
Efficiently Learning a Distance Metric for
Large Margin Nearest Neighbor Classification

Kyoungup Park1,3, Chunhua Shen2,1∗, Zhihui Hao4†, Junae Kim1,3

1NICTA‡ 2University of Adelaide 3Australian National University 4Beijing Institute of Technology

Abstract
We concern the problem of learning a Mahalanobis distance
metric for improving nearest neighbor classification. Our
work is built upon the large margin nearest neighbor (LMNN)
classification framework. Due to the semidefiniteness con-
straint in the optimization problem of LMNN, it is not scal-
able in terms of the dimensionality of the input data. The
original LMNN solver partially alleviates this problem by
adopting alternating projection methods instead of standard
interior-point methods. Still, at each iteration, the computa-
tion complexity is at least O(D3) (D is the dimension of in-
put data). In this work, we propose a column generation based
algorithm to solve the LMNN optimization problem much
more efficiently. Our algorithm is much more scalable in that
at each iteration, it does not need full eigen-decomposition.
Instead, we only need to find the leading eigenvalue and its
corresponding eigenvector, which is of O(D2) complexity.
Experiments show the efficiency and efficacy of our algo-
rithms.

Introduction
The distance metric learning is an important topic in ma-
chine learning and has been successfully integrated with
classification and clustering methods, including k-nearest
neighbor (kNN) and k-means clustering. The basic idea is
to learn a metric with which distances between examples
belonging to the same class are minimized, while distances
between different classes are maximized. For instance, given
a bunch of points (xi,xj), we are interesting in designing a
quadratic Mahalanobis distance distij = ‖xi − xj‖M =√

(xi − xj)�M(xi − xj) with M � 0. Here M is a pos-
itive semidefinite (p.s.d) matrix. Therefore, a constrained
semidefinite programming (SDP) is usually involved, which
makes it a difficult problem to solve.

∗C. Shen’s research was supported in part by the Australian Re-
search Council through its special research initiative in bionic vi-
sion science and technology grant to Bionic Vision Australia.

†Z. Hao’s contribution was made when visiting NICTA Can-
berra Research Laboratory.

‡NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Center of Excellence program.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since the first metric learning algorithm based on SDP
was proposed by (Xing et al. 2002) for learning a Maha-
lanobis metric for unsupervised clustering, much research
interest has been focused on distance metric learning, in-
cluding Neighborhood Component Analysis (NCA) (Gold-
berger et al. 2004), Maximally Collapsing Metric Learn-
ing (MCML) (Globerson and Roweis 2005), Large Mar-
gin Nearest Neighbor (LMNN) (Weinberger, Blitzer, and
Saul 2005), and Positive Semidefinite Boosting (PSD-
Boost) (Shen, Welsh, and Wang 2008).

The work presented here is mainly motivated by the work
of LMNN and PSDBoost. The idea of LMNN is to max-
imize the margin between different classes, while keeping
the distances between same-class instances as minimum
as possible. LMNN has been reported the state-of-the-art
classification performance (Weinberger, Blitzer, and Saul
2005). However, a drawback of LMNN is that it is not scal-
able in terms of dimensionality of the training data due to
the semidefinite-ness constraint. The original implementa-
tion of LMNN partially remedies this problem by employ-
ing an alternating projection method instead of using con-
ventional interior-point methods. However, the computation
complexity is still high: at each iteration, the complexity is at
least O(D3) with D being the dimension of the input data.
At each iteration, a full eigen-decomposition is needed to
project the intermediate solution to the positive semidefi-
nite cone. Another work that is similar to ours is PSDBoost
(Shen, Welsh, and Wang 2008), where the SDP problem in-
volved in metric learning is converted into an additive Lin-
ear Programming (LP) problem based on the observation
that any positive semidefinite matrix can be decomposed
into a sum of linear positive combination of trace-one rank-
one matrices. Although a simplified version of PSDBoost is
proposed later—BoostMetric in (Shen et al. 2009)—which
performs a stage-wise learning procedure for minimizing an
exponential loss function, PSDBoost is still advantageous in
terms of the convergence speed due to the totally corrective
property, and flexible in optimizing any type of loss func-
tions. We implement our algorithm in this work using both
the exponential loss and logistic loss. Note that both PS-
DBoost and BoostMetric solve a simplified version of the
original LMNN optimization problem in the sense that they
ignore the within-class distance information. In contrast to
the within-class distance as a regularization term in LMNN,

