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Abstract

Multi-task learning has received increasing attention in
the past decade. Many supervised multi-task learning
methods have been proposed, while unsupervised multi-
task learning is still a rarely studied problem. In this pa-
per, we propose to learn a kernel for multi-task cluster-
ing. Our goal is to learn a Reproducing Kernel Hilbert
Space, in which the geometric structure of the data in
each task is preserved, while the data distributions of
any two tasks are as close as possible. This is formulated
as a unified kernel learning framework, under which
we study two types of kernel learning: nonparametric
kernel learning and spectral kernel design. Both types
of kernel learning can be solved by linear program-
ming. Experiments on several cross-domain text data
sets demonstrate that kernel k-means on the learned ker-
nel can achieve better clustering results than traditional
single-task clustering methods. It also outperforms the
newly proposed multi-task clustering method.

Introduction

Multi-task learning (Caruana 1997) has received increasing
interest in the past decade. It is based on the philosophy that
learning multiple tasks together may achieve better gener-
alization ability than learning these tasks individually, pro-
vided that the relation between these tasks are well utilized.
For example, given the web pages from two universities,
i.e., A and B, we aim to classify (cluster) the web pages
of each university into four categories, e.g., student, faculty,
staff and course. We refer to classifying (clustering) the web
pages of each university as a task. Intuitively, these two tasks
are related to each other, since the contents of the web pages
are similar and the label spaces are the same. If we can use
such kind of relationship between the two tasks, then clas-
sifying (clustering) them simultaneously may lead to better
performance. One intuitive way is to combine the web pages
from the two universities together, followed with traditional
single-task learning approach. However, it is likely to result
in poor performance, because University A and University
B exhibit different characteristics and hence the distributions
of the web pages from them are different. Thus the combined
data violates the i.i.d. assumption of single-task learning.
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The fundamental problem in multi-task learning is how to
characterize the task relation. Representative methods char-
acterizing task relation include learning a shared subspace
(Ando and Zhang 2005) (Argyriou, Evgeniou, and Pontil
2006), using the common prior of model parameters (Evge-
niou and Pontil 2004) (Zhang, Ghahramani, and Yang 2005)
(Zhang and yan Yeung 2010) and kernel methods (Micchelli
and Pontil 2004) (Pan, Kwok, and Yang 2008) (Duan et al.
2009), etc.

The methods mentioned above are all supervised multi-
task learning. Recently, multi-task clustering (Gu and Zhou
2009) was proposed, which clusters the data from related
tasks simultaneously. In particular, it assumes that there is a
common subspace shared by multiple related tasks, in which
the data of all the tasks share an identical set of cluster cen-
ters. However, there is no principled way to choose the di-
mensionality of the shared subspace. More importantly, it
does not explicitly consider the distributions of the tasks,
which are essential to measure the relation between any two
tasks (Pan, Kwok, and Yang 2008) (Duan et al. 2009).

In this paper, based on the above observation, we aim
to explicitly exploit the distribution information of related
tasks for multi-task clustering. We present a multi-task clus-
tering framework based on kernel learning. The basic idea
of our framework is to find a Reproducing Kernel Hilbert
Space (RKHS), in which the mapped data distributions of
the related tasks are close to each other. Hence single-task
clustering algorithm such as kernel k-means can be applied
to this RKHS. Through the learned RKHS, the knowledge
of one task can be transferred to another, while there is no
need to choose the dimensionality of this RKHS. Similar
ideas have also been adopted in several cross-domain clas-
sification approaches (Pan, Kwok, and Yang 2008) (Duan
et al. 2009). On the other hand, we hope that the geometric
structure of the data in each task is preserved after feature
mapping, since it is fundamental for better clustering per-
formance (Shi and Malik 2000). This can be achieved via
graph regularization (Chung 1997) in the RKHS. Both of the
above two objectives are unified in a kernel learning frame-
work. In particular, we study two kinds of kernel learning:
nonparametric kernel learning (Lanckriet et al. 2004) (Hoi,
Jin, and Lyu 2007) and spectral kernel design (Zhu et al.
2004), both of which can be solved by linear programming
(Boyd and Vandenberghe 2004). Experiments on text data
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sets demonstrate that the proposed methods outperform the
recently proposed multi-task clustering method as well as
many state of the art single-task clustering approaches.

