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Abstract

Semi-supervised support vector machines (S3VMs) are a
kind of popular approaches which try to improve learning
performance by exploiting unlabeled data. Though S3VMs
have been found helpful in many situations, they may de-
generate performance and the resultant generalization ability
may be even worse than using the labeled data only. In this
paper, we try to reduce the chance of performance degenera-
tion of S3VMs. Our basic idea is that, rather than exploiting
all unlabeled data, the unlabeled instances should be selected
such that only the ones which are very likely to be helpful
are exploited, while some highly risky unlabeled instances
are avoided. We propose the S3VM-us method by using hier-
archical clustering to select the unlabeled instances. Experi-
ments on a broad range of data sets over eighty-eight different
settings show that the chance of performance degeneration of
S3VM-us is much smaller than that of existing S3VMs.

Introduction

In many real situations there are plentiful unlabeled train-
ing data while the acquisition of class labels is costly and
difficult. Semi-supervised learning tries to exploit unla-
beled data to help improve learning performance, particu-
larly when there are limited labeled training examples. Dur-
ing the past decade, semi-supervised learning has received
significant attention and many approaches have been devel-
oped (Chapelle et al. 2006; Zhu 2006; Zhou and Li 2010).

Among the many semi-supervised learning approaches,
S3VMs (semi-supervised support vector machines) (Ben-
nett and Demiriz 1999; Joachims 1999) are popular and
have solid theoretical foundation. However, though the
performances of S3VMs are promising in many tasks, it
has been found that there are cases where, by using unla-
beled data, the performances of S3VMs are even worse than
SVMs simply using the labeled data (Zhang and Oles 2000;
Chapelle et al. 2006; 2008). To enable S3VMs to be ac-
cepted by more users in more application areas, it is desir-
able to reduce the chances of performance degeneration by
using unlabeled data.
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In this paper, we focus on transductive learning and
present the S3VM-us (S3VM with Unlabeled instances Se-
lection) method. Our basic idea is that, given a set of unla-
beled data, it may be not adequate to use all of them without
any sanity check; instead, it may be better to use only the un-
labeled instances which are very likely to be helpful while
avoiding unlabeled instances which are with high risk. To
exclude highly risky unlabeled instances, we first introduce
two baselines, where the first baseline uses standard cluster-
ing technique motivated by the discernibility of density set
(Singh et al. 2009) while the other one uses label propaga-
tion technique motivated by confidence estimation. Then,
based on the analysis of the deficiencies of the two base-
line approaches, we propose the S3VM-us method, which
employs hierarchical clustering to help select unlabeled in-
stances. Comprehensive experiments on a broad range of
data sets over eighty-eight different settings show that, the
chance of performance degeneration of S3VM-us is much
smaller than that of TSVM (Joachims 1999), while the over-
all performance of S3VM-us is competitive with TSVM.

The rest of this paper is organized as follows. Section
2 briefly reviews some related work. Section 3 introduces
two baseline approaches. Section 4 presents our S3VM-us
method. Experimental results are reported in Section 5. The
last section concludes this paper.

Related Work

Roughly speaking, existing semi-supervised learning ap-
proaches mainly fall into four categories. The first cate-
gory is generative methods, e.g., (Miller and Uyar 1997;
Nigam et al. 2000), which extend supervised genera-
tive models by exploiting unlabeled data in parameter es-
timation and label estimation using techniques such as the
EM method. The second category is graph-based meth-
ods, e.g., (Blum and Chawla 2001; Zhu et al. 2003;
Zhou et al. 2004), which encode both the labeled and un-
labeled instances in a graph and then perform label prop-
agation on the graph. The third category is disagreement-
based methods, e.g., (Blum and Mitchell 1998; Zhou and
Li 2005), which employ multiple learners and improve
the learners through labeling the unlabeled data based on
the exploitation of disagreement among the learners. The
fourth category is S3VMs, e.g., (Bennett and Demiriz 1999;
Joachims 1999), which use unlabeled data to regularize
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the decision boundary to go through low density regions
(Chapelle and Zien 2005).