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

453

PSDBoost or BoostMetric simply bounds the trace of M as
regularization. It remains unclear if the matrix generation
technique in PSDBoost or BoostMetric can be used to solve
the original optimization problem of LMNN. We give an af-
firmative answer to this question in this work.

In this work, we propose a column generation based al-
gorithm, similar to PSDBoost and BoostMetric. It is much
more scalable in high-dimensional data sets since it avoids
the full eigen-decomposition. However, unlike PSDBoost
which only takes the distances between different classes into
consideration, we simultaneously optimize the intra-class
and inter-class distances in this paper. Therefore, it can be
viewed as a general extension of PSDBoost to some extent.
We also introduce the Stochastic Gradient Descent (SGD)
to enable our algorithm on large-scale data sets. SGD is sim-
ple to implement and has shown convincing performance for
coping with large datasets and online learning (Bottou and
Bousquet 2008; Shalev-Shwartz and Srebro 2008).

Algorithms
In this section, firstly, we review the LMNN method and
then propose our algorithm based on the column generation
technique.

Let xi ∈ R
D, i = 1, 2, . . . , n denote the training samples.

D is the dimensionality of the input feature vector and n is
the total number of the data set. The Mahalanobis distance
can be viewed as a linear projection with matrix L ∈ R

D×d

followed by calculating the Euclidean distance. For points
(xi,xj), the Mahalanobis distance is defined as

dist2ij =
∥∥L�xi − L�xj

∥∥2
2
= (xi − xj)

�LL�(xi − xj).

If we directly work on L, the pair-wise distance compari-
son will result in non-convex constraints and thus the overall
problem is non-convex (the difference of quadratic terms in
L is non-convex). Therefore, we instead try to learn the ma-
trix M = LL�, which changes the problem into a convex
one in M (Boyd and Vandenberghe 2004). This lineariza-
tion technique has been widely used to convexify a problem
in convex optimization.

Given a training data set, a triplet set S = {(xi,xj ,xl)r
| distij < distil}, r = 1, . . . , |S| is selected among the k
nearest neighbors for each instance xi ∈ R

D. Here xj has
the same label with xi, while the xl has a different one. |S|
denotes the size of the set. The optimization problem defined
in LMNN is as below:
min

∑
ij

(xi − xj)
�M(xi − xj) + C

∑
r

ξr (P0)

s.t. (xi − xl)
�M(xi − xl)− (xi − xj)

�M(xi − xj)

≥ 1− ξr, r = 1, . . . , |S|
ξr ≥ 0, M � 0.

Like in Support Vector Machines (SVM) (Cristianini and
Shawe-Taylor 2000), slack variables ξr are introduced to im-
plement soft margins. To simplify exposition, denote

A =
∑
ij

(xi − xj)(xi − xj)
�, (1)

Br = (xi − xl)(xi − xl)
� − (xi − xj)(xi − xj)

�. (2)

Then we can rewrite the problem as

min 〈M,A〉+ C
∑
r

ξr (P1)

s.t. 〈M,Br〉 ≥ 1− ξr, ∀r,
ξr ≥ 0,

M � 0.

