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Abstract

This paper presents a novel symmetric graph regular-
ization framework for pairwise constraint propagation.
We first decompose the challenging problem of pair-
wise constraint propagation into a series of two-class
label propagation subproblems and then deal with these
subproblems by quadratic optimization with symmet-
ric graph regularization. More importantly, we clearly
show that pairwise constraint propagation is actually
equivalent to solving a Lyapunov matrix equation,
which is widely used in Control Theory as a standard
continuous-time equation. Different from most previ-
ous constraint propagation methods that suffer from se-
vere limitations, our method can directly be applied
to multi-class problem and also can effectively exploit
both must-link and cannot-link constraints. The propa-
gated constraints are further used to adjust the similar-
ity between data points so that they can be incorporated
into subsequent clustering. The proposed method has
been tested in clustering tasks on six real-life data sets
and then shown to achieve significant improvements
with respect to the state of the arts.

Introduction

Pairwise constraints provide prior knowledge on whether
two data points belong to the same class or not, known
as must-link constraints and cannot-link constraints, respec-
tively. Generally, it is hard to infer instance labels only from
pairwise constraints, especially for multi-class data. That is,
pairwise constraints are weaker and thus more general than
the explicit labels of data. In practice, we can derive pairwise
constraints from domain knowledge. Similar to the case that
very few data labels are provided for semi-supervised learn-
ing, we also suffer from the scarcity of pairwise constraints.
It is a challenging task to propagate such scarce pairwise
constraints across all the data points.

Pairwise constraints have been widely used in the con-
text of clustering with side information (Xing et al. 2003;
Kamvar, Klein, and Manning 2003; Basu, Bilenko, and
Mooney 2004; Kulis et al. 2005), where it has been shown
that the presence of appropriate pairwise constraints can
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often improve the performance. For example, in (Kamvar,
Klein, and Manning 2003), the similarities between con-
strained data are trivially adjusted to 1 and 0 for must-link
and cannot-link constraints, respectively. This method only
adjusts the similarities between constrained data, and does
not propagate the pairwise constraints to other data. In con-
trast, in (Lu and Carreira-Perpinan 2008), the pairwise con-
straints are propagated to unconstrained data using Gaussian
process. However, this constraint propagation method makes
certain assumptions to deal with cannot-link constraints spe-
cially for two-class problems, although the heuristic ap-
proach for multi-class problems is also discussed. Moreover,
the pairwise constraint propagation is formulated as a semi-
definite programming (SDP) problem in (Li, Liu, and Tang
2008). Although this optimization-based method is not lim-
ited to two-class problems, it incurs extremely large compu-
tational cost for solving SDP and the authors only report the
experimental results on small-scale data sets.

To overcome the above problems, we make attempt to de-
compose the pairwise constraint propagation problem into
a series of two-class semi-supervised learning subproblems.
Although we have proposed an exhaustive and efficient con-
straint propagation method based on the traditional semi-
supervised learning in (Lu and Ip 2010), we take a totally
different regularization approach into account in this paper.
More concretely, we exploit the special symmetric structure
of the pairwise constraints and develop a pairwise constraint
propagation approach based on symmetric graph regulariza-
tion. In the following, we will call it as symmetric graph
regularized constraint propagation (SRCP).

Interestingly, under our symmetric regularization frame-
work, we show, for the first time, that pairwise constraint
propagation is actually equivalent to solving a Lyapunov
matrix equation. As a standard continuous-time equation,
the Lyapunov equation has been widely used to solve dif-
ferent problems in Control Theory, System Identification
and System Stability Analysis (Gajic and Qureshi 1995). It
should be noted that the Lyapunov equation has a closed
form solution and can be efficiently solved by the Matlab
software using a numerical method. More significantly, as
an alternative approach, we further formulate pairwise con-
straint propagation as symmetric information spreading and
show that the time invariant solution of this propagation for-
mula also corresponds to that of the special Lyapunov equa-
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tion. The present work therefore gives rise to two interesting
theoretical insights that link the problem of pairwise con-
straint propagation to the Lyapunov equation.

