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Abstract

Methods for estimating the ratio of two probability den-
sity functions have been actively explored recently since
they can be used for various data processing tasks such
as non-stationarity adaptation, outlier detection, feature
selection, and conditional probability estimation. In this
paper, we propose a new density-ratio estimator which
incorporates dimensionality reduction into the density-
ratio estimation procedure. Through experiments, the
proposed method is shown to compare favorably with
existing density-ratio estimators in terms of both accu-
racy and computational costs.

1 Introduction
During recent years, it has been shown that several ma-
chine learning and data mining tasks can be formulated
with use of the ratio of two probability density functions
(Sugiyama et al. 2009). Examples of such tasks are co-
variate shift adaptation (Shimodaira 2000), transfer learning
(Storkey and Sugiyama 2007), multi-task learning (Bickel
et al. 2008), outlier detection (Smola, Song, and Teo 2009;
Hido et al. 2011), privacy-preserving data mining (Elkan
2010), feature selection (Suzuki et al. 2009), supervised di-
mensionality reduction (Suzuki and Sugiyama 2010), and
causal inference (Yamada and Sugiyama 2010). For this rea-
son, density ratio estimation has attracted a great deal of at-
tention from machine learning and data mining communi-
ties and various approaches have been explored (Silverman
1978; Qin 1998; Huang et al. 2007; Sugiyama et al. 2008;
Kanamori, Hido, and Sugiyama 2009; Nguyen, Wainwright,
and Jordan 2010).

A naive way of density ratio estimation is to first es-
timate the two densities in the ratio (i.e., the numera-
tor and the denominator) separately using a density esti-
mator such as kernel density estimation (Silverman 1986;
Lee and Gray 2006; Raykar, Duraiswami, and Zhao 2010),
and then take the ratio of the estimated densities. How-
ever, this two-step approach is not reasonable since divi-
sion by an estimated density tends to increase the estima-
tion error of the dividend. To improve the estimation accu-
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racy, direct density-ratio estimation methods (i.e., the den-
sity ratio is estimated without going through density esti-
mation) were proposed recently such as the moment match-
ing method using reproducing kernels called kernel mean
matching (KMM) (Huang et al. 2007), the method based
on logistic regression (LR) (Qin 1998), the distribution
matching method under the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler 1951) called the KL impor-
tance estimation procedure (KLIEP) (Sugiyama et al. 2008;
Nguyen, Wainwright, and Jordan 2010), and the density-
ratio matching methods under the squared-loss called least-
squares importance fitting (LSIF) and unconstrained LSIF
(uLSIF) (Kanamori, Hido, and Sugiyama 2009). Through
extensive experiments, direct density-ratio estimation meth-
ods have been shown to compare favorably with a naive two-
step approach based on kernel density estimation.

Although the density ratio is estimated directly without
going through density estimation, density ratio estimation
in high-dimensional cases is still challenging. To deal with
this issue, an approach called Direct Density-ratio estima-
tion with Dimensionality reduction (D3; D-cube) has been
proposed (Sugiyama, Kawanabe, and Chui 2010). The key
idea of D3 is to find a subspace in which the numerator and
denominator densities are significantly different (which is
called the hetero-distributional subspace); then density ratio
estimation is performed in this subspace.

The hetero-distributional subspace can be identified by
the subspace in which two distributions are maximally
separated. Based on this idea, a D3 method called D3-
LFDA/uLSIF was proposed (Sugiyama, Kawanabe, and
Chui 2010), which employs a supervised dimensionality re-
duction method called local Fisher discriminant analysis
(LFDA) (Sugiyama 2007) for hetero-distributional subspace
search; then the density ratio is estimated in the subspace by
uLSIF. This method is computationally very efficient since
LFDA and uLSIF both provide analytic-form solutions.
However, maximum separability between two distributions
does not necessarily imply that the two distributions are dif-
ferent. Thus, there exist cases in which D3-LFDA/uLSIF
cannot identify the correct hetero-distributional subspace.

