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Abstract

K-flats is a model-based linear manifold clustering al-
gorithm which has been successfully applied in many
real-world scenarios. Though some previous works
have shown that K-flats doesn’t always provide good
performance, little effort has been devoted to analyze its
inherent deficiency. In this paper, we address this chal-
lenge by showing that the deteriorative performance of
K-flats can be attributed to the usual reconstruction er-
ror measure and the infinitely extending representations
of linear models. Then we propose Localized K-flats
algorithm (LKF), which introduces localized represen-
tations of linear models and a new distortion measure,
to remove confusion among different clusters. Experi-
ments on both synthetic and real-world data sets demon-
strate the efficiency of the proposed algorithm. More-
over, preliminary experiments show that LKF has the
potential to group manifolds with nonlinear structure.

Introduction

Traditional clustering algorithms (e.g., K-means) assume
each cluster is centered around a single point. However, a
large number of recent research efforts have demonstrated
that distributions of many real data sometimes naturally fall
into clusters grouped around low-dimensional linear mani-
folds (i.e., linear or affine subspaces) (Vidal, Ma, and Sas-
try 2005; Yan and Pollefeys 2006). Thus, a reasonable and
promising generalization of classical clustering is linear
manifold clustering, which changes the entity of the cluster
center from being a point to that of being a linear manifold.

Generally speaking, existing algorithms on linear man-
ifold clustering can be roughly classified into two main
categories: model-based algorithms and similarity-based al-
gorithms. Since each linear manifold can be equivalently
modeled by its offset vector and normal vectors, model-
based algorithms (such as Generalized Principal Compo-
nent Analysis (GPCA) (Vidal, Ma, and Sastry 2005) and
K-flats (Bradley and Mangasarian 2000; Tseng 2000)) learn
these parameters from the data and then assign each point
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to the nearest linear manifold. On the other hand, similarity-
based algorithms, such as Local Subspace Affinity (LSA)
(Yan and Pollefeys 2006) and Spectral Curvature Clustering
(SCC) (Chen and Lerman 2009), first build an affinity matrix
among certain points to measure their possibilities of com-
ing from the same manifold, and then apply spectral clus-
tering (Shi and Malik 2000; Ng, Jordan, and Weiss 2001) to
group the samples into K clusters.

Among these algorithms, K-flats is more attractive due
to its low computational complexity and its ability to handle
both linear and affine subspaces explicitly. Thus, K-flats has
been successfully applied in a variety of applications, such
as face clustering and motion segmentation. However, previ-
ous works also have shown that clustering using K-flats may
deteriorate seriously in many scenarios, for example, when
it was used to group affine subspaces (Lu and Vidal 2006;
Chen and Lerman 2009). Unfortunately, there has been lit-
tle effort devoted to analyze its inherent deficiency and then
improve its performance. Moreover, it is not clear on how to
extend K-flats to group manifolds with nonlinear structure.

In this paper, we try to deal with these challenges. Our
analysis reveals that K-flats suffers from three kinds of de-
terioration which are mainly rooted in the reconstruction er-
ror measure and the infinitely extending representations of
linear models. Then, we propose Localized K-flats algo-
rithm (abbreviated as LKF), which introduces localized rep-
resentations of linear models and a new distortion measure
into the objective function of K-flats, to remove confusion
among different clusters. Experiments on both synthetic data
sets and real-world applications compare our proposed al-
gorithm favorably against state-of-the-art algorithms. More-
over, preliminary experiments illustrate the potential of LKF
to group manifolds with nonlinear structure.

The remainder of this paper is divided into the following
parts: Section 2 gives a brief review of the related works.
Section 3 presents the details of LKF. In Section 4, we report
experiments on both synthetic and real-world data. Section
5 concludes this paper.
Notation: Throughout this paper, AT and span⊥(A) rep-
resent the transpose and the orthogonal complement space
of A, respectively. ‖·‖ and ‖·‖F denote the 2-norm and F -
norm, respectively. 〈A,B〉F = tr(ATB). I always denotes
the identity matrix and e denotes a vector of ones, both of
their dimensions should be apparent from the context.
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(a) Original data
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(b) Grouping result of K-flats
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(c) Grouping result of Localized K-flats

Figure 1: Different performance of K-flats and our proposed LKF on the synthetic data. (a) A set of points in �2 drawn from 5
clusters, where clusters 4 and 5 lie approximately around the same affine line but are well-separated. (b) Grouping using K-flats
misclassifies several points which can be classified into three kinds of errors: intrinsic errors, infinity errors and co-linear errors,
labeled as A, B and C, respectively. (c) Grouping using LKF significantly improves the clustering performance.