The Proposed Method

Problem Formulation

Suppose we are given m clustering tasks, each with a set of
data points, i.e. X k = {xk

1 ,x
k
2 , . . . ,x

k
nk
} ∈ R

d, 1 ≤ k ≤
m, where nk is the number of data points in the k-th task
and n =

∑m
k=1 nk is the total number of data points from

all the tasks. The goal of multi-task clustering is to partition
the data set X k of each task into c clusters {Ck

j }cj=1. Note
that we assume the dimensionality of the feature vector of all
the tasks is the same, i.e. d. It is appropriate since we could
augment the feature vectors of all the tasks to make the di-
mensionality same. In fact, the bag-of-words document rep-
resentation used in our experiments implicitly does the aug-
mentation. Moreover, we assume that the number of clusters
in each task is the same, i.e. c1 = c2 = . . . = cm = c,
which is also assumed in existing multi-task learning litera-
ture. I denotes an identity matrix with appropriate size.

We consider the problem in a Reproducing Kernel Hilbert
Space H (Schölkopf and Smola 2002) induced by some non-
linear mapping φ : Rd → H. For a proper chosen φ, the
inner product 〈, 〉 in H is defined as

〈φ(x), φ(y)〉H = K(x,y), (1)

where K(, ) : X×X −→ R is a positive semi-definite kernel
function.

Kernel Mean Matching

In multi-task learning, one fundamental question is how to
evaluate the difference in distribution between two tasks
given finite samples. (Gretton et al. 2006) introduced the
Maximum Mean Discrepancy (MMD) for comparing dis-
tributions based on the Reproducing Kernel Hilbert Space
(RKHS) distance.

Definition 0.1. (Gretton et al. 2006) Let p and q be distri-
butions defined on a domain X, and let F be a class of func-
tions f : X → R. Given observations X = {x1, . . . ,xn1

}
and Y = {y1, . . . ,yn2

}, then the maximum mean discrep-
ancy (MMD) and its empirical estimates are defined as

MMD[F , p, q] = sup
f∈F

(Ex∼p[f(x)] − Ey∼q[f(y)])

MMD[F ,X ,Y] = sup
f∈F

(
1

n1

n1∑
i=1

f(xi)− 1

n2

n2∑
i=1

f(yi)).

Note that MMD is able to capture the high order statistics
of the data when the samples are mapped into a high di-
mensional or ever infinite dimensional space. Based on this
observation, (Gretton et al. 2006) proposed to select F to be
the unit ball in a universal RKHS H. As a result, the dis-
tance between the distributions of two tasks is simply the
distance between the two mean elements in the RKHS. Let
X k = {xk

1 , . . . ,x
k
nk
} and X l = {xl

1, . . . ,x
l
nl
} be two sets

of data points from the k-th task and the l-th task, then the
distance between the k-th task and the l-th task is

dist(X k,X l) = || 1
nk

nk∑
i=1

φ(xk
i )−

1

nl

nl∑
i=1

φ(xl
i)||2H, (2)

which can be simplified as

dist(X k,X l) = tr(ΦklSkl(Φkl)T ) = tr(SklKkl), (3)

where Φkl = [φ(xk
1), . . . , φ(x

k
nk
), φ(xl

1), . . . , φ(x
l
nl
)],

Kkl = (Φkl)TΦkl and Skl ∈ R
(nk+nl)×(nk+nl) is defined

as

Skl
ij =

⎧⎪⎨
⎪⎩

1
n2
k
, if xi,xj ∈ Xk

1
n2
l
, if xi,xj ∈ Xl

− 1
nknl

, otherwise
. (4)

For all the tasks, we summate the pairwise distances be-
tween any two tasks as follows∑

k,l

dist(X k,X l) =
∑
k,l

tr(ΦklSkl(Φkl)T )

= tr(ΦSΦT ) = tr(SK), (5)

where Φ = [φ(x1
1), . . . , φ(x

1
n1
), . . . , φ(xm

1 ), . . . , φ(xm
nm

)]
and S ∈ R

n×n is defined as

Sij =

{
m−1
n2
k
, if xi,xj ∈ Xk

− 1
nknl

, if xi ∈ Xk and xj ∈ Xl
. (6)

In a word, the smaller the objective value of Eq.(5) is, the
closer the distributions from any two tasks will be.