Note that any positive semidefinite matrix can be decom-
posed into a sum of linear positive combination of trace-
one rank-one matrices, i.e. M =

∑T
t=1 wtZt with wt ≥

0, rank(Zt) = 1 and Tr(Zt) = 1, for all t = 1, . . . , T
(Shen, Welsh, and Wang 2008). Therefore we have

〈M,A〉 =
∑
t

wt 〈Zt,A〉 =
∑
t

wtat

〈M,Br〉 =
∑
t

wt 〈Zt,Br〉 =
∑
t

wtHrt = Hr:w,

then the optimization program becomes

min
∑
t

wtat + C
∑
r

ξr (P2)

s.t.
∑
t

wtHrt ≥ 1− ξr, ξr ≥ 0, ∀r; wt ≥ 0.

Here we have introduced a new matrix H with Hrt =
〈Zt,Br〉; and Hr: is the r-th row. PSDBoost does not have
the term of 〈M,A〉, which measures the intra-class dis-
tances of input data. Instead, PSDBoost essentially sets A
to be an identity matrix. In this sense, our algorithm solves
a more general problem than the former.

Learning with the Exponential Loss
Different loss functions have been explored in boosting
research (Schapire 1999) to design distinctive algorithms,
which motivates us to replace the hinge loss in (P2) with a
smooth loss function, for example, the exponential loss.

Let us define the margin ρr = dist2il − dist2ij . Then the
problem with exponential loss is

min υ
∑
t

wtat + log

(∑
r

exp(−ρr)
)

(P2.1)

s.t. w ≥ 0, ρr = Hr:w, ∀r,
where υ = 1/C is the regularization coefficient. Note that (i)
we solve the logarithmic version of the sum of exponential
loss instead, which does not change the optimization prob-
lem since the logarithm function is monotonically decreas-
ing. Still, this is a convex problem; (ii) The auxiliary vari-
ables ρr are introduced for deriving a Lagrange dual prob-
lem, which will become clear later.

The Lagrangian of the problem (P2.1) is defined as the
augmented loss function:

L(ρ,w,u,p) = υ
∑
t

wtat + log

(∑
r

exp(−ρr)
)

+
∑
r

ur(ρr −
∑
t

wtHrt)−
∑
t

ptwt

454

where u and p ≥ 0 are Lagrange multipliers. The dual prob-
lem is defined as the infimum of the Lagrangian:

inf
ρ,w

L = inf
ρ

(
log

(∑
r

exp(−ρr)
)

+
∑
r

urρr

)

+ inf
w

(
υa� −

∑
r

urHr: − p�
)
w.

Considering that the partial derivative of the above equa-
tion on wt vanishes at optimal value, i.e. ∂L

∂wt
= 0 and ap-

plying p ≥ 0, we have

υat ≥
∑
r

urHr:. (3)

Since the Fenchel conjugate of log-sum-exp function
is the negative entropy function (Boyd and Vandenberghe
2004), the Lagrange dual problem of (P2.1) can be written
as

max
u
−
∑
r

ur log ur (D2.1)

s.t.
∑
r

urHr: ≤ υat,

∑
r

ur = 1, ur ≥ 0.

Due to the strong duality, the dual gap should be zero,
which means that the optimal value of the primal and the
dual problem should be the same. We can establish the link
between the primal and dual variables at optimality by the
KKT conditions:

u∗
r =

exp(−ρ∗r)∑
r exp(−ρ∗r)

. (4)

Clearly, given the primal value, we can obtain the dual vari-
able ur, r = 1, . . . |S|.
Learning with the Logistic Loss
Next we apply the logistic loss to the original primal prob-
lem (P2), and then the problem turns to be

min υ
∑
t

wtat +
∑
r

log (1 + exp(−ρr)) (P2.2)

s.t. w ≥ 0

ρr =
∑
t

wtHrt = Hr:w ∀r

where υ = 1/C. It is easy to derive the dual problem of
(P2.2) as in the case of exponential loss. The Lagrange dual
problem can be written as

max
u
−
∑
r

((1− ur) log(1− ur) + ur log ur) (D2.2)

s.t. 0 < ur < 1,
∑
r

urHr: ≤ υat.