To overcome this weakness, a new method called D3-
least-squares hetero-distributional subspace search (D3-
LHSS) was proposed (Sugiyama et al. 2011). D3-LHSS
searches the hetero-distributional subspace more directly so

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

549



that the difference between two distributions in the sub-
space is maximized. Thanks to this direct formulation, D3-
LHSS can find any hetero-distributional subspace in prin-
ciple. However, D3-LHSS resorts to a gradient-based opti-
mization scheme for subspace search, and thus it is compu-
tationally demanding.

The purpose of this paper is to improve the computa-
tional efficiency of D3-LHSS. Our new method, which we
call D3-hetero-distributional subspace analysis (D3-HSA),
gives an analytic-form solution in each iteration of hetero-
distributional subspace search, and thus is computationally
more efficient than D3-LHSS. Moreover, based on the above
analytic-form solution, we develop a method to design a
good initial value for optimization, which further contributes
to reducing the computational cost and helps improving the
estimation accuracy. Through experiments, we show that the
proposed D3-HSA approach is promising.

2 Problem Formulation
In this section, we describe the D3 framework (Sugiyama,
Kawanabe, and Chui 2010; Sugiyama et al. 2011).

Let D (⊂ R
d) be the data domain and suppose we are

given independent and identically distributed (i.i.d.) sam-
ples {xnu

i }nnu
i=1 from a distribution with density pnu(x) and

i.i.d. samples {xde
j }nde

j=1 from another distribution with den-
sity pde(x). Here, the subscripts ‘nu’ and ‘de’ denote ‘nu-
merator’ and ‘denominator’, respectively. We assume that
the latter density pde(x) is strictly positive. The goal is to
estimate the density ratio,

r(x) :=
pnu(x)

pde(x)
,

from samples {xnu
i }nnu

i=1 and {xde
j }nde

j=1.
Let u be an m-dimensional vector (m ∈ {1, . . . , d}) and

v be a (d−m)-dimensional vector defined as(
u
v

)
:=

(
U
V

)
x,

where U ∈ R
m×d and V ∈ R

(d−m)×d are transformation
matrices; the row vectors of U and V are assumed to form
an orthonormal basis, i.e., U and V are orthogonally com-
plementary to each other. Then the two densities pnu(x) and
pde(x) can always be decomposed as

pnu(x) = pnu(v|u)pnu(u), pde(x) = pde(v|u)pde(u).
A key assumption of the D3 framework is that the con-

ditional densities pnu(v|u) and pde(v|u) agree with each
other, i.e., pnu(v|u) = pde(v|u) = p(v|u). Then, the
density-ratio can be simplified as

r(x) =
p(v|u)pnu(u)
p(v|u)pde(u) =

pnu(u)

pde(u)
=: r(u). (1)

This expression implies that the density ratio r(x) does not
have to be estimated in the entire d-dimensional space, but it
is sufficient to estimate the ratio only in the m-dimensional
subspace specified by U .

Below, we will use the term, the hetero-distributional sub-
space, for indicating the subspace specified by U . For the
moment, we assume that the true dimensionality m of the
hetero-distributional subspace is known. How to estimate m
from data is explained in Section 3.5.

3 Proposed Method: D3-HSA
In this section, we describe our proposed method called the
direct density-ratio estimation with dimensionality reduc-
tion via hetero-distributional subspace analysis (D3-HSA).

3.1 PE Estimation-Maximization Framework
It was shown (Sugiyama et al. 2011) that the optimal trans-
formation matrix that fulfills Eq.(1) can be characterized as

U∗ = argmax
U∈Rm×d

PE[pnu(u), pde(u)] s.t. UU� = Im, (2)

where � denotes the transpose of a matrix or a vector
and Im is the m-dimensional identity matrix. In the above,
PE[pnu(u), pde(u)] is the Pearson divergence (PE) from
pnu(u) to pde(u):

PE[pnu(u), pde(u)] :=
1

2

∫ (
pnu(u)

pde(u)
−1

)2

pde(u)du

=
1

2

∫
pnu(u)

pde(u)
pnu(u)du− 1

2
. (3)

Note that PE[pnu(u), pde(u)] vanishes if and only if
pnu(u) = pde(u).