Related Work

Let
{
xi ∈ �D, i = 1, · · · , N}

be a set of points lying ap-
proximately on K distinct d-dimensional (0 < d < D) lin-
ear manifolds (or flats) Ωj = {x : BT

j (x−μj) = 0} ⊆ �D,
j = 1, · · · ,K, with normal bases Bj ∈ �D×(D−d) and
μj ∈ �D. The objective of linear manifold clustering is to
group the samples into the flat they belong to.

The objective of K-flats is to determine K cluster flats by
minimizing the sum of the squared distances of each point to
a nearest flat (Bradley and Mangasarian 2000; Tseng 2000).
Formally, K-flats solves for μj and Bj by minimizing the
following cost function:∑N

i=1

∑K

j=1
wij

∥∥BT
j (xi − μj)

∥∥2, (1)

subject to the constraints BT
j Bj = I ,

∑K
j=1 wij = 1, and

wij ∈ {0, 1}.
In practice, K-flats alternates between cluster update and

cluster assignment to determine K cluster flats and find K
clusters. Let X1, · · · , XK be a partition of the data where Xj

is the D ×Nj (
∑K

j=1 Nj = N ) matrix whose columns cor-
respond to all samples which are assigned to the j-th cluster.
Then, Cluster Update computes the optimal solution for Bj

as the eigenvectors of Xj(I−eeT /Nj)X
T
j corresponding to

its D− d smallest eigenvalues and μj = Xje/Nj . Given μj

and Bj , Cluster Assignment allocates xi to the closest flat
Ωk according to the reconstruction error measure:∥∥BT

k (xi − μk)
∥∥2 = min

j=1,···,K
∥∥BT

j (xi − μj)
∥∥2. (2)

Due to low computational complexity and wide applica-
ble domain, K-flats has received much attention and has
been successfully used in many application scenarios, such
as face clustering and motion segmentation (Vidal, Ma, and
Sastry 2005; Chen and Lerman 2009). However, existing
researches also have shown that clustering using K-flats
doesn’t always provide good performance. Previous works
focus on two issues: good initialization and robustness. K-
flats is an iterative scheme and frequently converges to a lo-
cal minima, thus good initialization is important to its suc-

cess. Instead of random initialization, (Vidal, Ma, and Sas-
try 2005) initializes K-flats with GPCA to speed up con-
vergence while (Zhang et al. 2010) searches for a good set
of K seed flats from C > K local best-fit candidate flats.
To improve the robustness of K-flats to outliers and noise,
(Zhang, Szlam, and Lerman 2009) replaces the 2-norm av-
erage of equation (1) with the more robust 1-norm average.

Though existing works have solved some limitations of
K-flats and improved its performance to a certain extent,
they do not touch the inherent deficiency of K-flats (e.g.,
why K-flats seriously deteriorates when faced with affine
subspaces as revealed by the experiments in (Chen and Ler-
man 2009)) which is more meaningful and challenging.

The Proposed Method

In our opinion, the deteriorative performance of K-flats is
mainly rooted in the adopted reconstruction error measure
which is the distance from the sample to the linear manifold.
To shed more insight on this problem, let us consider a 2-D
example in Figure 1. There are five clusters, of which two lie
approximately around linear subspaces and three lie around
affine subspaces. Different clusters are colored and marked
differently. Moreover, there are two clusters lie approxi-
mately around the same affine line but are well-separated
such that humans might interpret them as different clusters.
Figure 1 (b) shows that K-flats misclassifies several points,
and we can generally classify them into three kinds of er-
rors: intrinsic errors, infinity errors and co-linear errors. In-
trinsic errors happen on the points close to the intersection
areas which by nature are ambiguous. Without other infor-
mation, even an expert can not judge which cluster a point
around the intersection should be grouped into. Infinity er-
ror misclassifies some points in one cluster to another clus-
ter when the points are closer to the latter according to the
reconstruction error measure. This kind of deterioration is
ascribed to the infinite expansibility of linear models, which
is contradicted to the intended local representations of clus-
ters. Moreover, it is this kind of errors results in the deteri-
orative performance of K-flats when faced with affine sub-
spaces, since linear subspaces can only intersect around the
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origin. This gives a explanation to the empirical results ob-
tained earlier in (Chen and Lerman 2009). The points from
the well-separated but co-linear clusters are indistinguish-
able (named co-linear errors) since they have similar cost
with respect to both clusters under the reconstruction error
measure. One skill to partly deal with co-linear errors is that
we can first deem the two co-linear clusters as one cluster
and then use K-flats followed by K-means to finally group
them (Lu and Vidal 2006). However, this strategy will be
significantly influenced by the infinity errors. Moreover, it
could work well only when there are no elongated clusters.