Graph Regularization

For good clustering performance, we aim to find a feature
mapping φ(x), which is smooth with respect to the intrinsic
manifold structure of the data. Suppose the data is a compact
submanifold M ∈ R

d, we can use the Laplacian-Beltrami
operator on the manifold ||φ||2M to measure the smoothness
of the feature mapping.

||φ||2M =

∫
x∈M

||∇Mφ(x)||2dx, (7)

where ∇Mφ is the gradient of φ along the manifold M.
In reality, the data manifold M is unknown. So ||φ||2M in

Eq.(7) can not be computed. Recent study on spectral graph
theory (Chung 1997) has illustrated that ||φ||2M can be dis-
cretely approximated through the graph Laplacian. In detail,
we construct an undirected weighted graph G = (V, E) on
the data points of all the task, whose vertex set V corre-
sponds to the data points {x1, . . . ,xn}. Then the Laplacian-
Beltrami operator can be approximated as follows,

Ω(φ) =
1

2

n∑
i,j=1

Wij ||φ(xi)√
Dii

− φ(xj)√
Djj

||22

= tr(ΦLΦT ) = tr(LΦTΦ) = tr(LK), (8)

where || · ||2 is 2-norm, Φ = [φ(x1), . . . , φ(xn)], W =
[Wij ] is the adjacency matrix, D is the diagonal degree ma-
trix with Dii =

∑
j Wij , and L = I −D− 1

2WD− 1
2 is the
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normalized graph Laplacian (Chung 1997) of graph G. The
smaller is Ω(φ), the smoother φ will be.

We aim to find a nonlinear mapping φ, such that if the
data points xi and xj are close to each other in the input
space, then their images in the feature space φ(xi) and φ(xj)
are close as well. So we define the adjacency matrix W as
follows (Cai, He, and Han 2005),

Wij =

{ cosine(xi,xj), if xi,xj ∈ Xk

and xj ∈ N (xi) or xi ∈ N (xj)
0, otherwise.

.

(9)
where cosine(xi,xj) is the cosine distance between xi and
xj , N (xi) denotes the k-nearest neighbor of xi.

Nonparametric Kernel Learning

Up to now, we have introduced kernel mean matching and
graph regularization in RKHS. Our main idea is to seek a
kernel K such that the mapped data in the feature space are
not only smooth with respect to the geometric structure of
the input data from each task, but also the data distributions
of different tasks are as close as possible. Mathematically, it
can be formulated as the following optimization problem

min
K

tr(LK) + Ctr(SK),

s.t. 0 	 K 	 I, tr(K) = b, (10)

where C is a positive regularization parameter, tr(K) = b is
introduced to avoid trivial solution. Note that we do not re-
quire the kernel to be universal. Universal kernel guarantees
that MMD(F , p, q) = 0 if and only if p = q. However, we
aim at finding a kernel by which p and q are close, but not
necessarily the same.

The problem in Eq.(10) is a kind of non-parametric ker-
nel learning (Lanckriet et al. 2004) (Hoi, Jin, and Lyu 2007),
which is a semi-definite programming (Boyd and Vanden-
berghe 2004). It can be solved by off-the-shelf SDP package
such as YALMIP (Lofberg 2004). However, when the num-
ber of data points n is large, it is computationally expensive.
Fortunately, we can solve it by linear programming.
Theorem 0.2. Suppose A is a symmetric matrix such that
A = PΣPT , where P contains columns of orthonormal
eigenvectors of A and Σ = diag(σ1, . . . , σn) is a diago-
nal matrix of the corresponding eigenvalues, and b is any
positive constant, the optimal solution K∗ to the following
semi-definite programming problem

min
K

tr(AK)

s.t. 0 	 K 	 I, tr(K) = b, (11)

can be expressed as K∗ = PΓPT where Γ =
diag(γ1, . . . , γn) is the solution of the following linear pro-
gramming,

min
γi

n∑
i=1

γiσi

s.t. 0 ≤ γi ≤ 1, 1 ≤ i ≤ n,
n∑

i=1

γi = b. (12)

Proof. The key step is to prove that A and K can be jointly
diagonalized (Golub and Loan 1996). For the space limit,
we omit it here.