The KKT conditions in this case link the optimal values
as below:

u∗
r =

exp(−ρ∗r)
1 + exp(−ρ∗r)

. (5)

Algorithm 1 Large margin nearest neighbor learning using
column generation

Input:

• Triplets (xi,xj ,xk) ∈ S

• Set T for the maximum number of iterations.

• Set the regularization parameter υ.

1 Initialize:
2 u0

r = 1
|S| , r = 1 · · · |S|

3 Compute A and Br, r = 1, 2, · · · , using (1) and (2).
for t = 1, 2, · · · , T do

4 Find a new base Zt by finding λmax(Â) and the
eigenvector in (7);

5 if λmax(Â) < 0 then
6 break (converged);

7 Add the matrix Zt to the problem (P2.1) or (P2.2);
8 Update w by solving the primal problem, using tools like

L-BFGS-B;
9 Update u in (4);

Output: The p.s.d. matrix M ∈ R
D×D , M =

∑T
t=1 wtZt.

Column Generation Based Optimization
Obviously, if all the base matrix Zt are known, we can
solve the primal problem easily by any optimization tool
like L-BFGS-B. However, the number of the candidates may
be infinite and can not be accessed at once. To overcome
this difficulty, we use the column generation (CG) tech-
nique (Lübbecke and Desrosiers 2005), which helps us to
solve the problem by finding the most violated constraint at
each iteration and adding them one by one until the opti-
mization problem converges.

So here, we need to solve the following problem at each
iteration

Z∗ = argmaxZ
∑
r

urHr: − υat (6)

= argmaxZ

〈∑
r

urBr − υA,Zt

〉
.

Now, we can see that the above optimization problem
(6) can be efficiently solved by eigenvalue-decomposition
(EVD). If we introduce a new symbol

Â =
∑
r

urBr − υA, (7)

it is clear that the largest eigenvalue of Â, λmax(Â), and its
corresponding eigenvector ξ1 gives the solution to the above
problem. Also, λmax(Â) can be used as a stop criteria. If
λmax(Â) < 0, it means that we cannot find any violated
base matrix and the optimization problem converges. Algo-
rithm 1 summarizes the entire learning process.

More Efficient Stochastic Gradient Descent
Here we introduce the stochastic gradient descent (SGD)
method to speed up the computation in updating w when

455

Dataset # train # test dim. # classes # runs
bal 439 186 4 3 5
synthetic control 420 180 60 6 5
wine 126 52 13 3 5
german.numer 700 300 24 2 5
splice 701 299 60 2 5
connect-4 701 299 126 2 5
CTG 1493 633 21 10 5
segment 1617 693 19 7 5
spambase 3222 1379 57 2 5
mushrooms 5688 2436 112 2 5
usps 7700 3300 256 10 5
letter 14015 5985 16 26 5
mnist (PCA) 60000 10000 300 10 5
optdigit 3823 1797 64 10 1
mnist 60000 10000 784 10 1

Table 1: Properties of Data Sets

solving the primal problem. Stochastic gradient descent is
an optimization method to minimize an objective function
which is a sum of a set of differentiable functions. Clearly in
our case, both primal problems belong to this category.

Because the triple set can be very large, to assess the ob-
jective function may result in expensive evaluations of the
gradients from all summand functions. If a huge training set
is given but simple formulas are not available for that case,
evaluating the sums of gradients costs a lot because comput-
ing the gradient demands the evaluation of all the summand
functions’ gradients. To decrease the computational com-
plexity at each iteration, stochastic gradient descent takes
samples of a subset of summand functions at each iteration,
which is intuitive.

There are many versions of stochastic gradient methods,
according to the different sampling techniques and differ-
ent sizes of subsets. We simply apply the idea by uniformly
randomly generating the triplets (Line 8 in Algorithm 1).
Note that in some cases, the summand functions may be of
a simple form, which enables inexpensive evaluations of the
sum-function and the sum-gradient. In these cases, stochas-
tic sampling may not help to reduce the computational time.