The propagated constraints obtained by solving the Lya-
punov equation are further used to adjust the similarity be-
tween data points so that they can be incorporated into sub-
sequent clustering. To evaluate the effectiveness of the pro-
posed method, we select six real-life data sets for cluster-
ing tasks. The experimental results have shown that the pro-
posed method can achieve significant improvements with re-
spect to the state of the arts. Finally, the main contributions
of this paper can be summarized as follows:
• This is the first attempt to deal with the challenging prob-

lem of pairwise constraint propagation based on a sym-
metric graph regularization framework.

• Under this framework, we show, for the first time, that
pairwise constraint propagation is actually equivalent to
solving a Lyapunov equation.

• We also formulate pairwise constraint propagation as
symmetric information spreading, which has the same so-
lution as the Lyapunov equation.
The remainder of this paper is organized as follows. Sec-

tion 2 proposes a symmetric graph regularized constraint
propagation algorithm. In Section 3, our method is evalu-
ated on six real-life data sets. Finally, Section 4 gives the
conclusions drawn from the experimental results.

Symmetric Graph Regularized Constraint

Propagation

In this section, we first give a short review of the graph regu-
larized semi-supervised learning, especially in the situation
of the two-class problem, followed by the details of our pro-
posed algorithm, including the propagation of the pairwise
constraints and the application of the propagated constraints
to data clustering tasks.

Graph Regularized Semi-supervised Learning

Given a point set X = {x1, . . . , xp, xp+1, . . . , xn} ⊂ R
m

and a label set L = {1, . . . , k}, the first p points xi(i ≤ p)
are labeled as yi ∈ L and the remaining points xu(p + 1 ≤
u ≤ n) are unlabeled. Semi-supervised learning (or label
propagation) focuses on how to learn from both labeled and
unlabeled data (Zhu and Goldberg 2009; Zhou et al. 2004).

Let G = (V,W ) be an undirected, weighted graph de-
fined on the data set, i.e., V = X . The similarity matrix
W is defined as W = [wij ]n×n, where wij is the similar-
ity measurement between xi and xj . For modeling the lo-
cal neighborhood relationships between the data points, we
construct a k-nearest neighbor graph, in which wij = 0 if
xj is not among the k-nearest neighbors (k-NN) of xi. We
set wii = 0 for 1 ≤ i ≤ n to avoid self-reinforcement, and
set W = (W +WT )/2 to ensure that W is symmetric. The
graph Laplacian L of G is defined as L = D −W , where
D = [dii]n×n is a diagonal matrix with dii =

∑
j wij . The

normalized graph Laplacian L̄ of G is defined as

L̄ = D−1/2LD−1/2 = I −D−1/2WD−1/2,

Figure 1: Illustration of the constraint indicator matrix de-
fined by equation (2). When we focus on a single data point,
such as x3 here, the pairwise constraint propagation can be
viewed as a two-class semi-supervised learning problem in
the row and column simultaneously.

where I is the identity matrix. It should be noted that L̄ is
symmetric and positive semidefinite, with its eigenvalues be-
ing in the interval [0, 2] (Chung 1997).

The smoothness of a function f : X → R on the graph
can be measured by

Ω(f) =
1

2

∑
i,j

wij(
f(xi)√
dii

− f(xj)√
djj

)2 = fT L̄f ,

where f = (f(x1), . . . , f(xn))
T . The smaller is Ω(f), the

smoother is f . This measurement penalizes large changes
between data points that are strongly connected.

If we only consider the two-class problem, we can use the
vector y and f to represent the initial labels and the classi-
fication results, respectively. Each element yi of y is defined
as yi = +1,−1 or 0, if xi is labeled as the positive class, the
negative class or unlabeled. And each unlabeled data point
xi will be labeled as the positive or negative class according
to the sign of f(xi). In (Zhou et al. 2004), a graph regulariza-
tion framework is proposed to predict the labels of unlabeled
data points. This method simultaneously considers the loss
function of labels and the smoothness on the graph. Accord-
ing to (Zhou et al. 2004), the two-class label propagation
problem can be formulated as

min
f

1

2
μ‖f − y‖22 +

1

2
fT L̄f , (1)

where μ > 0 is a regularization parameter. The classification
is performed according to:

l(xi) =

{
+1, f(xi) ≥ 0;

−1, f(xi) < 0,

where l(xi) is the predicted label of data xi. The value of
|f(xi)| can be viewed as the confidence score of labeling xi

as the positive or negative class.