In particular, to solve the problem in Eq.(10), let A =
L + CS, we can obtain the optimal K∗ via linear program-
ming. It is much more efficient than solving it by off-the-
shelf SDP package (Lofberg 2004). In summary, we present
the algorithm for optimizing the problem in Eq.(10) in Al-
gorithm 1.

Algorithm 1 Learning Nonparametric Kernel for Multi-
Task Clustering (LNKMTC)

Input:m tasks, {Xk}mk=1, regularization parameter C,
real positive constant b;
1. Compute S as in Eq.(6);
2. Construct a k-NN graph G = (V, E) on the data points
of all the tasks, and compute the normalized graph Lapla-
cian L as in Eq.(9);
3. Let A = L+ CS, compute the optimal nonparametric
kernel K∗ by Theorem 0.2;
4. Perform kernel kmeans on K∗.

Spectral Kernel Learning

Instead of learning a fully non-parametric kernel matrix,
(Zhu et al. 2004) suggested to learn a spectral kernel.
Suppose L = VΛVT =

∑n
t=1 λtvtv

T
t , where Λ =

diag(λ1, . . . , λn) with 0 ≤ λ1 ≤ . . . , λn are the eigenvalues
and ||vt|| = 1 are the eigenvectors. It is worth noting that vt

can be seen as a function defined on the graph G (Chung
1997). According to Eq.(8), we have Ω(vt) = vT

t Lvt = λt,
which tells us that the smoothness of the function (eigenvec-
tor) vt is measured by its eigenvalue λt. Following (Zhu et
al. 2004), we aim to learn a kernel matrix in the form

K =

r∑
t=1

μtvtv
T
t , μt ≥ μt+1, t = 1, 2, . . . , r − 1, (13)

where vt is the eigenvector of L corresponding to the t-
th smallest eigenvalue λt. Note that we keep the smoothest
r � n functions (eigenvectors) vt only. Thus Eq.(8) is trans-
formed to

tr(LK) = tr(VΛVTVUVT ) = tr(ΛU) =
r∑

t=1

λtμt, (14)

where U = diag(μ1, . . . , μr, 0, . . . , 0). Kernel matrix con-
structed from the graph Laplacian via adapting the eigen-
values of the graph Laplacian in Eq.(13) is typically called
graph kernel or spectral kernel (Zhu et al. 2004). The opti-
mization in Eq.(10) can be transformed to

min
μt

r∑
t=1

λtμt + C

r∑
t=1

tr(Svtv
T
t )μt

s.t. tr(
r∑

t=1

μtvtv
T
t ) = b

μt+1 ≤ μt, t = 1, . . . , r − 1

0 ≤ μt ≤ 1, t = 1, . . . , r, (15)
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where tr(
∑r

t=1 μtvtv
T
t ) = b is resulted from tr(K) = b.

Eq.(15) is a linear programming (Boyd and Vandenberghe
2004).

We summarize the algorithm for optimizing the problem
in Eq.(15) in Algorithm 2.

Algorithm 2 Learning Spectral Kernel for Multi-Task Clus-
tering (LSKMTC)

Input:m tasks, {Xk}mk=1, regularization parameter C, the
number of retained eigenvectors r, and real positive con-
stant b;
1. Compute S as in Eq.(6);
2. Construct a k-NN graph G = (V, E) on the data points
of all the tasks, and compute the normalized graph Lapla-
cian L as in Eq.(9);
3. Solve the sparse eigen-decomposition Lvt = λtvt, and
retain the r � n smallest eigenvalues {λt} and corre-
sponding eigenvectors {vt} such that λ1 ≤ . . . ≤ λr;
4. Solve the linear programming in Eq.(15), and compute
the optimal spectral kernel K∗ =

∑r
t=1 μtvtv

T
t as in

Eq.(13);
5. Perform kernel kmeans on K∗.