Based on Eq.(2), we develop the following iterative algo-
rithm for learning r(u):

(i) Initialization: Initialize the transformation matrix U
(see Section 3.4).

(ii) PE estimation: For current U , a PE estimator P̂E is ob-
tained (see Section 3.2).

(iii) PE maximization: Given a PE estimator P̂E, its maxi-
mizer with respect to U is obtained (see Section 3.3).

(iv) Convergence check: The above (ii) and (iii) are re-
peated until U fulfills some convergence criterion.

(v) Final density-ratio estimation: Obtain r̂(u) under the
learned transformation matrix U (see Section 3.5).

3.2 PE Estimation
In HSA, we employ a non-parametric PE estimator derived
in Sugiyama et al. (2011), which is based on a density-ratio
estimator called unconstrained Least-squares Importance
Fitting (uLSIF) (Kanamori, Hido, and Sugiyama 2009). uL-
SIF was shown to achieve the optimal non-parametric con-
vergence rate and the optimal numerical stability (Kanamori,
Suzuki, and Sugiyama 2009). Below, we briefly describe the
PE estimator. Let unu

i = Uxnu
i and ude

j = Uxde
j .

We model the density-ratio function r(u) by
nnu∑
i=1

αiK(u,ui) = α�k(u), (4)
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where α := (α1, . . . , αnnu)
� are parameters to be learned

from data samples, k(u) = (K(u,u1), . . . ,K(u,unnu))
�

are the basis functions, and K(u,u′) is a kernel function.
The parameter α is learned so that the following squared

error is minimized (Kanamori, Hido, and Sugiyama 2009):

J0(α) =
1

2

∫ (
α�k(u)− r(u)

)2
pde(u)du = J(α) + C,

where C is a constant, and

J(α) =
1

2
α�Hα− h�α, (5)

H =

∫
k(u)k(u)�pde(u)du, h =

∫
k(u)pnu(u)du.

Approximating the expectations in H and h included in J
by empirical averages, we arrive at the following optimiza-
tion problem:

min
α

[
1

2
α�Ĥα− ĥ�α+ λα�α

]
,

where a regularization term λα�α is included for avoiding
overfitting, λ (≥ 0) is a regularization parameter, and

Ĥ =
1

n2
de

nde∑
j=1

k(ude
j )k(ude

j )�, ĥ =
1

nnu

nnu∑
i=1

k(unu
i ).

Differentiating the above objective function with respect
to α and equating it to zero, we can obtain an analytic-form
solution as α̂ = (Ĥ + λInnu

)−1ĥ. Finally, a PE estimator
is given as follows (cf. Eq.(3)):

P̂E =
1

2
ĥ�α̂− 1

2
. (6)

Hyper-parameters included in the kernel function
K(u,u′) and the regularization parameter λ can be opti-
mized by cross-validation with respect to J (see Eq.(5))
as follows. First, samples X nu = {unu

i }nnu
i=1 and X de =

{ude
j }nde

j=1 are divided into K disjoint subsets {X nu
k }Kk=1

and {X de
k }Kk=1, respectively. Then a density-ratio estimator

r̂k(u) is obtained using X nu\X nu
k and X de\X de

k , and the
cost J is approximated using the hold-out samples X nu

k and
X de

k as

J
(K-CV)
k =

∑
xde∈Xde

k

r̂k(u
de)2

2|X de
k | −

∑
xnu∈Xnu

k

r̂k(u
nu)

|X nu
k | ,

where |X | denotes the number of samples in the set X . This
hold-out procedure is repeated for k = 1, . . . ,K, and its
average J (K-CV) is outputted. We compute J (K-CV) for all
model candidates (i.e., the kernel parameter and the regular-
ization parameter in the current case), and choose the model
that minimizes J (K-CV).

