
Towards Maximizing the Area Under the ROC Curve
for Multi-Class Classification Problems

Ke Tang∗1 Rui Wang1 Tianshi Chen2

1 Nature Inspired Computation and Applications Laboratory (NICAL), School of Computer Science
and Technology, University of Science and Technology of China, Hefei 230027, China

2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
ketang@ustc.edu.cn wrui1108@mail.ustc.edu.cn chentianshi@ict.ac.cn

Abstract

The Area Under the ROC Curve (AUC) metric has
achieved a big success in binary classification problems
since they measure the performance of classifiers with-
out making any specific assumptions about the class
distribution and misclassification costs. This is desir-
able because the class distribution and misclassifica-
tion costs may be unknown during training process or
even change in environment. MAUC, the extension of
AUC to multi-class problems, has also attracted a lot
of attention. However, despite the emergence of ap-
proaches for training classifiers with large AUC, little
has been done for MAUC. This paper analyzes MAUC
in-depth, and reveals that the maximization of MAUC
can be achieved by decomposing the multi-class prob-
lem into a number of independent sub-problems. These
sub-problems are formulated in the form of a “learning
to rank” problem, for which well-established methods
already exist. Based on the analysis, a method that em-
ploys RankBoost algorithm as the sub-problem solver
is proposed to achieve classification systems with max-
imum MAUC. Empirical studies have shown the ad-
vantages of the proposed method over other eight rel-
evant methods. Due to the importance of MAUC to
multi-class cost-sensitive learning and class imbalanced
learning problems, the proposed method is a general
technique for both problems. It can also be generalized
to accommodate other learning algorithms as the sub-
problem solvers.

Introduction

The performance of classification systems are traditionally
measured by accuracy, which is the ratio of correctly labeled
instances to all testing instances. However, using accuracy
implicitly presumes that the class distribution of the data set
is approximately balanced and the misclassification costs are
equal, while these conditions rarely hold in practices. That
is, for many real-world problems, the class distribution is
imbalanced (He and Garcia 2009) and different types of mis-
classifications usually lead to unequal costs (Elkan 2001).

∗This work was supported by the National Natural Science
Foundation of China under Grant 60802036.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Moreover, it is also likely that the misclassification costs is
unknown during the training process or both the class dis-
tribution and misclassification costs can change in environ-
ment (Provost and Fawcett 2001).

In all the above-mentioned circumstances, seeking a sys-
tem with the maximum classification accuracy is inappro-
priate (Fawcett 2006), and thus a number of new learn-
ing targets have emerged during the past ten years. For
problems involving unequal misclassification costs (i.e., the
cost-sensitive learning problem), the natural learning tar-
get is minimizing the total classification cost for a given
misclassification cost matrix. Since traditional classification
methods tend to perform poorly in cost-sensitive problems,
new methods taken the cost information into consideration
during classifier construction have been developed (Elkan
2001). When the class distribution is imbalanced (i.e., the
class imbalanced learning problem), the main difficulty is
that traditional classifiers are easily overwhelmed by in-
stances from majority classes while the minority classes in-
stances are usually ignored (He and Garcia 2009). There
are generally two different learning targets for imbalanced
learning problem. The first is, setting aside the misclas-
sification costs, obtain enhanced recognition rate of mi-
nority classes instances while the error rate of majority
classes are not rise or rise in accepted range (Kubat and
Holte 1998). However, in most imbalanced learning prob-
lems, misclassifying a minority class instance is more ex-
pensive than misclassifying a majority class instance. It is
unrealistic to ignore the misclassification cost completely.
In other words, the imbalanced learning problem and the
cost-sensitive learning problem may happen simultaneously.
More important, it is also very hard if not impossible to de-
termine numerically the misclassification costs during train-
ing process (Maloof 2003). Therefore, the second learning
target of imbalanced learning problem is to obtain classi-
fication system which could, in general, work well for all
possible class distribution and misclassification costs. This
issue was successfully addressed in binary problems using
ROC analysis and the Area Under the ROC Curve (AUC)
metric (Fawcett 2006).