From the above analysis, we can see that intrinsic errors
can not be avoided due to their natural ambiguities. While,
both infinity errors and co-linear errors can be boiled down
to the usual reconstruction error measure and the infinitely
extending representations of linear models. Thus, for better
performance, a new distortion measure which can localize
the representations of linear models seems necessary.

Infinity errors produced by the contradiction between in-
finitely extending linear models and the intended local repre-
sentations of clusters suggest that we can introduce some lo-
calized information to restrict the linear models. Moreover,
we also need some extra information to distinguish between
the co-linear points. To address these problems, we bring
K-means into the objective function of K-flats. K-means
will force the points to center around some prototypes and
thus will localize the representations of linear models. More
specifically, the new distortion measure (cost function) con-
siders both the reconstruction error and the cluster centers:∑N

i=1

∑K

j=1
wij

(∥∥BT
j (xi − μj)

∥∥2 + λ‖xi − μj‖2
)
,

(3)
where 0 < λ < 1 is a parameter to control the relative mag-
nitudes of the reconstruction error and the usual Euclidean
distance ‖xi − μj‖2. This new cost function will force the
representation along the linear manifold to localize around
the prototype μj since it is strictly monotonically increasing
with respect to ‖xi − μj‖2. Thus, λ is also used to control
the localization of the linear manifolds.

However, when a point has the same reconstruction error
to two clusters, it will be assigned according to the value
of K-means. Unfortunately, it is well-known that K-means
will deteriorate when there are elongated clusters (Shi and
Malik 2000; Ng, Jordan, and Weiss 2001) since it tries to
minimize the within-class variance. For example, it will mis-
classify some points in the fourth cluster in Figure 1 (a) to
the fifth cluster. To circumvent this problem, we can increase
the number of training linear models from K to M > K.
The underlying idea is that each local piece of the elongated
clusters are not elongated and thus can be correctly grouped
by K-means. After getting the correctly grouped local clus-
ters, we can merge them to obtain the desired K clusters.

Specifically, our method computes μm and Bm, m =
1, · · · ,M , by minimizing the following problem:∑N

i=1

∑M

m=1
wim

(∥∥BT
m(xi − μm)

∥∥2 + λ‖xi − μm‖2
)
,

(4)
where BT

mBm = I ,
∑M

m=1 wim = 1 and wim ∈ {0, 1}.

Similar to K-flats, our method first alternates between
Cluster Update and Cluster Assignment to learn μm and
Bm, and then assigns each point into its closest flat. Now,
we give the details of these procedures.
Initialization: Assign each point in X to a cluster randomly
or using K-means, to give an initial partition X1, · · · , XM

such that wim = 1 when the i-th point is assigned to Xm.
Cluster Update: This step will find a center μm and a set
of bases Bm for the m-th cluster such that the new cost
function is minimum. More precisely, given the membership
wim, we can simplify the optimization problem (4) as:∑M

m=1

(∥∥BT
m(Xm − μmeT )

∥∥2
F
+ λ

∥∥Xm − μmeT
∥∥2
F

)
.