Though semi-supervised learning approaches have shown
promising performances in many situations, it has been in-
dicated by many authors that using unlabeled data may hurt
the performance (Nigam et al. 2000; Zhang and Oles 2000;
Cozman et al. 2003; Zhou and Li 2005; Chawla and Karak-
oulas 2005; Lafferty and Wasserman 2008; Ben-David et al.
2008; Singh et al. 2009). In some application areas, espe-
cially the ones which require high reliability, users might be
reluctant to use semi-supervised learning approaches due to
the worry of obtaining a performance worse than simply ne-
glecting unlabeled data. As typical semi-supervised learning
approaches, S3VMs also suffer from this deficiency.

The usefulness of unlabeled data has been discussed the-
oretically (Lafferty and Wasserman 2008; Ben-David et al.
2008; Singh et al. 2009) and validated empirically (Chawla
and Karakoulas 2005). Many literatures indicated that unla-
beled data should be used carefully. For generative methods,
Cozman et al. (2003) showed that unlabeled data can in-
crease error even in situations where additional labeled data
would decrease error. One main conjecture on the perfor-
mance degeneration is attributed to the difficulties of making
a right model assumption which prevents the performance
from degenerated by fitting with unlabeled data. For graph-
based methods, more and more researchers recognize that
graph construction is more crucial than how the labels are
propagated, and some attempts have been devoted to us-
ing domain knowledge or constructing robust graphs (Bal-
can et al. 2005; Jebara et al. 2009). As for disagreement-
based method, the generalization ability has been studied
with plentiful theoretical results based on different assump-
tions (Blum and Mitchell 1998; Dasgupta et al. 2002;
Wang and Zhou 2007; 2010). As for S3VMs, the correct-
ness of the S3VM objective has been studied on small data
sets (Chapelle et al. 2008).

It is noteworthy that though there are many work devoted
to cope with the high complexity of S3VMs (Joachims 1999;
Collobert et al. 2006; Chapelle et al. 2008; Li et al. 2009),
there was no proposal on how to reduce the chance of per-
formance degeneration by using unlabeled data. There was
a relevant work which uses data editing techniques in semi-
supervised learning (Li and Zhou 2005); however, it tries to
remove or fix suspicious unlabeled data during training pro-
cess, while our proposal tries to select unlabeled instances
for S3VM and SVM predictions after the S3VM and SVM
have already been trained.

Two Baseline Approaches

As mentioned, our intuition is to use only the unlabeled data
which are very likely to help improve the performance and
keep the unlabeled data which are with high risk to be un-
exploited. In this way, the chance of performance degen-
eration may be significantly reduced. Current S3VMs can
be regarded as an extreme case which believes that all unla-
beled data are with low risk and therefore all of them should
be used; while inductive SVMs which use labeled data only
can be regarded as another extreme case which believes that

Algorithm 1 S3VM-c
Input: ySV M , yS3V M , D and parameter k
1: Perform partitional clustering (e.g., kmeans) on D. Denote

C1, . . . , Ck as the data indices of each cluster respectively.
2: For each cluster i = 1, . . . , k, calculate the label bias lb and

confidence cf of SVM and S3VM according to:

lbiS(3)V M = sign

⎛
⎝∑

j∈Ci

yS(3)V M (xj)

⎞
⎠

cf i
S(3)V M =

∣∣∣∣∣∣
∑
j∈Ci

yS(3)V M (xj)

∣∣∣∣∣∣
.

3: If lbiSV M = lbiS3V M & cf i
S3V M > cf i

SV M , use the predic-
tion of S3VM; otherwise use the prediction of SVM.

all the unlabeled data are high risky and therefore only la-
beled data are used.

Specifically, we consider the following problem: Once we
have obtained the predictions of inductive SVM and S3VM,
how to remove risky predictions of S3VM such that the re-
sultant performance could be often better and rarely worse
than that of inductive SVM?

There are two simple ideas that are easy to be worked
out to address the above problem, leading to two baseline
approaches, namely S3VM-c and S3VM-p.