The properties and merits of ROC curve and AUC are
widely known to the machine learning and data mining com-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

483

munities (Fawcett 2006; Huang and Ling 2005). Generally
speaking, a ROC curve explicitly shows the tradeoff be-
tween the true positive rate and the false positive rate of
a binary classification system on different operating points,
putting the class distribution and the misclassification costs
out of the evaluation of classifiers’ performance. Once the
class distribution and misclassification cost matrix are given,
a categorical classifier with the least total cost can be de-
termined by threshold moving (Lachiche and Flach 2003).
However, it is commonly the case that the ROC curves of
two classifiers cross over at some point in the ROC space,
and thus ROC curve is not a suitable approach for identify-
ing the best classifier in practice. Alternatively, a standard
metric used by researchers to indicate the quality of ROC
curve is AUC (Fawcett 2006). Larger AUC corresponds to
good ROC curve and implies, in general, the classifier can
achieve smaller total cost by moving the threshold given a
specific class distribution and misclassification cost matrix.

The extension of ROC curve to multi-class problem is the
ROC hyper-surface, which inherits all the desirable prop-
erties of ROC curve. For example, it has been shown that
a classifier with good ROC hyper-surface can lead to clas-
sifiers suitable for various class distribution and misclassi-
fication costs via simple re-optimization the its output ma-
trix (Srinivasan 1999; Bourke et al. 2008). However, it is,
again, unlikely that the ROC hyper-surface of a classifier
covers that of another classifier entirely. Furthermore, due
to the increase of the dimensionality of the ROC space,
achieving the optimal ROC hyper-surface is even more dif-
ficult than achieving the optimal ROC curve. Hence, re-
searchers have extended the AUC to multi-class problem
to establish tractable learning targets and to facilitate the
comparison between classifiers. A straightforward gener-
alization of AUC is the Volume Under the ROC hyper-
Surface (VUS) (Ferri, Hernández-orallo, and Salido 2003),
but the computation of VUS is complicated and elusive
(Landgrebe and Duin 2008). Moreover, (Edwards, Metz, and
Nishikawa 2005) has pointed it out theoretically that the
VUS value of a “near guessing” classifier will get close
to a “near perfect” classifier when the number of class
c > 2. Therefore, a simpler generalization of AUC for
multi-class problems, namely MAUC (Hand 2001), has been
much more widely used in recent work (Zhou and Liu 2006;
Cerquides and Mantaras 2005; Sikonja 2004).

During the past decade, a number approaches have been
developed to directly train classifiers with large AUC (Ferri,
Flach, and Hernandez-Orallo 2002; Herschtal and Raskutti
2004; Yan et al. 2003). However, few of them can be easily
extended to multi-class problem. In fact, research on related
topics such as imbalanced learning problems is also highly
focused on binary class problem, while progress on multi-
class problems is limited (He and Garcia 2009). For those re-
lated work on multi-class problems, MAUC was merely em-
ployed as the core indicator (sometimes the only indicator)
for evaluating the performance of a classifier, but not as the
learning target. To the best of our knowledge, the only work
that explicitly aims to seek classifiers with large MAUC ap-
peared very recently, namely Evolutionary AUC Maximiza-
tion (EAM) (Lu, Ke, and Yao 2010). EAM employs an evo-

lutionary algorithm to search for the optimal weights for a
neural network, so that the MAUC of the neural network is
maximized. The computational cost of EAM is reported to
be high while the performance in terms of MAUC is mixed,
as will be shown by our experimental study. In this work,
we explore how to obtain maximum MAUC and propose a
method named MAUC Decomposition based Classification
method (MDC). Briefly speaking, our analysis of MAUC
revealed that the maximization of MAUC can be decom-
posed in to a batch of independent sub-problems. Each sub-
problem can be formulated in such a way that an existing
technique, the RankBoost algorithm (Freund et al. 2003),
can solve it nicely. Hence, the MDC method first decom-
poses the MAUC into sub-problems. Then the RankBoost
algorithm is employed to solve each sub-problem indepen-
dently. Finally, classifiers obtained on all sub-problems are
combined together to form the final classification system.
Extensive empirical studies have been carried out to com-
pare MDC with other 8 relevant methods, and the results
clearly demonstrate the advantages of MDC.