Experiments

In our experiments, we compare the proposed multi-task
clustering methods, i.e., LNKMTC and LSKMTC, with typ-
ical single-task clustering methods, e.g., K-means, Kernel
K-means (KKM) and Normalized Cut (NCut) (Shi and Ma-
lik 2000). We also present the experimental results of clus-
tering the data of all the tasks together using K-means, KKM
and NCut. Furthermore, we compare the proposed meth-
ods with the multi-task clustering method proposed in (Gu
and Zhou 2009), namely Learning the Shared Subspace for
Multi-Task Clustering (LSSMTC). In addition, we also eval-
uate the proposed methods with C = 0, which means we
only preserve the geometric structures of different tasks, but
do not require the distributions of different tasks to be close.
We refer to these two specific methods as LNKMTC0 and
LSKMTC0. All of our experiments have been performed on
a Intel Core2 Duo 2.8GHz Windows XP machine with 3GB
memory.

Evaluation Metrics

To evaluate the clustering results, we adopt two performance
measures (Xu, Liu, and Gong 2003), which are widely used
in the literature.

Clustering Accuracy is defined as follows:

Acc =

∑n
i=1 δ(map(ri), li)

n
, (16)

where ri denotes the cluster label of xi, and li denotes the
true class label, n is the total number of documents, δ(x, y)
is the delta function that equals one if x = y and equals zero
otherwise, and map(ri) is the permutation mapping function
that maps each cluster label ri to the equivalent label from
the data set.

Normalized Mutual Information is used for determin-
ing the quality of clusters. Given a clustering result, the NMI
is estimated by

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c

i=1 ni log
ni

n )(
∑c

j=1 n̂j log
n̂j

n )
, (17)

where ni denotes the number of data contained in the cluster
Ci(1 ≤ i ≤ c), n̂j is the number of data belonging to the
Lj(1 ≤ j ≤ c), and ni,j denotes the number of data that are
in the intersection between the cluster Ci and the class Lj .
The larger the NMI is, the better the clustering result will be.

Data Sets

In order to evaluate the proposed methods, we use two text
data sets, which are used in (Gu and Zhou 2009).

WebKB1 data set contains web pages gathered from
university computer science departments (Cornell, Texas,
Washington, Wisconsin). There are about 8280 documents
and they are divided into 7 categories, and we choose stu-
dent, faculty, course and project these four most populous
entity-representation categories for clustering, named We-
bKB4. We consider clustering the web pages of each univer-
sity as one task. Therefore, we have 4 tasks.

20Newsgroup2 is a collection of approximately 20000
newsgroup documents, partitioned across 20 different news-
groups nearly evenly. We generate 2 cross-domain data sets,
i.e., Rec.vs.Talk and Comp.vs.Sci, for evaluating multi-task
clustering methods. In detail, two top categories are chosen,
one as positive and the other as negative. Then the data are
split based on sub-categories. The task is defined as top cate-
gory classification. The splitting ensures the data in different
tasks are related but different, since they are drawn from the
same top category but different sub-categories. The detailed
constitutions of the two data sets are summarized in Table 1.

Table 1: Constitution of the two data sets generated from
20Newsgroup

Data set Task id Class 1 Class 2
Rec.vs.Talk Task 1 rec.autos talk.politics.guns

Task 2 rec.sport.baseball talk.politics.mideast
Comp.vs.Sci Task 1 comp.os.ms-windows.misc sci.crypt

Task 2 comp.sys.mac.hardware sci.space

Table 2 summarizes the characteristics of the three data
sets used in our experiments.

Methods & Parameter Settings

We set the number of clusters equal to the true number
of classes for all the clustering algorithms. The results of
Kmeans, NCut and LSSMTC are taken from (Gu and Zhou
2009).

KKM: We use Gaussian kernel for kernel k-means, the
width of the Gaussian kernel σ is set by searching the grid
{10−3, 10−2, 10−1, 1, 10, 102, 103}.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/

2http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 2: Description of the data sets
Data set Task id #Sample #Feature #Class

Task 1 227 2000 4
WebKB4 Task 2 250 2000 4

Task 3 248 2000 4
Task 4 304 2000 4

Rec.vs.Talk Task 1 1844 2000 2
Task 2 1545 2000 2

Comp.vs.Sci Task 1 1875 2000 2
Task 2 1827 2000 2

LNKMTC: The neighborhood size of the k-NN graph is
set to 10, the regularization parameter C is set by searching
the grid {0.1, 1, 10, 100, 500, 1000}, b is set to 30.