In the sequel, suppose we are given a training data set
D = L⋃U where L = {(x1, y1), . . . , (xl, yl)} denotes
the set of labeled data and U = {xl+1, . . . ,xl+u} denotes
the set of unlabeled data. Here x ∈ X is an instance and
y ∈ {+1,−1} is the label. We further let ySVM (x) and
yS3VM (x) denote the predicted labels on x by inductive
SVM and S3VM, respectively.

S3VM-c
The first baseline approach is motivated by the analysis in
(Singh et al. 2009) which suggests that unlabeled data help
when the component density sets are discernable. Here,
one can simulate the component density sets by clusters
and discernibility by a condition of disagreements between
S3VM and inductive SVM. We consider the disagreement
using two factors, i.e., bias and confidence. When S3VM
obtains the same bias as inductive SVM and enhances the
confidence of inductive SVM, one should use the results of
S3VM; otherwise it may be risky if we totally trust the pre-
diction of S3VM.

Algorithm 1 gives the S3VM-c method and Figure 1(d) il-
lustrates the intuition of S3VM-c. As can be seen, S3VM-c
inherits the correct predictions of S3VM on groups {1, 4}
while avoids the wrong predictions of S3VM on groups
{7, 8, 9, 10}.

S3VM-p
The second baseline approach is motivated by confidence
estimation in graph-based methods, e.g., (Zhu et al. 2003),
where the confidence can be naturally regarded as a risk
measurement of unlabeled data.
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Figure 1: Illustration with artificial three-moon data. (a) Labeled data (empty and filled circles) and unlabeled data (gray points). The
blocked numbers highlight groups of four unlabeled instances. Classification results of (b) Inductive SVM (using labeled data only); (c)
S3VM; (d) S3VM-c, where each circle presents a cluster; (e) S3VM-p; (f) Our proposed S3VM-us.

Formally, to estimate the confidence of unlabeled data, let
Fl = [(yl+1)/2, (1−yl)/2] ∈ {0, 1}l×2 be the label matrix
for labeled data where yl = [y1, . . . , yl]

′ ∈ {±1}l×1 is the
label vector. Let W = [wij ] ∈ R(l+u)×(l+u) be the weight
matrix of training data and Λ is the laplacian of W, i.e.,
Λ = D−W where D = diag(di) is a diagonal matrix with
entries di =

∑
j wij . Then, the predictions of unlabeled

data can be obtained by (Zhu et al. 2003)

Fu = Λ−1
u,uWu,lF

l, (1)

where Λu,u is the sub-matrix of Λ with respect to the
block of unlabeled data, while Wu,l is the sub-matrix of
W with respect to the block between labeled and unla-
beled data. Then, assign each point xi with the label
yLabPo(xi) = sgn(Fu

i−l,1 − Fu
i−l,2) and the confidence

hi = |Fu
i−l,1−Fu

i−l,2|. After confidence estimation, similar
to S3VM-c, we consider the risk of unlabeled data by two
factors, i.e., bias and confidence. If S3VM obtains the same
bias of label propagation and the confidence is high enough,
we use the S3VM prediction, and otherwise we take SVM
prediction.

Algorithm 2 gives the S3VM-p method and Figure 1(e)
illustrates the intuition of S3VM-p. As can be seen, the cor-
rect predictions of S3VM on groups {2, 3} are inherited by
S3VM-p, while the wrong predictions of S3VM on groups
{7, 8, 9, 10} are avoided.

Our Proposed Method

Deficiencies of S3VM-c and S3VM-p
S3VM-c and S3VM-p are capable of reducing the chances
of performance degeneration by using unlabeled data, how-
ever, they both suffer from some deficiencies. For S3VM-c,
it works in a local manner and the relation between clus-
ters are never considered, leading to the unexploitation of
some helpful unlabeled instances, e.g., unlabeled instances
in groups {2, 3} in Figure 2(d). For S3VM-p, as stated in

Algorithm 2 S3VM-p
Input: ySV M , yS3V M , D, W and parameter η
1: Perform label propagation (e.g., (Zhu et al. 2003)) with W,

obtain the predicted label ylp(xi) and confidence hi for each
unlabeled instance xi, i = l + 1, . . . , l + u.