The rest of the paper starts with the analysis of MAUC.
Then, the MDC method is described in detail in Section 3.
In Section 4, experimental studies are presented, followed
by the conclusions in Section 5.

Analysis of MAUC

MAUC: A Multi-class Extension of AUC

Given a set of instances S =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ R

m is
the feature vector of the i-th instance, and yi ∈ {0, 1}
is the label of the i-th instance. A classifier H(xi) → R

output a numerical score1 that indicates the confidence of
xi belonging to class 0. The AUC of this classifier can be
calculated by,

AUC =

∑
xi∈class(0); xj∈class(1) s(xi, xj)

n0 × n1
(1)

where n0 and n1 denote the number of instances in class 0
and class 1 respectively, and s(xi, xj) is defined as:

s(xi, xj) =

{
1, if H(xi) > H(xj);
0.5, if H(xi) = H(xj);
0, if H(xi) < H(xj).

(2)

For multi-class problems (i.e., yi ∈ {1, . . . , c}), a classi-
fier will provide a n×c matrix M . The element mij indicates
the confidence that the i-th instance in S belongs to class j.
The MAUC is defined as,

MAUC =
2

c× (c− 1)

∑
i<j

Aij +Aji

2
(3)

where Aij is the AUC between class i and class j calculated
from the i-th column of M . Note that for multi-class prob-
lems, Aij may not equal to Aji, and thus both of them need
to be involved in the calculation of MAUC (Hand 2001).

1Although some types of classifiers were originally designed to
output the class label directly, most of them have been extended to
produce numerical scores. One typical example is the probabilistic
decision tree (Provost and Domingos 2003).

484

Decomposition of MAUC

Suppose that a multi-class problem is decomposed into
c×(c−1)

2 binary sub-problems in the one-versus-one manner.
Each sub-problem involves two of the c classes. It can be
observed from Eq. (3) that MAUC is actually the average of
the AUC values of all the binary sub-problems. Each AUC
value in this case is calculated twice for corresponding sub-
problem, based on two columns of the matrix M . Hence,
maximizing MAUC involves adjusting the columns of M
inter-dependently, which is very difficult.

Fortunately, the MAUC can also be analyzed in a different
way by re-writing Eq. (3) as Eq. (4),

MAUC =
1

c

c∑
i=1

1

c− 1

c∑
j=1;j �=i

Aij (4)

From Eq. (4), it can be observed that MAUC can be regarded
as the average of Eq. (5) over all columns of M .

Ai =
1

c− 1

c∑
j=1;j �=i

Aij . (5)

Hence, MAUC can be maximized as long as each Ai (1 ≤
i ≤ c) in Eq. (5) is maximized. Note that each Ai is calcu-
lated solely based on the i-th column of M . Thus, the op-
timization of different Ai is not necessarily inter-dependent
and can be done separately. Having this observation in mind,
we may obtain another implication for building classifica-
tion systems with maximum MAUC. To be specific, many
classification techniques, such as neural network, Naive
Bayes and decision tree, are capable of providing the ma-
trix M in a single run. This is a desirable property in many
cases. However, in the context of MAUC, training classifiers
in this way means optimizing all Ai as a whole (i.e., make
the optimization of Ai dependent with one another), and in-
crease the difficulty of obtaining a good classifier. Instead, it
may be much easier to train c classifiers (following the for-
mulation given in Eqs. (4) and (5)), each of which only aims
to achieve one maximum Ai. The ensemble of these classi-
fiers will serve as the final classification system that provides
a desirable MAUC value.