LSKMTC: The construction of the k-NN graph and the
setting of the regularization parameter C are the same as that
in LNKMTC, b is set to 1, the number of retained eigenvec-
tors is set to 30.

Under each parameter setting, we repeat clustering 10
times, and the mean result as well as the standard deviation
are computed. We report the mean and standard deviation
corresponding to the best parameter setting for each method
to compare with each other.

Clustering Results

The average results are shown in Table 3, Table 4 and Table
5. ”All” refers to clustering the data of all the tasks together.
From the tables, we observe that:

Table 4: Clustering Results on Rec.vs.Talk
Task 1 Task 2

Method Acc (%) NMI (%) Acc (%) NMI (%)
Kmeans 64.67±3.82 18.84±3.07 64.54±9.67 15.68±13.79
KKM 68.55±0.15 22.05±0.35 70.77±10.65 25.01±13.82
NCut 67.79±0.00 22.16±0.00 68.87±0.00 21.22±0.00

All Kmeans 65.51±3.82 17.42±1.60 58.98±2.71 5.58±4.43
All KKM 69.01±0.15 14.63±0.23 63.11±0.38 10.03±0.25
All NCut 68.66±0.00 26.04±0.00 61.88±0.00 7.83±0.00
LSSMTC 84.33±8.04 43.06±5.82 78.95±8.27 34.73±8.35

LNKMTC0 66.19±8.92 11.06±10.03 72.83±10.80 22.65±15.56
LSKMTC0 64.34±10.57 10.17±11.54 72.49±12.75 22.87±18.74
LNKMTC 82.87±2.07 41.78±0.66 85.66±7.70 47.46±6.99

LSKMTC 87.97±1.61 49.53±1.30 84.05±5.87 42.64±5.23

1. Multi-task clustering methods (e.g. LSSMTC,
LNKMTC and LSKMTC) indeed outperform single-task
clustering methods such as K-means, Kernel K-means
and NCut. The improvement owes to the utilization of the
relationship among the tasks.

2. Our methods (LNKMTC and LSKMTC) are better than
LSSMTC. As we mentioned before, LSSMTC aims to find a
subspace in which all the tasks share an identical set of clus-
ter centers. However, the dimensionality of the subspace is
difficult to determine, which has to be tuned by grid search.
Moreover, it does not consider the distributions of different
tasks explicitly. In contrast, our methods are based on kernel
mean matching, which considers the distributions of differ-
ent tasks and owns solid theoretical foundation. In addition,

Table 5: Clustering Results % on Comp.vs.Sci
Task 1 Task 2

Method Acc (%) NMI (%) Acc (%) NMI (%)
Kmeans 61.30±2.02 17.27±2.28 67.16±0.00 20.87±0.00
KKM 81.33±15.36 44.98±22.12 67.26±0.50 17.48±3.62
NCut 66.83±0.00 23.27±0.00 66.78±0.00 16.94±0.00

All Kmeans 66.56±7.27 23.30±9.24 54.07±2.11 5.32±1.91
All KKM 74.57±6.99 22.92±6.79 52.19±2.62 1.40±2.69
All NCut 63.52±0.00 19.41±0.00 55.06±0.00 6.27±0.00
LSSMTC 88.01±0.76 53.76±1.55 80.16±6.14 33.47±14.07

LNKMTC0 62.63±10.35 9.06±11.11 59.06±8.55 4.46±7.45
LSKMTC0 66.83±13.17 14.68±17.46 64.56±7.04 7.69±6.34
LNKMTC 91.57±1.58 56.26±5.60 82.33±6.31 38.00±7.18
LSKMTC 90.16±5.27 55.29±6.42 84.24±6.71 40.73±6.82

there is no need to choose the dimensionality of the RHKS.
This is the main reason why our methods are superior to
LSSMTC.

3. Generally speaking, LSKMTC is comparable to or even
better than LNKMTC, this is consistent with existing ob-
servation that spectral kernel learning is usually better than
nonparametric kernel learning (Zhu et al. 2004).