Symmetric Graph Regularization Framework

We now consider the pairwise constraint propagation prob-
lem. The problem definition is very similar to that of the
semi-supervised learning. Given a data set of n objects X =
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{x1, . . . , xn} and two sets of pairwise constraints, denoted
respectively by M = {(xi, xj)} where xi and xj should
be in the same class and C = {(xi, xj)} where xi and xj

should be in different classes, our goal is to propagate the
sparse pairwise constraints across the entire data set and then
classify X into k classes.

We first represent these two types of pairwise constraints
with a single matrix Y = {Yij}n×n:

Yij =

⎧⎨
⎩
+1, (xi, xj) ∈M;

−1, (xi, xj) ∈ C;
0, otherwise.

(2)

It is obvious that Y is a symmetric matrix. In addition, we
define F = {Fij}n×n as the matrix that stores the propa-
gated pairwise constraints.

As shown in Figure 1, when we focus on a single data
point xi in X , we use Yi· and Y·i to respectively denote the
i-th row and i-th column with respect to xi in Y . Similarly,
we use Fi· and F·i to respectively denote the i-th row and
i-th column with respect to xi in F . It can be observed that
Yi· and Y·i is the initial pairwise constraints between xi and
other data points in X before constraint propagation.

Propagating the constraint relationships related to xi can
be viewed as a two-class semi-supervised learning problem,
where the “positive class” is the must-link relationship and
the “negative class” is the cannot-link relationship. If we
only use Y·i, according to equation (1), the constraint prop-
agation with respect to xi can be formulated as

min
F·i

1

2
μ‖F·i − Y·i‖22 +

1

2
FT
·i L̄F·i

Similarly, if we only use Yi·, the constraint propagation
problem is the solution:

min
Fi·

1

2
μ‖Fi· − Yi·‖22 +

1

2
Fi·L̄FT

i·

By considering these two separated propagation processes
simultaneously and combining them together, the constraint
propagation problem with respect to xi is equivalent to:

min
F·i,Fi·

1

2
μ‖F·i−Y·i‖22+

1

2
μ‖Fi·−Yi·‖22+

1

2
FT
·i L̄F·i+

1

2
Fi·L̄FT

i·

Again, if we merge all of these subproblems into a single
optimization problem, we can get:

min
F

μ‖F − Y ‖2F +
1

2
tr(FT L̄F + FL̄FT ) (3)

Here, tr(Z) stands for the trace of a matrix Z.
Let Q(F ) denote the objective function in equation (3).

DifferentiatingQ(F ) with respect to F and setting it to zero,
we have the following equation for constraint propagation,

∂Q
∂F

= 2μ(F − Y ) + L̄F + FL̄ = 0, (4)

which can be transformed into a symmetric form

(μI + L̄)F + F (μI + L̄) = 2μY. (5)

It should be noted that the above equation is a standard
continuous-time Lyapunov matrix equation (Barnett and
Storey 1967) and is of interest in a number of areas of Con-
trol Theory such as optimal control and stability analysis
(Gajic and Qureshi 1995). According to Proposition 1, the
Lyapunov matrix equation (5) has a unique solution. More-
over, this solution is symmetric if Y is.

Proposition 1. The Lyapunov matrix equation (5) has a
unique solution.

Proof. Since the graph Laplacian L̄ is positive semidefinite
and μ > 0, we know that μI + L̄ is positive definite and
thus all of its eigenvalues are positive. So, for any pair of
eigenvalues of μI+ L̄, αi and αj , we have αi+αj 	= 0. Ac-
cording to (Lancaster 1970), the Lyapunov matrix equation
(5) has a unique solution.

Furthermore, the solution of the Lyapunov matrix equa-
tion (5) can be explicitly derived as follows. By vectoring
on two sides of equation (5), we have

vec[(μI + L̄)F ] + vec[F (μI + L̄)] = vec(2μY ),

and it is equivalent to

[I ⊗ (μI + L̄) + (μI + L̄)⊗ I]vec(F ) = 2μvec(Y ),

where the symbol⊗ denotes the Kronecker product. Similar
to the proof of Proposition 1, we can prove that I ⊗ (μI +
L̄) + (μI + L̄) ⊗ I is nonsingular. Hence, the closed form
solution of equation (5) is

F = unvec(2μ(I⊗(μI+L̄)+(μI+L̄)⊗I)−1vec(Y )). (6)

However, this method needs to compute an inverse matrix
with size n2× n2, and thus is not efficient for solving large-
scale problems. Fortunately, many numerical methods have
been developed to solve equation (5) efficiently.