According to the above analysis, we propose to seek a
classification system with large MAUC by solving for each
class i the following sub-problem:

maxAi =
1

c− 1

c∑
j=1;j �=i

Aij

=
1

c− 1

c∑
j=1;j �=i

(∑
x∈class(i);
x′∈class(j)

s(x, x′)
ni × nj

)

=
1

c− 1
× 1

ni

c∑
j=1;j �=i

(
1

nj

∑
x∈class(i);
x′∈class(j)

s(x, x′)
)

(6)

where ni and nj are number of instances in class i and class
j respectively, s(x, x′) is defined the same as Eq. (2).

The MDC Method
For the sub-problem defined by Eq. (6), a classifier needs to
be trained so that the instances from class i is ranked above
instances from the other classes. If an instance x from class
i is ranked above (i.e., having larger score than) an instance
from class j, the classifier will get a reward of 1

(c−1)×ni×nj .
Assuming that the scores of two different instances are also
different, Eq. (6) can be further presented in the following
form:

max
∑
x;x′

D(x, x′)[[H(x) > H(x′)]] (7)

x is an instance in class i, x′ is an instance in class j (j �=
i). [[H(x) > H(x′)]] equals to 1 (0) when H(x) > H(x′)
is true (false). D(x, x′) is the reward for the two instances
being ranked correctly, which is

D(x, x′) =
1

(c− 1)× ni × nj
(8)

By summing up the D(x, x′) of all pairs of x and x′, we
have ∑

x;x′
D(x, x′) = 1 (9)

Eq. (7) is in the form of a typical “learning to rank” prob-
lem. Moreover, with the additional condition given in Eq.
(8), the problem is actually the “bipartite feedback” prob-
lem investigated in a previous work (Freund et al. 2003), and
can be nicely addressed by the RankBoost algorithm pro-
posed therein. RankBoost is a boosting type algorithm which
works by combining a batch of weak learners. In each itera-
tion, a weak classifier is trained. Over the iterations, the fo-
cus will be concentrated on the pairs of instances that are dif-
ficult to rank correctly. Specifically, the RankBoost.B algo-
rithm (Freund et al. 2003) fit our problem perfectly. There-
fore, it is directly employed in this work as the sub-problem
solver and decision stump is employed as the weak learner.
The only modification we made to the RankBoost.B algo-
rithm is the initial weights assigned to each instance, which
is determined using Eq. (8). Readers are referred to the orig-
inal publication of the RankBoost algorithm for its imple-
mentation details.

By now, all details of the proposed MDC method have
been presented. To summarize, MDC first decompose a
multi-class problem into c sub-problems. Then, Rank-
Boost.B algorithm is applied to solve the sub-problems sepa-
rately. After that, the final classification system is composed
of the classifiers trained for all sub-problems. The pseudo-
code of the MDC method is presented in Algorithm 1.

Experiments

Data Sets

16 data sets were used in our experiments, 14 of them (ex-
cept phoneme data set and washington data set) are from
UCI Machine Learning Repository (Asuncion and Newman
2007), washington data set is hyperspectral imaginary data
set (Neher and Srivastava 2005), and phoneme (Hastie, Tib-
shirani, and Friedman 2001) data set is from handwritten
digits recognition problem. Information of these data sets
are summarized in Table 1.

485

Algorithm 1 Pseudo-code of MDC
Input: data set consist of c classes
for i = 1 to c do

v1(x) =

{ 1
(c−1)×ni , if x ∈ class(i);
1
nj , if x ∈ class(j); j �= i.

for t = 1 to T do
train weak learner ht using distribution D(x, x′) =
vt(x)× vt(x

′)
choose αt ∈ R

update:

vt+1(x) =

{
vt(x) exp(−αtht(x))

Zt
, if x ∈ class(i);

vt(x) exp(αtht(x))

Z
′
t

, if x ∈ class(j); j �= i.

where:
Zt =

∑
x∈class(i) vt(x) exp(−αtht(x))