2: Update h according to

hi = yS3V M (xi)ylp(xi)hi, i = l + 1, . . . , l + u.

Let c denote the number of nonnegative entries in h.
3: Sort h, pick up the top-min{ηu, c} values and use the pre-

dictions of S3VM for the corresponding unlabeled instances,
otherwise use the predictions of SVM.

(Wang et al. 2008), the confidence estimated by label prop-
agation approach might be incorrect if the label initialization
is highly imbalanced, leading to the unexploitation of some
useful unlabeled instances, e.g., groups {4, 5} in Figure 2(e).

Moreover, both S3VM-c and S3VM-p heavily rely on the
predictions of S3VM, which might become a serious issue
especially when S3VM obtains degenerated performance.
Figures 2(b) and 2(c) illustrate the behaviors of S3VM-c
and S3VM-p when S3VM degenerates performance. Both
S3VM-c and S3VM-p erroneously inherit the wrong predic-
tions of S3VM of group 1.

S3VM-us
The deficiencies of S3VM-c and S3VM-p suggest to take
into account of cluster relation and make the method insen-
sitive to label initialization. This motivates us to use hierar-
chical clustering (Jain and Dubes 1988), leading to our pro-
posed method S3VM-us.

Hierarchical clustering works in a greedy and iterative
manner. It first initials each singe instance as a cluster and
then at each step, it merges two clusters with the shortest
distance among all pairs of clusters. In this step, the cluster
relation is considered and moreover, since hierarchical clus-
tering works in an unsupervised setting, it does not suffer
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Figure 2: Illustration with artificial two-moon data when S3VM degenerates performance. (a) Labeled data (empty and filled circles) and
unlabeled data (gray points). The blocked number highlight a group of four unlabeled instances. Classification results of (b) S3VM-c, where
each circle presents a cluster; (c) S3VM-p; (d) Our proposed S3VM-us.

Algorithm 3 S3VM-us
Input: ySV M , yS3V M , D and parameter ε
1: Let S be a set of the unlabeled data x such that ySV M (x) �=

yS3V M (x).
2: Perform hierarchical clustering, e.g., single linkage method

(Jain and Dubes 1988).
3: For each unlabeled instance xi ∈ S, calculate pi and ni, that

is, the length of the paths from xi to its nearest positive and
negative labeled instances, respectively. Denote ti = (ni−pi).

4: Let B be the set of unlabeled instances xi in S satisfying |ti| ≥
ε|l + u|.

5: If
∑

xi∈B yS3V M (xi)ti ≥ ∑
xi∈B ySV M (xi)ti, predict the

unlabeled instances in B by S3VM and otherwise by SVM.
6: Predict the unlabeled data x �∈ B by SVM.

from the label initialization problem.
Suppose pi and ni are the lengths of paths from the in-

stance xi to its nearest positive and negative labeled in-
stances, respectively, in hierarchical clustering. We simply
take the difference between pi and ni as an estimation of
the confidence on the unlabeled instance xi. Intuitively, the
larger the difference between pi and ni, the higher the con-
fidence on labeling xi.

Algorithm 3 gives the S3VM-us method and Figures 1(f)
and 2 illustrate the intuition of S3VM-us. As can be seen,
the wrong predictions of S3VM on groups {7, 8, 9, 10} are
avoided by S3VM-us, the correct predictions of S3VM on
groups {2, 3, 4, 5} are inherited, and S3VM-us does not er-
roneously inherit the wrong predictions of S3VM on group
1 in Figure 2.