3.3 PE Maximization
Given the PE estimator P̂E (6), we next show how P̂E can
be efficiently maximized with respect to U :

max
U∈Rm×d

P̂E s.t. UU� = Im.

We propose to use a truncated negative quadratic function
called the Epanechnikov kernel (Silverman 1986) as a kernel
for u:

K(u,u′) = max

(
0, 1− ‖u− u′‖2

2σ2
u

)
,

where σu is the kernel width.
Let I(c) be the indicator function, i.e., I(c) = 1 if c is

true and zero otherwise. Then, for the above kernel, P̂E can
be expressed as

P̂E =
1

2
tr
(
UDU�)− 1

2
, (7)

where tr(·) denotes the trace of a matrix, and

D =
1

nnu

nnu∑
i,i′=1

α̂i(U)I

(‖Uxnu
i −Uxnu

i′ ‖2
2σ2

u

< 1

)

×
[
1

m
Id − 1

2σ2
u

(xnu
i − xnu

i′ )(x
nu
i − xnu

i′ )
�
]
.

Here, by α̂i(U), we explicitly indicated the fact that α̂i de-
pends on U .

Let D′ be D with U replaced by U ′, where U ′ is a trans-
formation matrix obtained in the previous iteration. Thus,
D′ no longer depends on U . Here we replace D in P̂E (see
Eq.(7)) by D′, which gives the following simplified PE es-
timate:

P̂E
′
=

1

2
tr
(
UD′U�)− 1

2
. (8)

A maximizer of Eq.(8) can be obtained analytically by
(ϕ1| · · · |ϕm)�, where ϕ1, . . . ,ϕm are the m principal
components of D′.

3.4 Initialization of U
In the PE estimation-maximization framework described in
Section 3.1, initialization of the transformation matrix U is
important. Here we propose to initialize it based on PE max-
imization without dimensionality reduction.

More specifically, we determine the initial transformation
matrix as (ϕ(0)

1 | · · · |ϕ(0)
m )�, where ϕ(0)

1 , . . . ,ϕ
(0)
m are the m

principal components of D(0):

D(0) =
1

nnu

nnu∑
i,i′=1

α̂
(0)
i I

(‖xnu
i − xnu

i′ ‖2
2σ2

x

< 1

)

×
[
1

m
Id − 1

2σ2
x

(xnu
i − xnu

i′ )(x
nu
i − xnu

i′ )
�
]
,

α̂(0) = (Ĥ(0) + λInnu
)−1ĥ(0),

Ĥ(0)=
1

n2
de

nde∑
j=1

k′(xde
j )k′(xde

j )�, ĥ(0)=
1

nnu

nnu∑
i=1

k′(xnu
i ),

k′(x) = (K ′(x,x1), . . . ,K
′(x,xnnu

))�,

K ′(x,x′) = max

(
0, 1− ‖x− x′‖2

2σ2
x

)
.

σx is the kernel width and is chosen by cross-validation.

551



3.5 Density-Ratio Estimation in the
Hetero-Distributional Subspace

Finally, a method of estimating the density ratio in the
hetero-distributional subspace detected by the above HSA
procedure is described.

A notable fact of the above HSA procedure is that the
density-ratio estimator in the hetero-distributional subspace
has already been obtained during the execution of the HSA
algorithm—thus, an additional estimation procedure is not
necessary. More specifically, the final solution is simply
given by

r̂(x) =

nnu∑
i=1

α̂i(Û)K(Ûx, Ûxi),

where Û is the transformation matrix obtained by the HSA
algorithm. {α̂i(Û)}nnu

i=1 are the learned parameters under Û .
So far, we assumed that the true dimensionality m of

the hetero-distributional subspace is known. When it is un-
known, the best dimensionality based on the cross-validation
score of the uLSIF estimator may be used in practice.