Z
′
t =

∑
x/∈class(i) vt(x) exp(αtht(x))

end for
Hi(x) =

∑T
t=1 αtht(x)

end for
H = {H1, H2, . . . , Hc}

Experimental setup

We compared MDC with other 8 classification methods:
Rescale (Zhou and Liu 2006), Multi-class RankBoost, EAM
(Lu, Ke, and Yao 2010) , Naive Bayes, 1-Nearest Neighbor
(1NN), C4.5, Artificial Neural Network (ANN), and Sup-
port Vector Machines (SVM) with RBF kernel. Rescale is an
instances weighting method (using C4.5 as the base classi-
fier) which was designed for multi-class cost-sensitive learn-
ing and imbalanced learning. It has been reported to be ca-
pable of achieving large MAUC on multi-class problems.
Since MDC employs RankBoost as the sub-problem solver,
it is interesting to examine whether RankBoost can be di-
rectly extended to maximize MAUC. Hence, we modified
the RankBoost, which was originally designed for binary
class problems, to a multi-class version and obtained the
Multi-class RankBoost algorithm (we call it M-RankBoost
hereafter). The extension is implemented by decomposing
the multi-class problem into a number of binary class prob-
lems in one-versus-all manner. As mentioned before, EAM
might be the first attempt that explicitly seeks classifiers with
large MAUC, thus it is included into the experiments. The
remaining 5 methods are all mainstream machine learning
techniques. They not only provide a baseline for the empir-
ical studies, but may also tell whether designing a specific
approach with respect to MAUC is worthwhile.

All the compared methods were implemented on WEKA
(Witten and Frank 2000) platform. The number of weak
learners was set to 50 for both MDC and M-RankBoost. The
parameter c and γ of SVM were set to be the values which
maximize the average MAUC in a 3-fold cross-validation on
the training data set of a 5-fold cross-validation. The search

Table 1: Summary of the data sets used in the experiments
Data set No. of features No. of instances No. of classes

abalone 8 4139 18
arrhythmia 279 416 7
contraceptive 9 1473 3
glass 9 192 4
hayes-roth 3 160 3
isolet 617 7797 26
mfeat 649 2000 10
page-blocks 10 5473 5
phoneme 256 4509 5
shuttle 9 57977 5
splice 60 3190 3
thyroid-allhypo 28 3770 3
thyroid-allrep 28 3772 4
washington 210 11200 7
waveform40 40 5000 3
yeast 8 1479 9

range of c is 2−5, 2−3, . . . , 215, and the search range of γ
is 2−15, 2−13, . . . , 23. The generation number of EAM was
set to 500, and all the other parameters were set according
to the original publication. For each data set, 20 times 5-
fold cross-validation were performed. The average MAUC
of each method on every data set is reported in Table 2.
To check whether the differences between MDC and other
methods are significant, Wilcoxon signed rank statistical test
with 95% confidence level has been conducted. The results
of these statistical tests is also given in Table 2. Besides, the
best average MAUC value on each data set was highlighted
in boldface.

Results

From Table 2, it can be observed that MDC achieved the best
results on 12 out of 16 data sets. The advantage of MDC
over all the other 8 compared methods is statistically sig-
nificant on 8 data sets. Concretely, MDC performed signif-
icantly worse than ANN on the abalone, isolet and wave-
form40 data sets, and was outperformed by EAM on the
waveform40 data set. Besides, MDC is significantly better
than Rescale, 1NN, Naive Bayes, C4.5 and SVM on al-
most all data sets, with merely two exceptions for compar-
isons with Rescale and C4.5 (where the difference of MDC
and the compared method is insignificant), respectively. M-
RankBoost was significantly outperformed by MDC on 11
data sets. On the remaining 5 data sets, difference between
the two methods is insignificant. To summarize, MDC over-
all performed the best among all the 9 methods involved in
the experiments. The superiority of MDC to M-RankBoost
showed that the proposed MAUC decomposition strategy is
crucial to the appealing performance of MDC, since it is the
only difference between MDC and M-RankBoost. As a re-
cently proposed method, EAM did not show good perfor-
mance in the experiment. One possible reason might be that
the generation number was set too small to make EAM con-
verge to good solutions. However, as can be found in Table
3, the runtime of EAM is the longest, and is at least ten times
longer than that of MDC in the current setting. Hence, we
feel it impractical to evaluate EAM with a larger generation

486

Table 2: The MAUC achieved by the 9 compared methods. The MAUC value of each method is averaged over 20 independent
runs of 5-fold cross-validation. For each data set, Wilcoxon signed-rank test with 95% confidence level is employed to compare
the 8 other methods with MDC. The methods that performed significantly worse (better) than MDC is highlighted with †(‡).
The largest MAUC on each data set is in boldface.

