mi}Mi=1 by our LapESC. The BOW representation with Vh

for each video can be derived from the original BOW rep-
resentation with Vm as follows. Given the count of times
cn(mi) that mid-level feature mi occurs in video n (n =
1, ..., N ), the count of times cn(hj) that high-level feature
hj occurs in this video can be estimated by:

cn(hj) =
M∑

i=1

cn(mi)c(mi, hj), (11)

where c(mi, hj) = |ui(j)| with ui being the sparse code
learnt by our LapESC for mid-level feature mi. That is,
each video is now represented as a histogram of high-level
features. Similar to the traditional BOW representation, this
new semantics-aware representation can be used to define a
histogram intersection kernel A:

A(xn, xñ) =

K∑

j=1

min(cn(hj), cñ(hj)), (12)

where n (or ñ) = 1, ..., N . This kernel is further used for
action recognition with SVM.

To provide preliminary evaluation of our learnt latent se-
mantics, we apply the above semantics-aware kernel to ac-
tion retrieval, and some retrieval examples on the YouTube
action dataset (Liu, Luo, and Shah 2009) are shown in Fig-
ure 2. Here, we only learn 300 high-level features from 2,000
mid-level features by our LapESC. We can observe that the
high-level features can achieve significantly better action re-
trieval results than the mid-level features. This observation

means that the learnt high-level features can provide a se-
mantically more succinct representation but a more discrim-
inative descriptor of human actions than the mid-level fea-
tures. Moreover, in the experiments, we can also observe that
similar dominating high-level features are used to represent
the videos from the same action category, although their ex-
act meanings are yet unknown. This is also the reason why
we call them “latent semantics” in this paper just as the tra-
ditional topic models. In the following, we will apply our
semantics-aware representation to action recognition on the
commonly used KTH action dataset (Schuldt, Laptev, and
Caputo 2004) and the unconstrained YouTube action dataset
(Liu, Luo, and Shah 2009).

Experimental Results
In this section, the proposed method for latent semantic
learning is evaluated on two standard action datasets. We
first describe the experimental setup and then compare our
method with other closely related methods.

Experimental Setup

We select two different action datasets for performance eval-
uation. The first dataset is KTH (Schuldt, Laptev, and Ca-
puto 2004) which contains 598 video clips from 6 action
categories. The six actions are performed by 25 actors un-
der four different scenarios. The second dataset is YouTube
(Liu, Luo, and Shah 2009) which has lots of camera move-
ment, cluttered backgrounds, and different viewing direc-
tions. This dataset contains 1,168 video clips from 11 action
categories, organized into 25 relatively independent groups.
To the best of our knowledge, this is the most extensive re-
alistic action dataset in the literature.

To extract low-level features from the two action datasets,
we adopt the spatio-temporal interest point detector pro-
posed in (Dollar et al. 2005). In the following experiments,
we extract 400 descriptors from each video clip for the KTH
dataset, while for the YouTube dataset more descriptors (i.e.
1,600) are extracted from each vide clip since this dataset
is more complex and challenging. Finally, on the two action
datasets, we quantize the extracted spatio-temporal descrip-
tors into M mid-level features by k-means clustering. Here,
we only adopt very simple experimental setting for low-level
feature extraction, given that our main goal is to develop a
novel sparse coding method for learning compact but dis-
criminative latent semantics in this paper.

Since the diffusion map (DM) method for latent sematic
learning proposed in (Liu, Yang, and Shah 2009) has been
reported to outperform other manifold learning techniques
(Balasubramanian and Schwartz 2002; Belkin and Niyogi
2003) and also the information theoretic approaches (Liu
and Shah 2008), we focus on comparing our method (i.e.
LapESC) only with DM in this paper and do not make di-
rect comparison with these methods. In fact, our method
has been shown in later experiments to perform much better
than DM, and thus we succeed in verifying the superiority
of our method indirectly with respect to (Balasubramanian
and Schwartz 2002; Belkin and Niyogi 2003; Liu and Shah
2008). Moreover, we also compare our method with prob-
abilistic latent semantic analysis (PLSA) and BOW. Here,
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Table 1: The comparison of the five methods with varied
number of features on the KTH dataset

#features 50 100 200 300 400
LapESC 92.2 93.2 93.3 94.8 93.6

ESC 91.3 92.3 92.3 93.5 93.0
DM 88.4 89.1 91.5 93.3 93.0

PLSA 87.8 87.0 86.5 87.0 84.8
BOW 85.3 88.5 90.0 90.8 92.5
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Figure 3: The comparison between LapESC and BOW with
fixed number of features on the KTH dataset.

all the methods for comparison except BOW are designed to
learn latent semantics from a large vocabulary of abundant
mid-level features. We select M = 2, 000 for the four latent
semantic learning methods. For our LapESC algorithm, we
set λ = 0.1 and γ = 0.1. To train SVM on the two datasets,
we use 24 actors (or groups) for the training set and the rest
for the test set, just as previous work (Liu, Luo, and Shah
2009; Liu, Yang, and Shah 2009).