(5)
The global optimal solution of (5) renders the partial

derivatives of the Lagrangian of (5) vanish. That is, for

L(Bm, μm,Λm) =∑M
m=1

( ∥∥BT
m(Xm − μmeT )

∥∥2
F
+ λ

∥∥Xm − μmeT
∥∥2
F−〈

Λm, BT
mBm − I

〉
F

)
,

(6)
where Λm ∈ �(D−d)×(D−d) are symmetric, we have:

(1/2)∇Bm
L = (Xm − μmeT )(Xm − μmeT )TBm −BmΛm

= 0,
(7)

−(1/2)∇μmL = (BmBT
m + λI)(Xm − μmeT )e = 0, (8)

−∇Λm
L = BT

mBm − I = 0. (9)

It is easy to show that BmBT
m + λI is positive definite,

thus equation (8) implies that μm = Xme/Nm, which is the
m-th cluster center. Substitution for μm in (7) gives:

Xm(I − eeT /Nm)XT
mBm = BmΛm. (10)

Similar to Theorem 2.1 in (Tseng 2000), we can prove that
Bm is given by the eigenvectors of Xm(I − eeT /Nm)XT

m
corresponding to its D − d smallest eigenvalues. Interest-
ingly, though our method has different distortion measure to
that of K-flats, both μm and Bm are formally the same. The
difference is that M > K linear models are trained here
while K-flats only trains K linear models.
Cluster Assignment: Given μm and Bm, the new distortion
measure is positive and linear with respect to wim. Under
the constraints wim ∈ {0, 1} and

∑M
m=1 wim = 1, we have

wim =

⎧⎪⎨
⎪⎩

1 if (i,m) =

argmin
(∥∥BT

m(xi − μm)
∥∥2 + λ‖xi − μm‖2

)
,

0 otherwise.
(11)

Similar to Theorem 7 in (Bradley and Mangasarian 2000),
we can show that this iterative procedure will terminate in a
finite number of steps. In practice, we stop whenever there
is a non-decrease in the overall objective function.

After training, we obtain M localized linear models
where each model is represented by θm = {μm, Bm}.
Moreover, all the original data are grouped into these mod-
els based on our new distortion measure and thus we obtain
M localized clusters X1, · · · , XM whose local structural in-
formation are characterized by θm. These localized clusters
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Algorithm Localized K-flats (LKF)

Input: Data set X , number of clusters K, dimension of
manifolds d, balance parameter λ, number of localized
models M , number of neighbors P , power parameter o.

Steps:

1: Train M localized linear models θm = {μm, Bm} and
partition the data into M localized clusters.

2: Construct an undirected graph on the localized clusters
with the affinity matrix A defines through (12).

3: Partition the vertices of the graph into K clusters using
spectral clustering methods.

Output: A partition of the data into K disjoint clusters.

Figure 2: Pseudo-code of the Localized K-flats algorithm

should be merged together to get the desired K clusters. To
this end, similar to similarity-based linear manifold cluster-
ing algorithms, we utilize the localized linear models to de-
fine an affinity matrix to measure their possibilities of com-
ing from the same cluster. To be specific, the localized clus-
ters correspond to the vertices of an undirected graph and
the affinity between Xk and Xl is defined as follows:

Akl =

⎧⎨
⎩

(
∏d

e=1 cos(θe))
o if Xk ∈ P − connected(Xl)

or Xl ∈ P − connected(Xk),
0 otherwise.

(12)
where o ∈ N+ and Xk ∈ P − connected(Xl) means that
Xk has a point which is among the P nearest neighbors of
Xl. 0 ≤ θ1 ≤, · · · ,≤ θd ≤ π/2 are a series of principal
angles between two spaces Θk = span⊥(Bk) and Θl =
span⊥(Bl), which are defined recursively as:

cos(θe) = max
u∈Θk,v∈Θl

‖u‖=‖v‖=1

uTv = ue
Tve, e = 1, · · · , d, (13)

where uTui = 0, vTvi = 0, i = 1, · · · , e− 1.
Then, we could use spectral clustering algorithms (Shi

and Malik 2000; Ng, Jordan, and Weiss 2001) on the
affinity matrix A to give the final clustering results. The
pseudo-code of our algorithm, named as Localized K-flats
(LKF), is shown in Figure 2. Theoretically, the computa-
tional complexity of our method is O(DMNt1 + (D3M +
DMN2)t2+[M3+M2(Dd2+K)+(D+P )N2]+NK2t3),
where t1, t2 and t3 are the number of iterations before the
convergence of K-means, iterative procedures of LKF, and
spectral clustering, respectively.