MDC Rescale M-RankBoost EAM Naive Bayes 1NN C4.5 SVM ANN

abalone 0.7847 0.7361† 0.7773† 0.7491† 0.7564† 0.5486† 0.5972† 0.5632† 0.7978‡

arrhythmia 0.8623 0.7539† 0.8541† 0.7262† 0.8144† 0.6452† 0.7675† 0.7465† 0.8404†

contraceptive 0.7311 0.6434† 0.7280† 0.7090† 0.6876† 0.5603† 0.6597† 0.6427† 0.7149†

glass 0.8868 0.7837† 0.8853 0.8157† 0.8130† 0.7659† 0.7924† 0.7491† 0.8344†

hayes-roth 0.9564 0.9515 0.9391† 0.8633† 0.9059† 0.9077† 0.9494 0.8979† 0.8317†

isolet 0.9955 0.9265† 0.9955 0.8802† 0.9840† 0.9422† 0.9264† 0.9858† 0.9983‡

mfeat 0.9979 0.9710† 0.9979 0.8430† 0.9904† 0.9885† 0.9710† 0.9844† 0.9978
page-blocks 0.9869 0.9343† 0.9758† 0.9458† 0.9503† 0.8490† 0.9386† 0.7884† 0.9161†

phoneme 0.9853 0.9333† 0.9852† 0.9294† 0.9737† 0.9206† 0.9264† 0.9510† 0.9838†

shuttle 0.9998 0.9998† 0.9995† 0.9250† 0.9655† 0.9830† 0.9958† 0.9883† 0.9011†

splice 0.9869 0.9561† 0.9866† 0.8930† 0.9749† 0.7509† 0.9410† 0.8940† 0.9550†

thyroid-allhypo 0.9983 0.9905† 0.9971† 0.9629† 0.9274† 0.7003† 0.9893† 0.8826† 0.9094†

thyroid-allrep 0.9622 0.9382† 0.9563† 0.8309† 0.9126† 0.6612† 0.9182† 0.8214† 0.9053†

washington 0.9855 0.9314† 0.9855 0.9070† 0.9662† 0.8857† 0.9314† 0.9452† 0.9011†

waveform40 0.9583 0.8283† 0.9583 0.9669‡ 0.9562† 0.8003† 0.8299† 0.9006† 0.9625‡

yeast 0.8547 0.7492† 0.8340† 0.8523 0.8539 0.7064† 0.7420† 0.7280† 0.8229†

number.
Table 3 summarizes the runtime of the compared meth-

ods. It can be observed that MDC is computationally less
expensive than ANN and EAM. The runtime of it is com-
parable to that of M-RankBoost and SVM , while is much
longer than that of Rescale, Naive Bayes, 1NN and C4.5.

Conclusions

For multi-class classification problem, a classifier with large
MAUC can be easily adapted to various scenarios in which
the class distribution is imbalanced and/or misclassification
costs is unequal, and to the situations that the class distribu-
tion and misclassification costs change over time. Therefore,
MAUC is an important intermediate learning target for tack-
ling real-world problems in uncertain environments. In spite
of this, few techniques have been developed for maximizing
the MAUC of a classification system. This paper analyzes
the MAUC and shows that MAUC can be decomposed to fa-
cilitate the maximization of MAUC. Based on the analysis,
a novel method is proposed to build classification systems
with maximum MAUC. It is shown that the proposed MDC
method outperformed a number of traditional mainstream
machine learning techniques as well as recent methods that
were claimed to favor MAUC. Since large MAUC is desir-
able in the context of class imbalanced learning and cost-
sensitive learning, the proposed method is a general tech-
nique that is applicable to both types of problems. Further-
more, the analysis of MAUC is applicable for any type of
learning algorithms that are capable of handling the sub-
problem defined in Eq. (5). Therefore, although RankBoost
algorithm is adopted in this work, the MDC method can eas-
ily accommodate other learning algorithms as well.