More sophisticated methods in active learning may be ap-
plied here to achieve even more efficiency. We leave this as
a future topic.

Experiments
We performed experiments using various data sets from UCI
repository1 and LIBSVM2. We have all data sets scaled be-
tween −1 and 1, similar to the preprocessing in LIBSVM
data sets. Then, train/test sets are randomly shuffled and di-
vided into 70/30 except for the case a pre-split is provided
(mnist and optdigit). We generated the triplets from the train-
ing parts in the same way as (Weinberger, Blitzer, and Saul
2005). For each instance, 3 nearest neighbors with same and
different labels were grouped respectively. All the experi-
ments were run for 5 times per data set. The detailed exper-
iment conditions are summarized in the Table 1.

1http://archive.ics.uci.edu/ml/datasets.html
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

0 100 200 300 400 500
9.32

9.34

9.36

9.38

9.4

9.42

9.44

9.46

9.48

9.5
Cost

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45
Test Error

Figure 1: Comparison of the objective values and test error
rates in the iteration number. The objective value converges
fast and becomes stable quickly.

We use the original LMNN source code from the authors’
website. We let LMNN update the matrix M (M = LL�)
for global optimization. For our methods, we simply set the
parameter υ as small as 10−7 and the maximum iteration
T = 500. We run our method on one of the data sets and plot
the results in Figure 1. As shown in Figure 1, our method
converges very fast but can experience so-called tailing-off
effect, which is also mentioned in (Shen, Welsh, and Wang
2008). An approximate convergence is already obtained at
the early iterations and the remaining iterations seem use-
less to the final accuracy. Therefore, we may be able to stop
the optimization earlier to obtain an acceptable accuracy. For
this reason, we calculate the relative difference of the objec-
tive function at neighboring iterations and stop the optimiza-
tion using this criterion.

Table 2 shows the test errors (%) of different loss func-
tions with SGD or deterministic gradient descent. The base-
line algorithm is the ‘Euclidean’ which uses the standard Eu-
clidean distance for the kNN classifier. As aforementioned,
LMNN uses the Hinge loss function and our methods use
the exponential and the logistic loss functions respectively.
Again, we uniformly randomly sample 50% of the triplets
to calculate the gradient in the case of both exponential and
logistic loss functions. As shown in the table, our results
achieve similar test errors to LMNN and the results are per-
sistently better than those of Euclidean.

Table 3 compares the computational time of our methods
and LMNN. The experiments were performed on a worksta-
tion with an Intel Xeon E5520 CPU (2.27GHz) and 32GB
RAM (only single core is used). Our code is implemented
in MATLAB. We have used L-BFGS-B as the gradient de-
scent optimization tool for our methods. As can be seen from
the table, our algorithms are consistently faster than LMNN.
Another observation is that random sampling may not be al-
ways faster than the standard gradient descent due to the fact
that random sampling may need more iterations. In general,
random sampling is faster than the deterministic counterpart.

Our next experiment is to compare the computational time
in different dimensions and sample sizes. We use a toy data
generated artificially. For the test against the input dimen-
sion, we keep the sample size of the training data to be 500.
For the test against sample size, we fix the input dimen-