Experiments

In this section, we experimentally evaluate the performance
of LKF on a series of synthetic data sets and real-world ap-
plications. Clustering accuracy is used as the performance
evaluation criterion, which is defined as the maximum clas-
sification accuracy among all possible alignments:

clustering accuracy = max
align

∑N

i=1
δ(ti = ci)/N, (14)

where ti is the true label and ci is the obtained cluster label
of xi, δ(·) is the delta function.

Table 1: Comparison of the clustering accuracy (%) and the
average computational time (in seconds) of the different al-
gorithms on the synthetic data set.

Approach Best Mean Time

K-means 60.57 58.21 0.03
GPCA 78.71 78.71 0.01
K-flats 86.57 76.90 0.01

LSA 59.57 59.57 22.40
SCC 95.43 79.20 2.69
LKF 99.43 98.80 0.51
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Figure 3: 3D-projections of the tracked feature points of the
cars3 data set.

Experiments on Synthetic Data

In this subsection, we illustrate LKF on a synthetic toy prob-
lem to give some insight about its effectiveness. We set
λ = 0.005, M = 50, P = 10, and o = 8 here, the influence
of parameters on LKF will be studied later.

The synthetically generated data points, as illustrated in
Figure 1 (a), are sampled from five clusters in �2 where
two of them (i.e., cluster 4 and cluster 5) lie approximately
around the same affine line but are well-separated. Each
of the first two clusters has 200 points while each of the
last three clusters has 100 samples. We also add zero-mean
Gaussian noise to the sample points. As we have shown in
Figure 1 (b), the grouping result using K-flats in terms of
the usual reconstruction error measure and the infinitely ex-
tending representations of linear models is not very satisfy-
ing. However, as we can see from Figure 1 (c), the cluster-
ing result of LKF is surprisingly good: Even when there are
approximately co-linear and elongated clusters, our method
reliably groups the samples into the clusters consistent with
what a human would have chosen. Our method still mis-
classifies some points near the intersection of two clusters,
however, this is acceptable as we have pointed out that these
points are essentially ambiguous.

Since LKF is designed to improve the performance of K-
flats which is one of the linear manifold clustering algo-
rithms, it is interesting and meaningful to compare it with
state-of-the-art algorithms. Thus, in the following, we com-
pare LKF with K-means, GPCA, K-flats, LSA, and SCC.

We conduct 30 independent trials with random initializa-
tion for all the algorithms which may be plagued by local
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Table 2: Clustering accuracy (mean±std) of the different algorithms on five video sequences. The best are boldfaced.

Data set Cars2-06 Cars2B Cars3 Cars4 Trucks2

Points/Frames/Clusters 123/15/4 535/30/4 548/20/4 147/54/3 331/22/3

K-means 0.784±0.042 0.760±0.023 0.617±0.047 0.761±0.177 0.613±0.015
GPCA 0.919±0.000 0.598±0.000 0.938±0.000 0.721±0.000 0.731±0.000
K-flats 0.927±0.093 0.702±0.091 0.722±0.043 0.809±0.088 0.860±0.103

LSA 0.846±0.000 0.677±0.000 0.583±0.001 0.857±0.000 0.646±0.005
SCC 0.812±0.049 0.908±0.099 0.717±0.089 0.737±0.054 0.649±0.062
LKF 1.000±0.000 1.000±0.000 0.996±0.016 0.999±0.004 1.000±0.000
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Figure 4: Parameter influence on Localized K-flats. See text for details on each display.

minima, such as K-means and SCC. The results are tabu-
lated in Table 1, which show that: a). Generally, all the lin-
ear manifold clustering algorithms perform better than K-
means which is based on the assumption that each cluster
is centered around a prototype. b). The performance of all
other algorithms are not very satisfying due to the infinite
expansibility of linear models and the impact of the co-linear
clusters. c). Our proposed LKF does the best.