For the above-mentioned uncertain environments, it has
been shown that the integration of multiple ROC curves (i.e.,
multiple classifiers) can be more robust than using a single

ROC curve (Provost and Fawcett 2001). To achieve this, a
technique is required to be capable of exploring classifiers
that perform well in different region of the ROC space, as
done in a recent work (Fawcett 2008). However, such work
is still restricted to binary class problems, while extension to
multi-class problems is never a trivial task. For multi-class
problems, one potential approach for generating a good en-
semble of classifiers is to seek classifiers with large MAUC,
while exhibit diverse characteristics in the ROC space. The
method proposed in this paper plays an important role in
such an approach, and the remaining issues will be investi-
gated in the future.

References

Asuncion, A., and Newman, D. 2007.
UCI machine learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Bourke, C.; Deng, K.; Scott, S. D.; and Vinodchandran, R.
E. S. N. V. 2008. On reoptimizing multi-class classifiers.
Machine Learning 71(2-3):219–242.
Cerquides, J., and Mantaras, R. L. D. 2005. Robust Bayesian
linear classifier ensembles. In Proceedings of 16th European
Conference on Machine Learning, 72–83.
Edwards, D. C.; Metz, C. E.; and Nishikawa, R. M. 2005.
The hypervolume under the ROC hypersurface of ”near-
guessing” and ”near-perfect” observers in N-class classi-
fication tasks. IEEE transactions on medical imaging
24(3):293–239.
Elkan, C. 2001. The Foundations of Cost-Sensitive Learn-
ing. In Proceedings of 17th International Joint Conference
on Artificial Intelligence, 973–978.
Fawcett, T. 2006. An introduction to ROC analysis. Pattern
Recognition Letters 27:861–874.

487

Table 3: Average runtime (in seconds) of the compared methods on the 16 data sets.
MDC Rescale M-RankBoost EAM Naive Bayes 1NN C4.5 SVM ANN

abalone 4.437 0.147 4.419 3262.416 0.094 1.194 0.556 191.044 45.166
arrhythmia 3.775 0.394 3.816 533.641 0.103 0.369 0.438 0.819 396.262
contraceptive 0.206 0.084 0.200 714.859 0.016 0.159 0.075 1.181 3.772
glass 0.050 0.013 0.050 112.609 0.006 0.003 0.006 0.047 0.550
hayes-roth 0.013 0.009 0.012 119.142 0.006 0.000 0.003 0.016 0.184
isolet 1052.337 68.463 1029.863 18638.360 13.216 288.525 68.856 99.416 35685.656
mfeat 79.662 4.522 79.497 3651.115 1.672 20.347 4.619 9.762 9564.391
page-blocks 2.100 0.313 2.078 3811.868 0.069 2.784 0.294 3.331 19.847
phoneme 48.950 6.681 50.037 3511.208 1.134 42.078 7.209 10.931 3321.409
shuttle 20.781 4.691 21.234 149415.502 0.812 311.475 3.591 15.934 196.512
splice 2.659 0.513 2.644 1667.820 0.138 5.722 0.541 10.209 142.394
thyroid-allhypo 1.469 0.094 1.456 1540.512 0.094 3.559 0.075 2.500 43.841
thyroid-allrep 1.922 0.156 1.928 3007.865 0.103 3.400 0.109 2.559 48.234
washington 142.562 14.631 148.444 10061.219 2.834 215.253 15.281 85.600 5601.959
waveform40 4.453 1.131 4.437 1528.848 0.162 9.469 1.150 7.794 111.141
yeast 0.609 0.078 0.603 1122.179 0.028 0.147 0.081 0.456 7.012