4. As can be seen, simply clustering the data of all the
tasks together (e.g. All Kmeans, All KKM and All NCut)
does not necessarily improve the clustering result, because
the data distributions of different tasks are not the same,
and combining the data together directly violates the i.i.d.
assumption in single-task clustering. In our methods, after
kernel mean matching, the distributions of all the tasks are
similar. As a result, single task clustering algorithm (KKM
in our experiments) can be performed on the mapped data.

5. In addition, LNKMTC0 and LSKMTC0 perform
poorly. The reason is that they are essentially combing the
data together and doing unsupervised non-parametric ker-
nel learning or spectral kernel learning for kernel k-means.
As a result, they also violate the i.i.d. assumption in single-
task clustering. This indicates that the kernel mean matching
term in the proposed methods is very crucial for multi-task
clustering.

Computational Time

In this subsection, we investigate the computational time of
the 3 multi-task clustering methods. We plot the computa-
tional time of LSSMTC (l = 2, λ = 0.5), LNKMTC (C =
1) and LSKMTC (C = 1) on the WebKB4, Rec.vs.Talk and
Comp.vs.Sci data sets in Figure 1. We can see that LSKMTC
is much more efficient than the other two methods. Consid-
ering both the effectiveness and efficiency of our methods,
LSKMTC is superior to LNKMTC.

Conclusion

In this paper, we propose to learn a Reproducing Kernel
Hilbert Space, in which the geometric structure of the data
from each task is preserved, while the data distributions of
any two tasks are as close as possible. We study two kinds of
kernel learning: nonparametric kernel learning and spectral
kernel design, both of which can be solved by linear pro-
gramming. Experiments on text data sets demonstrate that
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Table 3: Clustering Results on WebKB4
Task 1 Task 2 Task 3 Task 4

Method Acc (%) NMI (%) Acc (%) NMI (%) Acc (%) NMI (%) Acc (%) NMI (%)
Kmeans 57.84±9.96 27.60±7.53 56.70±6.97 25.52±5.51 56.71±9.03 28.14±6.03 67.70±7.73 35.52±9.49
KKM 53.57±8.35 19.70±6.68 53.04±5.56 31.55±5.92 60.08±4.86 33.94±3.70 71.45±6.04 43.47±2.10
NCut 49.07±1.88 28.16±3.42 67.20±0.00 36.32±0.00 52.82±0.00 34.66±0.00 60.79±0.15 25.55±0.68

All Kmeans 54.76±8.37 18.46±7.36 59.44±4.47 31.78±5.14 59.80±9.14 21.47±12.55 58.98±11.58 31.08±11.35
All KKM 56.83±4.36 10.96±2.62 56.96±3.62 4.74±1.82 50.00±0.95 3.45±1.82 63.16±9.29 27.54±15.44
All NCut 56.83±0.00 25.05±0.00 59.20±0.00 27.21±0.00 49.60±0.00 23.40±0.00 51.32±0.00 26.20±0.00
LSSMTC 62.47±3.36 33.69±1.44 63.04±3.64 34.16±1.01 66.77±4.08 35.52±1.47 73.29±3.33 42.40±0.96

LNKMTC0 48.11±8.83 23.62±7.69 52.00±5.78 25.50±8.47 63.43±5.39 32.68±4.96 47.76±6.91 23.48±8.71
LSKMTC0 46.12±9.24 24.64±6.23 55.16±5.57 30.11±5.09 59.15±4.33 28.24±6.32 50.99±8.69 21.57±5.82
LNKMTC 66.39±1.96 36.34±1.65 69.20±1.53 42.09±1.80 69.60±2.50 41.95±2.06 71.32±2.23 45.53±1.21
LSKMTC 69.21±1.13 40.85±2.16 72.80±1.26 45.41±2.00 70.40±1.27 42.46±2.09 76.38±1.94 50.97±1.16
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Figure 1: The computational time of LSSMTC, LNKMTC
and LSKMTC on the WebKB4, Rec.vs.Talk and
Comp.vs.Sci data sets.

the proposed multi-task clustering methods outperform ex-
isting multi-task clustering method as well as state of the art
single-task clustering methods greatly.
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