Experiments on Real Data

In this experiment, we test LKF and all other algorithms on
five motion segmentation sequences from (Tron and Vidal
2007). The first two rows of Table 2 list the name of the se-
quences, the number of points N , frames F and clusters K,
respectively. (Vidal, Ma, and Sastry 2005) has shown that
each object spans a different subspace under the affine cam-
era model and hence all types of motion segmentation prob-
lems are equivalent to finding different subspaces. However,
as pointed out by (Boult and Brown 1991) “such definitions,
in terms of subspaces, may not totally capture the intuitive
notion of ‘different motions’. If there are two well separated
clusters within a single subspace, humans might interpret
them as different motions”. One example is illustrated in
Figure 3 by projecting the cars3 data set onto the 3D space
for visualization using PCA. Obviously, there are four clus-
ters where two of them approximately lie in the same lin-
ear subspace. The proposed LKF and all other algorithms
are used to segment these five video sequences into multiple
spatiotemporal regions. Except for GPCA which requires to
work in a low-dimensional space, all other algorithms are
executed in the original D = 2F dimensional space. GPCA
is performed in a 5-dimensional ambient space following the
original authors’ suggestion (Vidal, Ma, and Sastry 2005).
Table 2 shows the results of the different algorithms and our
proposed method achieves significantly better performance.

Parameter Influence

There are four adjustable parameters in our LKF algorithm
(i.e., λ, M , P and o) whose optimal values generally depend
on the distribution of the samples and the noise level. Tradi-
tionally, we can best set them by using domain knowledge.
However, it is also interesting and sensible to examine the
impact of these parameters, and then obtain some guidelines
to their setting. Figure 4 shows the performance of our pro-
posed method as a function of the concerned parameter by
fixing other parameters on the synthetic data.

From these results, it is easy to see that LKF achieves sig-
nificantly better results than K-flats over a large range of
parameter setting. Also, we can get several interesting obser-
vations: a). LKF works well when λ is relatively small but
larger than zero. This phenomenon is reasonable as λ = 0
corresponds to the original K-flats and thus the representa-
tions of the linear models extend infinitely in the data space,
while large λ makes the algorithm prone to K-means. b).
The performance of LKF is insensitive to both M and P ,
as long as they are neither too small nor too large, which is
consistent with many existing observations (Roweis, Saul,
and Hinton 2002; Saul and Roweis 2004). The reason is
that small M is not enough to avoid the misclassification
of points from the elongated clusters, while large M will
cause the local models sensitive to noise (Roweis, Saul, and
Hinton 2002). Moreover, there may be many disconnected
sub-clusters when P is too small, while local restriction will
lose when it is too large (Saul and Roweis 2004). c). LKF
seems insensitive to o as long as it is large enough.

From these observations, we recommend to set λ = 0.005
and o = 8. M and P will be tuned according to the distribu-
tion of the samples and the noise level.

Handling Nonlinear Structure

Generally, linear manifold clustering algorithms are de-
signed to group linear manifolds. However, manifolds in real
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Figure 5: Three nonlinear data sets: (a) Two spirals data
(N = 1000). (b) Two circles data (N = 3000). (c) Twelve
images of three cars (N = 216).

data are generally nonlinear (Saul and Roweis 2004) and all
the linear algorithms fail to deliver good performance in the
presence of nonlinear structure. Therefore, nonlinear models
have received much attention recently (Souvenir and Pless
2005; Wang et al. 2010). Though LKF is initially proposed
to deal with the infinity errors and co-linear errors of the
linear K-flats algorithm, it fortunately has the potential abil-
ity to group manifolds with nonlinear structure. The reason
is that we can usually characterize the manifolds with com-
plicated global nonlinear structure by a collection of local
linear models (Roweis, Saul, and Hinton 2002) and our pro-
posed method exactly has this ability due to its localized rep-
resentations of manifolds.

In these preliminary experiments, LKF is compared with
all linear manifold clustering algorithms and two nonlinear
algorithms (i.e., K-manifolds (Souvenir and Pless 2005) and
mumCluster (Wang et al. 2010)) on three highly nonlinear
data sets (see Figure 5): two synthetic data sets and one real
data set from the processed COIL-20 database1. The cor-
responding clustering accuracy of the different algorithms
are shown in Table 3. The results reveal several interesting
observations: a). Traditional linear algorithms (i.e., GPCA,
K-flats, LSA and SCC) do not work well on these nonlinear
databases, due to their linear property. b). Generally, nonlin-
ear models (i.e., K-manifolds, mumCluster and LKF) give
better performance. c). It is easy to see that the proposed
LKF performs superior to all other algorithms.

Conclusions

In this paper, we analyze the inherent deficiency of the orig-
inal K-flats algorithm in detail and propose LKF to remove
confusion among different linear models. Experimental re-
sults on both synthetic data sets and real-world applications
have demonstrated the efficiency of the proposed method
and its potential to group manifolds with nonlinear structure.
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