456

Dataset Euclidean Hinge (LMNN) Exponential Exp. (Rand) Logistic Logistic (Rand)
bal 18.39 (1.63) 17.74 (2.01) 10.11 (3.03) 9.68 (2.87) 9.68 (2.77) 10.22 (2.63)
synthetic control 2.22 (0.56) 0.44 (0.46) 0.89 (0.84) 0.56 (0.96) 0.89 (0.50) 0.44 (0.46)
wine 4.23 (2.11) 2.69 (2.19) 2.31 (1.61) 0.77 (1.05) 2.31 (2.11) 3.08 (1.72)
german.numer 31.07 (1.38) 31.00 (1.58) 28.87 (2.85) 29.4 (3.03) 29.87 (0.80) 30.47 (2.14)
splice 30.5 (0.44) 18.93 (2.44) 19.73 (2.26) 19.33 (2.26) 20 (1.65) 19.53 (0.51)
connect-4 31.04 (1.56) 19.67 (2.47) 19.67 (3.07) 19.53 (2.12) 19.06 (2.91) 20 (2.62)
CTG 23.51 (1.39) 21.42 (0.68) 21.64 (1.16) 20.76 (1.12) 20.73 (0.89) 20.98 (1.14)
segment 3.92 (0.47) 3.61 (0.72) 3.29 (0.66) 3.32 (0.57) 3.35 (0.66) 3.35 (0.75)
spambase 10.11 (0.34) 7.9 (0.39) 8.77 (0.26) 8.17 (0.45) 7.47 (0.75) 7.24 (0.62)
mushrooms 0 (0) 0.27 (0.28) 0.26 (0.07) 0.35 (0.38) 0.05 (0.13) 0.01 (0.03)
usps 4.88 (0.26) 2.41 (0.22) 2.52 (0.27) 2.38 (0.16) 2.6 (0.22) 2.58 (0.17)
letter 4.62 (0.13) 3.60 (0.09) 3.18 (0.25) 3.25 (0.35) 2.79 (0.17) 2.8 (0.18)
mnist (PCA) 2.37 (0.13) 1.76 (0.15) 1.80 (0.15) 1.76 (0.13) 2.29 (0.23) 2.28 (0.24)
optdigit 2.11 (-) 1.67 (-) 1.56 (-) 1.78 (-) 1.67 (-) 1.56 (-)
mnist 2.83 (-) 2.12 (-) 2.2 (-) 2.14 (-) 2.75 (-) 2.74 (-)

Table 2: Test error rates (%) performed on some UCI and LIBSVM data sets. Mean and standard deviation are reported here.
“Rand” means 50% random sampling of triplets. Our methods with the exponential and logistic loss functions show very similar
classification accuracy as LMNN.

Dataset Hinge (LMNN) Exponential Exponential (Rand) Ratio Logistic Logistic (Rand) Ratio
bal 6.54 (0.29) 0.2 (0.13) 0.33 (0.14) 31.96 0.22 (0.14) 0.33 (0.29) 29.53
synthetic control 9.45 (2.01) 0.78 (0.10) 1.86 (0.20) 12.04 0.95 (0.13) 1.92 (0.71) 9.93
wine 2.00 (0.31) 0.1 (0.01) 0.19 (0.03) 19.11 0.15 (0.02) 0.26 (0.02) 13.25
german.numer 4.57 (0.41) 0.72 (0.20) 0.65 (0.07) 7.04 0.36 (0.00) 0.45 (0.08) 12.71
splice 16.85 (2.26) 8.56 (0.80) 10.09 (1.61) 1.97 1.92 (0.50) 4.28 (0.69) 8.79
connect-4 26.1 (11.82) 24.13 (3.23) 5.83 (0.51) 4.48 1.81 (0.29) 4.63 (1.30) 14.44
CTG 34.36 (5.30) 1.06 (0.07) 1.55 (0.12) 32.40 0.87 (0.04) 0.95 (0.10) 39.55
segment 28.15 (5.81) 3.46 (0.48) 2.71 (0.99) 10.37 1.18 (0.14) 1.43 (0.06) 23.84
spambase 1912.7 (962.90) 22.38 (11.07) 8.05 (0.70) 237.62 17.24 (7.91) 19.39 (8.81) 110.91
mushrooms 192.88 (307.95) 35.15 (4.82) 38.45 (3.71) 5.49 35.18 (2.46) 75.28 (28.02) 5.48
usps 6636.9 (162.77) 3122.8 (294.04) 2351.7 (312.88) 2.82 481.01 (25.98) 581.87 (60.46) 13.80
letter 1206.3 (304.94) 40.74 (1.59) 53.56 (7.83) 29.61 39.44 (0.19) 43.69 (1.98) 30.59
mnist (PCA) 50394 (2222.9) 10206 (2570.9) 8851.3 (444.78) 5.69 7228.6 (39.35) 7424 (41.55) 6.97
optdigit 198.24 (-) 102.27 (-) 40.79 (-) 4.86 110.25 (-) 29.45 (-) 6.73
mnist 380760 (-) 183230 (-) 196747 (-) 2.08 187650 (-) 73814 (-) 5.16