Fawcett, T. 2008. PRIE: a system for generating rulelists to
maximize ROC performance. Data Mining and Knowledge
Discovery 17:207–224.
Ferri, C.; Flach, P.; and Hernandez-Orallo, J. 2002. Learn-
ing decision trees using the area under the ROC curve. In
Proceedings of 19th International Conference on Machine
Learning, 139–146.
Ferri, C.; Hernández-orallo, J.; and Salido, M. A. 2003.
Volume under the ROC Surface for Multi-class Problems.
In Proceedings of 14th European Conference on Machine
Learning, 108–120.
Freund, Y.; Iyer, R.; Schapire, R. E.; and Singer, Y. 2003.
An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research 4(6):933–969.
Hand, D. J. 2001. A simple generalisation of the area un-
der the ROC curve for multiple class classification problems.
Machine Learning 45:171–186.
Hastie, T.; Tibshirani, R.; and Friedman, J. 2001. The El-
ements of Statistical Learning, Springer series in statistics.
New York: Springer.
He, H. B., and Garcia, E. A. 2009. Learning from imbal-
anced data. IEEE Transactions on Knowledge and Data En-
gineering 21(9):1263–1284.
Herschtal, A., and Raskutti, B. 2004. Optimising area under
the ROC curve using gradient descent. In Proceedings of
21st International Conference on Machine Learning. New
York, New York, USA: ACM Press.
Huang, J., and Ling, C. X. 2005. Using AUC and accu-
racy in evaluating learning algorithms. IEEE Transactions
on Knowledge and Data Engineering 17(3):299–310.
Kubat, M., and Holte, R. 1998. Machine learning for the de-
tection of oil spills in satellite radar images. Machine Learn-
ing 30(2-3):195–215.
Lachiche, N., and Flach, P. 2003. Improving accuracy and
cost of two-class and multi-class probabilistic classifiers us-
ing ROC curves. In Proceedings of the 20th International
Conference on Machine Learning, 416–423.

Landgrebe, T. C. W., and Duin, R. P. W. 2008. Efficient mul-
ticlass ROC approximation by decomposition via confusion
matrix perturbation analysis. IEEE transactions on pattern
analysis and machine intelligence 30(5):810–22.
Lu, X. F.; Ke, T.; and Yao, X. 2010. Evolving Neural Net-
works with Maximum AUC for Imbalanced Data Classifica-
tion. In The 5th International Conference on Hybrid Artifi-
cial Intelligence Systems (HAIS2010), 335–342.
Maloof, M. A. 2003. Learning when data sets are imbal-
anced and when costs are unequal and unknown. In Working
Notes of the ICML’03 Workshop on Learning from Imbal-
anced Data Sets.
Neher, R., and Srivastava, a. 2005. A Bayesian MRF
framework for labeling terrain using hyperspectral imag-
ing. IEEE Transactions on Geoscience and Remote Sensing
43(6):1363–1374.
Provost, F., and Domingos, P. 2003. Tree induction for
probability-based ranking. Machine Learning 5:199–215.
Provost, F., and Fawcett, T. 2001. Robust classification for
imprecise environments. Machine Learning 42:203–231.
Sikonja, M. R. 2004. Improving Random Forests. In Pro-
ceedings of 15th European Conference on Machine Learn-
ing, 359–370.
Srinivasan, A. 1999. Note on the location of optimal classi-
fiers in n-dimensional ROC space. Technical Report PRG-
TR-2-99, Oxford University.
Witten, I., and Frank, E. 2000. Data mining practical ma-
chine learning tools and techniques with JAVA implementa-
tions. Morgan Kaufmann Publishers.
Yan, L.; Dodier, R.; Mozer, M. C.; and Wolniewicz, R. 2003.
Optimizing Classifier Performance via an Approximation
to the Wilcoxon-Mann-Whitney Statistic. In Proceedings
of the 20th International Conference on Machine Learning,
848–855.
Zhou, Z. H., and Liu, X. Y. 2006. On Multi-Class Cost-
Sensitive Learning. In Proceedings of the 21st National
Conference on Artificial Intelligence, 567–572.

488