Symmetric Information Spreading Perspective

We first give a briefly review of an alternative insight in
semi-supervised learning. In (Zhou et al. 2004), the semi-
supervised learning problem is formulated as a form of in-
formation spreading on the graph. Let S = D−1/2WD−1/2.
The process of information spreading is defined by the iter-
ation H(t+ 1) = αSH(t) + (1− α)Z, where H stores the
predicted labels, Z collects the initial labels, t is the iteration
step, and α is a weight parameter.

As for pairwise constraint propagation, if we take into ac-
count the symmetric structure of the constraints, we can sim-
ilarly define the process of constraint propagation as

F (t+ 1) =
1

2
αSF (t) +

1

2
αF (t)S + (1− α)Y. (7)

That is, during each iteration, each data point receives the
information from its neighbors along the row and column
directions simultaneously as depicted in Figure 1 (see the
first two terms of the above equation), and also retains its
initial information (see the third term of the above equation).
The final results of constraint propagation correspond to the
time invariant solution of equation (7), which means F (t +
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1) = F (t). Let F denote the converged constraint spreading
result, and we can get F by solving

F =
1

2
αSF +

1

2
αFS + (1− α)Y. (8)

Let μ = (1− α)/α. Since L̄ = I − S, we again get the
Lyapunov matrix equation (5).

Similarity Adjustment with Constraint
Propagation

Once we have obtained the constraint propagation result F ,
we can consider Fij as the confidence score of the pair-
wise constraint between xi and xj . To incorporate F into
the subsequent clustering process, we adjust the similarities
between the data points according to the following similarity
refinement formula

w∗ij =
{
1− (1− Fij)(1− wij), Fij ≥ 0;

(1 + Fij)wij , Fij < 0.
(9)

The above refinement can increase the similarity between xi

and xj when Fij > 0 and decrease it when Fij < 0. More
details can be found in (Lu and Ip 2010).

Symmetric Graph Regularized Constraint
Propagation: The Algorithm

Let W=[w∗ij ]n×n be the adjusted similarity matrix accord-
ing to equation (9). We adopt the spectral clustering algo-
rithm (von Luxburg 2007) with W ∗ to form k classes. Based
on the previous analysis, we develop a constrained cluster-
ing algorithm listed in Algorithm 1, in which our constraint
propagation is used. In the following, we call it Symmetric
Graph Regularized Constraint Propagation (SRCP).

Algorithm 1 Symmetric Graph Regularized Constraint
Propagation

Input: A data set of n objectsX = {x1, x2, . . . , xn}, the
set of must-link constraints M = {(xi, xj)}, the set of
cannot-link constraints C = {(xi, xj)}, and the number
of classes k.
Output: Cluster labels for the objects in X .

1. Form the symmetric k-NN similarity matrix W =
[wij ]n×n.

2. Form the normalized graph Laplacian L̄ = I −
D−1/2WD−1/2, where D = diag(dii) is the diag-
onal matrix with dii =

∑n
j=1 wij .

3. Solve the Lyapunov matrix equation (5) to obtain the
constraint propagation result F .

4. Adjust the similarity matrix using F according to
equation (9).

5. Form k classes by performing spectral clustering with
the adjusted similarity matrix W ∗.

Table 1: Description of the four UCI data sets
Zoo WDBC Ionosphere Wine

# objects 101 569 351 178
# dimensions 16 30 34 13
# classes 7 2 2 3

Experiments

In this section, we evaluate the performances of the proposed
algorithm on a number of real-life data sets. For comparison,
the results of three notable and most related algorithms, Lu
and Carreira-Perpinan’s affinity propagation (AP) (Lu and
Carreira-Perpinan 2008), Kamvar et al.’s spectral learning
(SL) (Kamvar, Klein, and Manning 2003) and Kulis et al.’s
semi-supervised kernel k-means (SSKK) (Kulis et al. 2005),
are also reported. In addition, we use the normalized cuts
(NCuts) (Shi and Malik 2000), which is effectively a spec-
tral clustering algorithm but without considering pairwise
constraints, as the baseline method.