Table 3: Comparison of computational time in seconds. Mean and standard deviation are reported here. “Rand” means 50%
random sampling of triplets. “Ratio” calculates the speed ratio between LMNN and our algorithm (the relatively faster one,
although there is no significant difference between our deterministic and stochastic versions). Our methods in general are much
faster than LMNN.

sion to be 50. The results are averaged over 5 runs. Figure
2 clearly shows the difference between LMNN and our al-
gorithms. As expected, the computation time grows with the
dimension and the sample size. We can see that our methods
increases much more slowly than LMNN, which means that
ours are more scalable on large-size data sets.

Influence of υ For our algorithms, we do not need care-
ful cross-validation for the regularization parameter υ. We
have simply set the parameter υ to a small value. We show
here that this regularization parameter does not have much
impact on the final accuracy as long as we keep it small.
The parameter υ controls the cost of the distance between
same-labeled instances, which may already be reflected on
the second part in the cost function. We varied the parame-
ter value from 10−8 to 10−5 and ran 5 times with three data
sets. See Table 4 for details. Experiment results verify our
conjecture that indeed υ is not important as long as it is a
small value.

In the last experiment, we want to check the results with

Dataset 10−8 10−7 10−6 10−5

syn.crtl 0.67 (0.91) 0.89 (0.75) 0.56 (0.56) 0.78 (0.84)
wine 1.92 (1.36) 1.92 (2.36) 1.92 (1.92) 1.92 (1.92)
connect-4 18.73 (2.02) 19.46 (2.56) 19.20 (3.37) 18.33 (2.50)

Table 4: Test error rates (%) of 3-NN with different values of
the parameter υ, with the exponential loss and SGD. We can
see that our methods are not sensitive to υ. This is consistent
to the finding in (Shen et al. 2009).

different sampling rate in SGD. In the above experiments,
we have set the sampling rate to be 50%. Unlike gen-
eral optimization techniques, the SGD method does not de-
pend much on the number of samples (Bottou and Bousquet
2008). Table 5 reports the empirical results with three data
sets. We changed sampling rates from 10% to 70%. The dif-
ference between the results is not significant in terms of test
accuracy and computation time. It seems that the optimal

457

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

Number of Dimension

C
om

pu
ta

tio
n

T
im

e
(S

ec
.)

Hinge
Exp.
Exp.+Random
Logit
Logit+Random

1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

Number of Sample

C
om

pu
ta

tio
n

T
im

e
(S

ec
.)

Hinge
Exp.
Exp.+Random
Logit
Logit+Random

Figure 2: Scalability tests in the input dimension and the
number of samples. As expected, our algorithms are much
more scalable than the original LMNN implementation. In
the first figure, LMNN does not always grow with the in-
put dimension. This may be caused by the active constraint
generation technique used in the original LMNN implemen-
tation.

sampling rate is data dependent. It remains unclear about
how to find an optimal sampling rate.

Conclusion

In this work, we have proposed a new technique to solve the
large margin nearest neighbor metric learning problem. The
proposed algorithms are much simpler to implement than the
original LMNN implementation: only eigenvalue decompo-
sition and an off-the-shelf gradient descent tool are needed.
In contrast, the alternating projection method employed by
the original LMNN algorithm is much more complicated.