Experiments

Settings

We evaluate S3VM-us on a broad range of data sets in-
cluding the semi-supervised learning benchmark data sets
in (Chapelle et al. 2006) and sixteen UCI data sets1. The
benchmark data sets are g241c, g241d, Digit1, USPS, TEXT
and BCI. For each data, the archive2 provides two data sets
with one using 10 labeled examples and the other using 100
labeled examples. As for UCI data sets, we randomly select
10 and 100 examples to be used as labeled examples, respec-
tively, and use the remaining data as unlabeled data. The ex-
periments are repeated for 30 times and the average accura-

1http://archive.ics.uci.edu/ml/
2http://www.kyb.tuebingen.mpg.de/ssl-book/

cies and standard deviations are recorded. It is worth noting
that in semi-supervised learning, labeled examples are of-
ten too few to afford a valid cross validation, and therefore
hold-out tests are usually used for the evaluation.

In addition to S3VM-c and S3VM-p, we compare with in-
ductive SVM and TSVM3 (Joachims 1999). Both linear and
Gaussian kernels are used. For the benchmark data sets, we
follow the setup in (Chapelle et al. 2006). Specifically, for
the case of 10 labeled examples, the parameter C for SVM
is fixed to m/

∑m
i=1 ‖xi‖2 where m = l + u is the size of

data set and the Gaussian kernel width is set to δ, i.e., the
average distance between instances. For the case of 100 la-
beled examples, C is fixed to 100 and the Gaussian kernel
width is selected from {0.25δ, 0.5δ, δ, 2δ, 4δ} by cross vali-
dation. On UCI data sets, the parameter C is fixed to 1 and
the Gaussian kernel width is set to δ for 10 labeled exam-
ples. For 100 label examples, the parameter C is selected
from {0.1, 1, 10, 100} and the Gaussian kernel width is se-
lected from {0.25δ, 0.5δ, δ, 2δ, 4δ} by cross validation. For
S3VM-c, the cluster number k is fixed to 50; for S3VM-p,
the weighted matrix is constructed via Gaussian distance and
the parameter η is fixed to 0.1; for S3VM-us, the parameter
ε is fixed to 0.1.

Results

The results are shown in Table 1. As can be seen, the per-
formance of S3VM-us is competitive with TSVM. In terms
of average accuracy, TSVM performs slightly better (worse)
than S3VM-us on the case of 10 (100) labeled examples.
In terms of pairwise comparison, S3VM-us performs better
than TSVM on 13/12 and 14/16 cases with linear/Gaussian
kernel for 10 and 100 labeled examples, respectively. Note
that in a number of cases, TSVM has large performance im-
provement against inductive SVM, while the improvement
of S3VM-us is smaller. This is not a surprise since S3VM-
us tries to improve performance with the caution of avoiding
performance degeneration.

Though TSVM has large improvement in a number of
cases, it also has large performance degeneration in cases.
Indeed, as can be seen from Table 1, TSVM is signifi-
cantly inferior to inductive SVM on 8/44, 19/44 cases for
10 and 100 labeled examples, respectively. Both S3VM-c
and S3VM-p are capable to reduce the times of significant
performance degeneration, while S3VM-us does not signif-
icantly degenerate performance in the experiments.

3http://svmlight. joachims.org/
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Table 1: Accuracy (mean ± std.). ‘SVM’ denotes inductive SVM which uses labeled data only. For the semi-supervised methods (TSVM,
S3VM-c, S3VM-p and S3VM-us), if the performance is significantly better/worse than SVM, the corresponding entries are bolded/underlined
(paired t-tests at 95% significance level). The win/tie/loss counts with the fewest losses are bolded.

# labeled Data SVM TSVM S3VM-c S3VM-p S3VM-us
( linear / gaussian ) ( linear / gaussian ) ( linear / gaussian ) ( linear / gaussian ) ( linear / gaussian )