4 Experiments
In this section, we experimentally investigate the perfor-
mance of the proposed and existing density-ration estima-
tion methods using artificial and real-world datasets.

In all the experiments, we limit the number of basis ker-
nels in HSA to 100 (see Eq.(4)), which were randomly cho-
sen from all nnu kernels. All the model parameters σu, σx,
and λ are chosen by 5-fold cross-validation.

4.1 Illustration
Here, the performance of D3-HSA is compared with that of
the plain uLSIF (Kanamori, Hido, and Sugiyama 2009), D3-
LFDA/uLSIF (Sugiyama, Kawanabe, and Chui 2010), and
D3-LHSS (Sugiyama et al. 2011) using artificial datasets.

Suppose that the two densities pnu(x) and pde(x) are dif-
ferent only in a one-dimensional subspace (i.e., m = 1):

pnu(x) = p(v|u)pnu(u), pde(x) = p(v|u)pde(u).
Let nnu = nde = 1000. The following datasets are used:

“Rather-separate” dataset:

p(v|u) = N(v;0d−1, Id−1), pnu(u) = N(u; 0, 0.52),

pde(u) = 0.5N(u;−1, 12) + 0.5N(u; 1, 12),

where N(u;μ, σ2) denotes the Gaussian density with
mean μ and variance σ2 with respect to u, N(v;μ,Σ)
denotes the multivariate Gaussian density with mean μ
and variance Σ with respect to v, and 0d denotes the d-
dimensional vector with all zeros.

“Highly-overlapped” dataset:

p(v|u) = N(v;0d−1, Id−1),

pnu(u) = N(u; 0, 0.62), pde(u) = N(u; 0, 1.22).

“Dependent” dataset:

p(v|u) = N(v|(u,0�d−2)
�, Id−2), pnu(u) = N(u; 0, 0.52),

pde(u) = 0.5N(u;−1, 12) + 0.5N(u; 1, 12).

The error of a density-ratio estimator r̂(x) is evaluated by

Error :=
1

2

∫
(r̂(x)− r(x))

2
pde(x)dx, (9)

which uLSIF tries to minimize. For the D3-HSA, D3-LHSS,
and D3-LFDA/uLSIF methods, we choose the dimensional-
ity of the hetero-distributional subspace from m = 1, . . . , 5
by cross-validation. In D3-LHSS, the initialization matrix is
chosen randomly.

Figure 1 shows the density-ratio estimation error averaged
over 50 runs as functions of the entire input dimensional-
ity d, and Figure 2 shows the average computation time.
These plots show that, while the error of the plain uLSIF
increases rapidly as the entire dimensionality d increases.
D3-LFDA/uLSIF works reasonably well for the “rather-
separate” dataset, but it performs poorly for the other two
datasets. D3-HSA and D3-LHSS perform excellently for all
the three datasets. Among D3-HSA and D3-LHSS, the com-
putational cost of D3-HSA is much smaller than D3-LHSS.
Thus, D3-HSA overall compares favorably with the other
approaches.

4.2 Application to Inlier-based Outlier Detection
Finally, we apply D3-HSA to inlier-based outlier detection.

Let us consider an outlier detection problem of finding ir-
regular samples in a dataset (“evaluation dataset”) based on
another dataset (“model dataset”) that only contains regu-
lar samples. Defining the density ratio over the two sets of
samples, we can see that the density-ratio values for regu-
lar samples are close to one, while those for outliers tend
to be significantly deviated from one. Thus, density-ratio
values could be used as an index of the degree of outlying-
ness (Smola, Song, and Teo 2009; Hido et al. 2011). Since
the evaluation dataset usually has a wider support than the
model dataset, we regard the evaluation dataset as samples
corresponding to pde(x) and the model dataset as samples
corresponding to pnu(x). Then outliers tend to have smaller
density-ratio values (i.e., close to zero). As such, density-
ratio estimation methods could be employed in outlier de-
tection scenarios.