In the following, we first describe the experimental setup,
including the performance measure and the parameter se-
lection. Then we compare the proposed algorithm with the
other four methods on the six data sets.

Experimental Setup

In order to evaluate these algorithms, we compare the clus-
tering results with the available ground-truth data labels, and
employ the adjusted Rand (AR) index as the performance
measure (Hubert and Arabie 1985). The AR index mea-
sures the pairwise agreement between the computed clus-
tering and the ground-truth clustering, and takes a value in
the range [-1,1]. The larger is the adjusted Rand index, the
better is a clustering result. To evaluate the algorithms un-
der different settings of pairwise constraints, we exploit the
ground-truth data labels and generate a varying number of
pairwise constraints randomly for each data set. That is, we
randomly choose a pair of data points from each data set. If
they have the same class labels, we generate a must-link con-
straint, otherwise a cannot-link constraint. In the following
experiments, we run these algorithms 20 times with random
initializations, and report the averaged AR index.

Because these algorithms are all graph-based, we adopt
the same k-NN graph construction for all the algorithms to
ensure a fair comparison. We set μ = 0.2 and k = 20 in our
experiments. For UCI and image data sets, we construct the
graph in different manners. The Gaussian similarity function
is used for the UCI data sets, while the spatial Markov kernel
(Lu and Ip 2009) is computed on the image data sets. All the
algorithms are implemented in Matlab, running on a 2.33
GHz and 2GB RAM PC. The Lyapunov matrix equation for
constraint propagation is solved using lyap in Matlab.

On UCI data

We first select four data sets from the UCI Machine Learning
Repository1 to test the proposed algorithm. The four UCI
data sets are described in Table 1. It should be noted that

1http://archive.ics.uci.edu/ml/
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Figure 2: The clustering results on the four UCI data sets
with a varied number of pairwise constraints.

the UCI data sets have been widely used to evaluate cluster-
ing algorithms in the machine learning community. For each
data set, we compute the similarity matrix W = [wij ]n×n

with Gaussian function exp(−‖xi − xj‖22/(2σ2)). We sim-
ply set σ = 1 in our experiments.

The results are shown in Figure 2, from which two ob-
servations can be drawn. Firstly, our algorithm can achieve
the best performance on all the four UCI data sets. After in-
corporating the pairwise constraints into clustering, the im-
provement achieved by our method is very significant com-
pared with NCuts, the baseline unconstrained method. The
other three methods that also consider the constraint infor-
mation, have inconsistent performance on the four data sets.
Especially, SL on Zoo (or SSKK on Zoo and Ionosphere)
even does not perform better than NCuts. Secondly, when
the number of pairwise constraints grows, we can find a
unanimous and obvious improvement in the performance of
our SRCP on all the four data sets, but the other three con-
strained clustering methods (i.e. AP, SL and SSKK) do not
present this trend in constrained clustering. In particular, on
Ionosphere, more pairwise constraints even decrease the per-
formance of AP and SL. To summarize, since the pairwise
constraints can be exploited most effectively for clustering
by our SRCP, its performance is the best.

On Image Data

We further test the proposed algorithm on two different im-
age data sets. The first one contains 8 scene categories from
MIT (Oliva and Torralba 2001), including four man-made
scenes and four natural scenes. The total number of images
is 2,688. The size of each image in this Scene data set is
256× 256 pixels. The second data set contains images from
a Corel collection. We select 15 categories including bus,
sunrise/sunset, plane, foxes, horses, coins, gardens, eagles,
models, sailing, stream trains, racing car, pumpkins, rock-
ies and fields. Each of these categories contains 100 images.

Table 2: Description of the two image data sets
Scene Corel

# objects 2688 1500
# dimensions 256× 256 256× 384
# classes 8 15
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Figure 3: The clustering results on the two image data sets
with a varied number of pairwise constraints.