10 BCI 50.7±1.5 / 52.7±2.7 49.3±2.8 / 51.4±2.7 50.2±2.0 / 52.2±2.6 50.6±1.6 / 52.6±2.7 50.9±1.6 / 52.6±2.7
g241c 53.2±4.8 / 53.0±4.5 78.9±4.7 / 78.5±5.0 55.2±8.3 / 55.3±8.8 53.9±5.8 / 53.6±5.3 53.5±4.8 / 53.2±4.5
g241d 54.4±5.4 / 54.5±5.2 53.6±7.8 / 53.2±6.5 53.8±5.4 / 53.6±5.0 54.1±5.3 / 54.0±5.2 54.4±5.3 / 54.4±5.2
digit1 55.4±10.9 / 75.0±7.9 79.4±1.1 / 81.5±3.1 56.1±12.2 / 77.3±8.2 56.2±12.2 / 75.0±8.1 58.1±9.6 / 75.1±7.8
USPS 80.0±0.1 / 80.7±1.8 69.4±1.2 / 73.0±2.6 80.0±0.1 / 80.4±2.5 80.0±0.1 / 80.5±2.1 80.0±0.1 / 80.7±1.8
Text 54.7±6.3 / 54.6±6.3 71.4±11.7 / 71.2±11.4 56.8±8.8 / 56.5±8.7 55.3±6.6 / 55.2±6.8 58.0±9.0 / 57.8±8.9
house 90.0±6.0 / 84.8±11.8 84.6±8.0 / 84.7±6.9 89.8±6.2 / 84.8±11.9 89.5±6.0 / 84.5±11.8 90.1±6.1 / 85.4±11.4
heart 58.8±10.5 / 63.9±11.6 72.4±12.6 / 72.6±10.4 59.0±10.8 / 64.4±11.6 58.6±10.6 / 63.8±11.7 61.9±9.7 / 65.1±11.0
heart-statlog 74.6±4.8 / 69.9±10.1 74.9±6.6 / 73.9±5.9 74.5±5.2 / 70.1±10.2 74.5±4.9 / 70.0±10.2 74.2±5.4 / 71.7±6.9
ionosphere 70.4±8.7 / 65.8±9.8 72.0±10.5 / 76.1±8.2 70.9±9.0 / 66.1±9.9 70.4±8.7 / 66.0±9.7 70.7±8.3 / 67.4±6.7
vehicle 73.2±8.9 / 58.3±9.5 72.1±9.4 / 63.2±7.8 73.5±9.4 / 58.4±9.6 72.6±9.1 / 58.0±9.5 74.5±9.3 / 64.2±9.1

house-votes 85.5±7.0 / 79.7±10.7 83.8±6.1 / 84.0±5.3 85.7±7.0 / 80.1±10.6 85.3±6.9 / 79.7±10.7 86.0±5.7 / 84.3±6.1

wdbc 65.6±7.5 / 73.8±10.3 90.0±6.1 / 88.9±3.7 65.7±7.8 / 74.9±10.9 66.1±8.0 / 73.9±10.5 65.8±7.5 / 73.9±10.3

clean1 58.2±4.2 / 53.5±6.2 57.0±5.1 / 53.3±4.8 57.8±4.4 / 53.3±6.2 58.5±4.2 / 53.3±6.3 58.2±4.2 / 55.0±8.1

isolet 93.8±4.3 / 82.0±15.7 84.2±10.9 / 86.7±9.5 94.5±5.1 / 83.2±16.0 93.0±4.7 / 81.7±15.7 93.7±4.3 / 84.1±12.6

breastw 93.9±4.8 / 92.3±10.1 89.2±8.6 / 88.9±8.8 94.2±4.9 / 92.4±10.0 93.9±4.9 / 92.2±10.0 93.6±5.4 / 92.4±9.9
australian 70.4±9.2 / 60.3±8.4 69.6±11.9 / 68.6±11.4 70.1±9.8 / 60.4±8.3 70.5±9.4 / 60.5±8.8 70.3±9.2 / 60.8±7.9
diabetes 63.3±6.9 / 66.3±3.5 63.4±7.6 / 65.8±4.6 63.2±6.8 / 65.9±3.0 63.4±6.6 / 66.2±3.4 63.3±6.9 / 66.3±3.5
german 65.2±4.9 / 65.1±12.0 63.7±5.6 / 63.5±5.1 65.6±4.7 / 65.1±11.8 65.6±4.8 / 65.1±11.9 65.2±5.0 / 65.3±11.6
optdigits 96.1±3.2 / 92.8±9.6 89.8±9.2 / 91.4±7.6 96.6±3.1 / 93.6±9.9 95.6±3.0 / 92.4±9.8 96.9±2.5 / 94.9±5.8
ethn 56.5±8.8 / 58.5±10.2 64.2±13.5 / 68.1±14.5 56.5±8.6 / 59.4±11.6 56.8±9.1 / 58.6±10.7 59.8±10.7 / 61.8±11.3