We use the USPS hand-written digit dataset (Asuncion
and Newman 2007). Each image consists of 256 (= 16× 16)
pixels and each pixel takes an integer value between 0 and
255 as the intensity level. We regard samples in the class
‘1’ as inliers and samples in other classes as outliers. We
randomly take 500 samples from the class ‘1’, and assign
them to the model dataset. Then we randomly take 500 sam-
ples from the class ‘1’ without overlap, and 25 samples from
one of the other classes. We applied principal component
analysis to the 1025 samples, and extracted 50-dimensional
feature vectors. From these samples, density-ratio estima-
tion is performed and the outlier score is computed. Since
the USPS hand-written digit dataset contains 10 classes (i.e.,
from ‘0’ to ‘9’), we have 9 different tasks in total.
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Figure 1: Experimental results for artificial datasets. Density-ratio estimation error (9) averaged over 50 runs as a function of
the entire data dimensionality d. The best method in terms of the mean error and comparable methods according to the t-test at
the significance level 1% are specified by ‘◦’.
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Figure 2: Experimental results for artificial datasets. The average computation time for each method. The average computation
time includes cross-validation for choosing the dimensionality of the hetero-distributional subspace.

For the D3-LFDA/uLSIF, D3-LHSS, and D3-HSA
methods, we choose the dimensionality of the hetero-
distributional subspace from m = 5, 10, 15, . . . , 50 by
cross-validation. In D3-LHSS, the initialization matrix of
LHSS is chosen randomly.

When evaluating the performance of outlier detection
methods, it is important to take into account both the de-
tection rate (i.e., the amount of true outliers an outlier de-
tection algorithm can find) and the detection accuracy (i.e.,
the amount of true inliers an outlier detection algorithm mis-
judges as outliers). Since there is a trade-off between the de-
tection rate and the detection accuracy, we adopt the area
under the ROC curve (AUC) as our error metric (Bradley
1997). The mean and standard deviation of AUC scores over
50 runs with different random seeds are summarized in Ta-
ble 1. The table shows that the proposed D3-HSA tends
to outperform the plain uLSIF, D3-LFDA/uLSIF, and D3-
LHSS with reasonable computation time.

5 Conclusion
In this paper, we proposed a novel density-ratio estimation
method called direct density-ratio estimation with dimen-

sionality reduction via hetero-distributional subspace anal-
ysis (D3-HSA), which is more accurate and computationally
efficient than existing methods. In D3-HSA, a transforma-
tion matrix is estimated by iteratively performing Pearson
divergence (PE) estimation and maximization, both of which
are analytically carried out. Moreover, we gave a systematic
method to design an initial transformation matrix. We ap-
plied the proposed D3-HSA to density-ratio estimation and
outlier detection tasks and experimentally showed that the
proposed method is promising.
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Table 1: Outlier detection for the USPS hand-written digit dataset (d = 50). The means (and standard deviations in the bracket)
of AUC scores over 50 runs for the evaluation dataset are summarized. The best method in terms of the mean AUC value and
comparable methods according to the t-test at the significance level 1% are specified by bold face. The means (and standard
deviations in the bracket) of the dimensionality chosen by cross-validation are also included in the table. At the bottom, the aver-
age computation time (and standard deviations in the bracket) for each method over all experiments is shown. The computation
time includes cross-validation for choosing the dimensionality of the hetero-distributional subspace.

D3-HSA D3-LHSS D3-LFDA/uLSIF Plain uLSIF
Data AUC m̂ AUC m̂ AUC m̂ AUC
Digit 2 0.987(0.010) 11.8(7.4) 0.964(0.035) 19.8(14.1) 0.888(0.043) 44.6(14.8) 0.900(0.041)
Digit 3 0.989(0.011) 10.9(7.0) 0.975(0.030) 13.8(11.1) 0.917(0.044) 45.7(13.1) 0.923(0.039)
Digit 4 0.984(0.013) 13.3(6.8) 0.925(0.063) 15.3(12.9) 0.846(0.046) 44.6(14.8) 0.857(0.040)
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