Results on the KTH Dataset

The five methods are first compared on the KTH dataset
when the number of features is varied from 50 to 400. The
results are shown in Table 1. We can find that our method
(i.e. LapESC) can achieve consistently better performance
in action recognition than the other latent semantic learning
methods (i.e. ESC, DM, and PLSA). This observation in-
deed verifies that our method can learn more compact but
discriminative latent semantics through sparse coding with
hypergraph regularization. Moreover, we can also find that
the high-level features learnt by our method perform consis-
tently better than the mid-level features. Although the com-
monly used PLSA can also learn high-level features from
the abundant mid-level features, it completely fails (even
not better than BOW) when more high-level features are ex-
tracted (e.g. ≥ 100). To our best knowledge, our method
has been shown to achieve most outstanding performance
among all the latent semantic learning methods.

To further show the effectiveness of our method, we need
to directly compare it to BOW with M = 2, 000. Here, we
only consider our LapESC with K = 300. Moreover, to
make extensive comparison, we take BOW with M = 300
as a baseline method. The comparison between our LapESC
and these two BOW methods is shown in Figure 3. We can
find that our LapESC performs better than BOW (M =

Table 2: Comparison of our LapESC with previous methods
for action recognition on the KTH dataset (MF: multiple fea-
tures; SI: structural information)

Method MF SI Accuracy
(Schuldt et al. 2004) no no 71.7
(Dollar et al. 2005) no no 81.2
(Laptev et al. 2008) yes yes 91.8
(Niebles et al. 2008) no no 83.3
(Liu and Shah 2008) no yes 94.2

(Liu, Luo, and Shah 2009) yes no 93.8
(Liu, Yang, and Shah 2009) no no 92.3

(Cao et al. 2010) yes no 94.1
(Kovashka et al. 2010) no yes 94.5

Our method no no 94.8

Table 3: The comparison of the five methods with varied
number of features on the YouTube dataset

#features 50 100 200 300 400
LapESC 54.8 57.1 61.3 63.9 63.8

ESC 53.1 55.4 60.1 63.0 63.3
DM 51.3 55.0 58.9 60.4 62.4

PLSA 49.0 51.1 48.5 48.6 48.0
BOW 46.6 53.2 55.3 59.0 59.7

2, 000) on most of the six action categories, even when the
number of features is decreased from 2,000 to 300. The abil-
ity of our LapESC to achieve promising results using only
a small number of features is important, because it means
that our method is scalable for large action datasets. More-
over, our LapESC is shown to perform better than BOW
(M = 300) on all the action categories when they select
the same number of features.

Since we focus on developing a novel sparse coding
method to learn compact but discriminative latent seman-
tics for action recognition, we only consider very simple
experimental setting in this paper. For example, in the ex-
periments, only a single type of low-level spatio-temporal
descriptors are extracted from videos the same as (Dol-
lar et al. 2005). Moreover, the learnt high-level features
are directly applied to action recognition without consid-
ering their spatio-temporal layout information. That is, we
do not make use of multiple types of features (Laptev et
al. 2008; Liu, Luo, and Shah 2009; Cao et al. 2010), or
spatio-temporal structural information (Laptev et al. 2008;
Liu and Shah 2008; Kovashka and Grauman 2010) for ac-
tion recognition. However, even with such simple experi-
mental setting, our method for latent semantic learning can
still achieve improvements with respect to the state of the
arts, as shown in Table 2. This also provides further con-
vincing validation of the effectiveness of our latent semantic
learning by sparse coding with hypergraph regularization.

Results on the YouTube Dataset

The YouTube dataset is more complex and challenging than
KTH, since it has lots of camera movement, cluttered back-
grounds, and different viewing directions. We repeat the
same experiments on this dataset, and the results are shown
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Figure 4: The comparison between LapESC and BOW with
fixed number of features on the YouTube dataset.

in Table 3 and Figure 4. Here, in Table 3 the five methods for
action recognition are compared when the number of fea-
tures is varied from 50 to 400, while in Figure 4 we focus
on the comparison between LapESC and BOW with fixed
number of features. We can make the same observations on
this dataset as we have done with KTH, which provides fur-
ther validation of our LapESC. More importantly, the exten-
sive evaluations on such challenging dataset actually serve
to pave the way for bridging the semantic gap of video con-
tent analysis in realistic applications.

Conclusions

We have investigated the challenging problem of latent se-
mantic learning in action recognition. To bridge the seman-
tic gap associated with action recognition, we have pro-
posed a novel sparse coding algorithm for learning latent
semantics from a large vocabulary of mid-level features. Par-
ticularly, to capture the manifold structure hidden among
mid-level features, we have incorporated hypergraph regu-
larization into sparse coding. Although many efforts have
been made to explore sparse coding for different applica-
tions in the literature, we have made the first attempt to com-
bine sparse coding with hypergraph regularization for latent
semantic learning in action recognition. The experimental
results have shown that the proposed method can achieve
most outstanding performance among all the latent seman-
tic learning methods. In the future work, we will apply the
proposed method to learning latent semantics from multi-
ple local descriptors and also consider the spatio-temporal
structural information of the learnt latent semantics.
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