sat 95.8±4.1 / 87.5±10.9 85.5±11.4 / 86.5±10.8 96.3±4.1 / 87.7±11.2 94.8±4.2 / 86.9±10.8 96.4±3.9 / 90.7±8.1

Average Accuacy 70.9 / 69.3 73.5 / 73.8 71.2 / 69.8 70.9 / 69.3 71.6 / 70.8
SVM vs. Semi-Supervised: W/T/L 18/18/8 14/29/1 7/25/12 12/32/0

# labeled Data SVM TSVM S3VM-c S3VM-p S3VM-us
( linear / gaussian ) ( linear / gaussian ) ( linear / gaussian ) ( linear / gaussian ) ( linear / gaussian )

100 BCI 61.1±2.6 / 65.9±3.1 56.4±2.8 / 65.6±2.5 58.3±2.6 / 65.6±3.0 60.3±2.5 / 65.8±3.0 61.0±2.7 / 65.8±3.1
g241c 76.3±2.0 / 76.6±2.1 81.7±1.6 / 82.1±1.2 79.3±1.7 / 79.6±1.8 77.2±2.1 / 77.1±2.0 76.3±2.0 / 76.6±2.1
g241d 74.2±1.9 / 75.4±1.8 76.1±8.5 / 77.9±7.4 77.4±3.5 / 78.5±3.3 74.8±2.3 / 75.7±2.2 74.2±1.9 / 75.4±1.8
digit1 50.3±1.2 / 94.0±1.4 81.9±3.0 / 94.0±2.0 50.3±1.2 / 95.0±1.5 50.3±1.2 / 94.1±1.4 67.9±1.3 / 94.1±1.4
USPS 80.0±0.2 / 91.7±1.1 78.8±2.0 / 90.9±1.4 80.0±0.2 / 92.5±1.0 80.0±0.2 / 91.6±1.2 80.1±0.4 / 91.8±1.1
Text 73.8±3.3 / 73.7±3.6 77.7±1.6 / 77.7±1.7 75.3±3.4 / 75.2±3.6 73.9±3.4 / 73.8±3.7 74.1±3.1 / 74.2±3.3

house 95.7±2.0 / 95.6±1.6 94.4±2.5 / 94.8±2.6 95.5±1.8 / 95.4±1.8 95.6±2.0 / 95.5±1.7 95.6±2.0 / 95.6±1.6
heart 81.5±2.5 / 80.1±2.4 80.7±3.1 / 79.5±2.9 81.1±3.0 / 79.8±2.5 81.5±2.5 / 80.2±2.5 81.5±2.6 / 80.1±2.4
heart-statlog 81.5±2.4 / 81.4±2.7 81.6±2.7 / 79.0±4.5 81.2±2.2 / 80.7±3.0 81.5±2.4 / 81.2±2.7 81.5±2.4 / 81.3±2.7
ionosphere 87.1±1.5 / 93.2±1.6 85.6±2.1 / 92.1±2.3 88.7±1.3 / 93.4±1.5 87.1±1.5 / 93.2±1.6 87.1±1.5 / 93.2±1.6
vehicle 92.9±1.7 / 95.4±1.4 91.6±2.5 / 95.4±2.3 93.3±1.6 / 95.9±1.3 92.8±1.7 / 95.2±1.5 93.0±1.7 / 95.5±1.4