We show that the proposed algorithms are much more ef-
ficient and scalable than the original LMNN method, with a
comparable classification accuracy. Experiments also show
that we do not need to cross validate any parameters for
our algorithms, which further simplifies the use of our al-
gorithms.

Dataset 10% 30% 50% 70%
syn.crtl Error 1.11 (0.88) 1.44 (1.50) 0.56 (0.68) 1.11 (0.79)

Time 2.91 (0.27) 2.96 (0.34) 3.31 (0.43) 3.16 (0.21)
Iter. 11 (0.71) 12 (2.12) 13.8 (2.38) 12.8 (0.84)

letter Error 3.20 (0.31) 3.10 (0.23) 3.18 (0.25) 3.14 (0.3)
Time 85.93 (2.84) 96.37 (8.98) 101.27 (8.57) 79.39 (0.71)
Iter. 26.8 (4.38) 24.6 (2.97) 28 (3.08) 25.8 (0.84)

connect-4 Error 18.93 (1.73) 19.06 (1.34) 19.2 (2.12) 19.4 (2.48)
Time 11.38 (2.04) 18.53 (1.48) 32.17 (5.95) 42.43 (4.43)
Iter. 34 (7.11) 54.2 (4.15) 78.4 (9.24) 93 (9.67)

Table 5: Experiment results with different sampling rates.
The training time is in seconds. This experiment was con-
ducted using the exponential loss function with SGD.

References
Bottou, L., and Bousquet, O. 2008. The tradeoffs of large
scale learning. In Platt, J.; Koller, D.; Singer, Y.; and Roweis,
S., eds., Advances in Neural Information Processing Systems
20, 161–168. Cambridge, MA: MIT Press.
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization.
Cambridge University Press.
Cristianini, N., and Shawe-Taylor, J. 2000. An Introduction
to Support Vector Machines. Cambridge University Press.
Globerson, A., and Roweis, S. 2005. Metric learning by
collapsing classes. In Proc. Adv. Neural Inf. Process. Syst.
Goldberger, J.; Roweis, S.; Hinton, G.; and Salakhutdinov,
R. 2004. Neighbourhood component analysis. In Proc. Adv.
Neural Inf. Process. Syst. MIT Press.
Lübbecke, M. E., and Desrosiers, J. 2005. Selected topics
in column generation. Operation Res. 53(6):1007–1023.
Schapire, R. E. 1999. Theoretical views of boosting and
applications. In Proc. Int. Conf. Algorithmic Learn. Theory,
13–25. London, UK: Springer-Verlag.
Shalev-Shwartz, S., and Srebro, N. 2008. Svm optimiza-
tion: Inverse dependence on training set size. In Proceedings
of the 25th International Conference on Machine Learning,
928–935.
Shen, C.; Kim, J.; Wang, L.; and van den Hengel, A. 2009.
Positive semidefinite metric learning with boosting. In Ben-
gio, Y.; Schuurmans, D.; Lafferty, J.; Williams, C.; and Cu-
lotta, A., eds., Proc. Adv. Neural Inf. Process. Syst., 1651–
1659. Vancouver, B.C., Canada: MIT Press.
Shen, C.; Welsh, A.; and Wang, L. 2008. PSDBoost: Matrix-
generation linear programming for positive semidefinite ma-
trices learning. In Koller, D.; Schuurmans, D.; Bengio, Y.;
and Bottou, L., eds., Proc. Adv. Neural Inf. Process. Syst.,
1473–1480. Vancouver, B.C., Canada: MIT Press.
Weinberger, K. Q.; Blitzer, J.; and Saul, L. K. 2005. Distance
metric learning for large margin nearest neighbor classifica-
tion. In Proc. Adv. Neural Inf. Process. Syst., 1473–1480.
Xing, E.; Ng, A.; Jordan, M.; and Russell, S. 2002. Dis-
tance metric learning, with application to clustering with
side-information. In Proc. Adv. Neural Inf. Process. Syst.
MIT Press.

458