Therefore, this selected Corel data set has totally 1,500 im-
ages. The size of each image in this data set is 384 × 256
or 256 × 384 pixels. We summarize the description of the
above two image data sets in Table 2.

For the two image data sets, we choose two different fea-
ture sets which are introduced in (Bosch, Zisserman, and
noz 2006) and (Lu and Ip 2009), respectively. That is, as
in (Bosch, Zisserman, and noz 2006), the SIFT descriptors
are used for the Scene data set, while, similar to (Lu and Ip
2009), the joint color and Gabor features are used for the
Corel data set. These features are chosen to ensure a fair
comparison with the state-of-the-art techniques. More con-
cretely, for the Scene data set, we extract SIFT descriptors
of 16 × 16 pixel blocks computed over a regular grid with
spacing of 8 pixels. As for the Corel data set, we divide
each image into blocks of 16 × 16 pixels and then extract
a joint color/texture feature vector from each block. Here,
the texture features are represented as the means and stan-
dard deviations of the coefficients of a bank of Gabor fil-
ters (with 3 scales and 4 orientations), and the color features
are the mean values of HSV color components. Finally, for
the two data sets, we perform k-means clustering on the ex-
tracted feature vectors to form a vocabulary of 400 visual
keywords. Based on this visual vocabulary, we then define
a spatial Markov kernel (Lu and Ip 2009) as the similarity
matrix for graph construction.

In the experiments, we compare the clustering perfor-
mance of the five algorithms with a varied number of pair-
wise constraints. The clustering results are shown in Figure
3, from which we can see that the proposed SRCP algorithm
consistently and significantly outperforms the other four al-
gorithms on both of the two image data sets under differ-
ent settings of pairwise constraints. As the number of con-
straints grows, the performance of our SRCP algorithm im-
proves more significantly than those of the other three con-
strained clustering methods (i.e. AP, SL and SSKK). Here, it
is worth noting that AP, SL and SSKK perform rather unsat-
isfactorily, and in some cases, their performances have even
been degraded to that of NCuts.
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(a) NCuts (b) SL (c) AP (d) SRCP

(e) NCuts (f) SL (g) AP (h) SRCP

Figure 4: Distance matrices of the low-dimensional repre-
sentations for the two image datasets (first row: Scene; sec-
ond row: Corel) obtained by NCuts, SL, AP, and SRCP, re-
spectively. The darker is a pixel, the smaller is the distance.

To make it clearer how our SRCP algorithm exploits the
pairwise constraints for clustering, we show the distance ma-
trices of the low-dimensional data representations (gener-
ated during spectral clustering) obtained by NCuts, SL, AP
and SRCP in Figure 4. We can find that the block structure of
the distance matrices of the data representations obtained by
our SRCP algorithm on each data set is significantly more
obvious, as compared to those of the data representations
obtained by NCuts, SL, and AP. This means that after be-
ing adjusted by our SRCP algorithm, each cluster associated
with the new data representation becomes more compact and
different clusters become more separated.

We also look at the computational cost of different clus-
tering algorithms on the two image data sets. For example,
for each run on Corel (of size 1500) with 2400 pairwise con-
straints, our SRCP takes about 38 seconds, while SL takes
about 4 seconds, and both AP and SSKK take about 8 sec-
onds. The main computational cost of our SRCP is incurred
by solving the Lyapunov matrix equation.

Conclusions

In this paper, we have proposed a novel constraint propaga-
tion approach, called Symmetric Graph Regularized Con-
straint Propagation (SRCP), to propagate the sparse pair-
wise relationships, including must-link and cannot-link con-
straints, across the entire data set. This is achieved by de-
composing the problem of pairwise constraint propagation
into a series of two-class label propagation subproblems and
considering the special symmetric structure of the pairwise
relationships. More importantly, it has been shown that pair-
wise constraint propagation is actually equivalent to solving
a Lyapunov equation which is commonly used to deal with
different problems in Control Theory such as System Identi-
fication. When the constraint propagation problem is viewed
in terms of information spreading over a graph, the resulting
time invariant solution of the iteration propagation formula
is shown to exactly be the solution of the Lyapunov equa-
tion. Experimental results on a variety of real-life data sets
have demonstrated the superiority of our proposed algorithm
over the state-of-the-art techniques.
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