house-votes 92.3±1.3 / 92.8±1.2 92.0±1.8 / 93.0±1.4 92.6±1.2 / 92.9±1.2 92.3±1.3 / 92.8±1.2 92.3±1.3 / 92.8±1.2
clean1 73.0±2.7 / 80.6±3.0 73.2±3.1 / 79.1±3.4 73.7±2.9 / 79.9±2.9 73.2±2.6 / 80.4±3.2 73.1±2.7 / 80.7±3.0
wdbc 95.6±0.8 / 94.7±0.9 94.3±2.3 / 94.1±2.4 95.8±0.7 / 94.9±0.9 95.6±0.8 / 94.7±0.9 95.6±0.8 / 94.8±0.9

isolet 99.2±0.4 / 99.0±0.6 95.9±3.1 / 98.2±2.3 99.2±0.4 / 99.2±0.5 99.0±0.4 / 98.9±0.6 99.2±0.4 / 99.1±0.5

breastw 96.4±0.4 / 96.7±0.4 96.9±1.9 / 97.1±0.5 96.6±0.4 / 96.9±0.4 96.3±0.4 / 96.7±0.4 96.4±0.4 / 96.7±0.4
australian 83.8±1.6 / 84.9±1.7 82.5±2.6 / 84.6±2.7 83.8±1.7 / 85.0±1.6 83.9±1.7 / 85.0±1.8 83.8±1.7 / 85.0±1.7
diabetes 75.2±1.7 / 74.7±1.9 72.3±2.3 / 71.8±1.8 74.9±1.7 / 74.2±2.2 75.3±1.6 / 74.7±1.9 75.2±1.8 / 74.7±1.9
german 67.1±2.4 / 72.0±1.5 66.1±2.1 / 65.9±3.4 67.1±2.2 / 71.6±1.5 67.6±2.3 / 72.1±1.4 67.1±2.4 / 72.1±1.5
optdigits 99.4±0.3 / 99.4±0.3 95.9±3.7 / 97.4±3.1 99.5±0.4 / 99.5±0.3 99.2±0.4 / 99.2±0.4 99.5±0.3 / 99.4±0.3
ethn 91.6±1.6 / 93.4±1.2 92.6±2.3 / 93.4±3.0 93.9±1.6 / 95.0±1.2 91.9±1.5 / 93.3±1.2 91.7±1.5 / 93.4±1.2
sat 99.7±0.2 / 99.7±0.1 96.4±2.8 / 97.6±2.7 99.7±0.2 / 99.8±0.1 99.5±0.3 / 99.5±0.3 99.7±0.2 / 99.7±0.1
Average Accuracy 83.0 / 86.8 83.9 / 86.4 83.5 / 87.3 83.1 / 86.8 83.9 / 86.9

SVM vs. Semi-Supervised: W/T/L 7/18/19 21/16/7 8/25/11 8/36/0

Parameter Influence

S3VM-us has a parameter ε. To study the influence of ε,
we run experiments by setting ε to different values (0.1, 0.2
and 0.3) with 10 labeled examples. The results are plotted

in Figure 3. It can be seen that the setting of ε has influence
on the improvement of S3VM-us against inductive SVM.
Whatever linear kernel or gaussian kernel is used, the larger
the value of ε, the closer the performance of S3VM-us to
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Figure 3: Influence of the parameter ε on the improvement
of S3VM-us against inductive SVM.

SVM. It may be possible to increase the performance im-
provement by setting a smaller ε, however, this may increase
the risk of performance degeneration.

Conclusion

In this paper we propose the S3VM-us method. Rather
than simply predicting all unlabeled instances by semi-
supervised learner, S3VM-us uses hierarchical clustering
to help select unlabeled instances to be predicted by semi-
supervised learner and predict the remaining unlabeled in-
stances by inductive learner. In this way, the risk of perfor-
mance degeneration by using unlabeled data is reduced. The
effectiveness of S3VM-us is validated by empirical study.

The proposal in this paper is based on heuristics and the-
oretical analysis is future work. It is worth noting that,
along with reducing the chance of performance degenera-
tion, S3VM-us also reduces the possible performance gains
from unlabeled data. In the future it is desirable to develop
really safe semi-supervised learning approaches which are
able to improve performance significantly but never degen-
erate performance by using unlabeled data.
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