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Abstract

Clustering is a fundamental research topic in the field of
data mining. Optimizing the objective functions of clus-
tering algorithms, e.g. normalized cut and k-means, is
an NP-hard optimization problem. Existing algorithms
usually relax the elements of cluster indicator matrix
from discrete values to continuous ones. Eigenvalue de-
composition is then performed to obtain a relaxed con-
tinuous solution, which must be discretized. The main
problem is that the signs of the relaxed continuous solu-
tion are mixed. Such results may deviate severely from
the true solution, making it a nontrivial task to get the
cluster labels. To address the problem, we impose an
explicit nonnegative constraint for a more accurate so-
lution during the relaxation. Besides, we additionally
introduce a discriminative regularization into the objec-
tive to avoid overfitting. A new iterative approach is
proposed to optimize the objective. We show that the
algorithm is a general one which naturally leads to other
extensions. Experiments demonstrate the effectiveness
of our algorithm.

Introduction

Clustering plays an important role in many areas, such as
pattern recognition and data indexing, navigation, organi-
zation and summarization. Recent research efforts have
shown that spectral clustering and its variants are usually
more capable to partition the data sampled from compli-
cated structures into different clusters, mainly due to the
utilization of data local structures (Shi and Malik 2000;
Yu and Shi 2003; Wu and Schölkopf 2006; Nie et al. 2009;
Yang et al. 2010b). However, there are two main limitations.
Firstly, it is NP-hard to optimize the objective functions of
spectral clustering algorithms. The traditional solution is
to relax the elements of the cluster indicator matrix from
discrete values to continuous ones. In that way, eigenvalue
decomposition can be employed to compute the continuous
valued cluster indicator matrix. Because the cluster indi-
cator matrix obtained by eigenvalue decomposition is mixed
signed and usually not sparse, it might severely deviate from
the true solution (Ding, Li, and Jordan 2008). Additionally,
given the mixed signed cluster indicator matrix, there is no
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straightforward method to discretize it. Frequently used al-
gorithms to obtain the discretized cluster indicator matrix in
previous works include EM-like algorithm, i.e. standard k-
means clustering, and spectral rotation (Yu and Shi 2003).
Secondly, most spectral clustering algorithms only focus on
local structures of the input data distribution. It may, un-
der certain circumstances, incur overfitting and therefore de-
grades the clustering performance.

In this paper, we propose a new spectral clustering al-
gorithm, namely Nonnegative Spectral clustering with Dis-
criminative Regularization (NSDR). Different from most of
the previous spectral clustering algorithms (Shi and Malik
2000; Yu and Shi 2003; Wu and Schölkopf 2006; Yang et
al. 2010b), nonnegative constraint is imposed to the cluster
indicator matrix when it is relaxed to the continuous domain
(Nie et al. 2010a). Such a constraint insures that the solution
is much closer to the ideal cluster indicator matrix, and it can
be readily used to assign cluster labels to each input datum.
In this way, no discretization is required. Although non-
negative constraints have been previously imposed in ma-
trix factorization for data representation (Cai et al. 2009;
Lee and Seung 1999; Liu and Wu 2010), matrix factor-
ization is not involved in our algorithm. The motivation
of imposing nonnegative constraint is to make the relaxed
cluster indicator matrix more accurate, making it intrinsi-
cally different from (Cai et al. 2009; Lee and Seung 1999;
Liu and Wu 2010; Liu et al. 2010). We not only focus
on local structures of the data distribution, but also incor-
porate the global discriminative information to avoid over-
fitting and make the results more robust. Experiments on
different datasets show that our algorithm outperforms the
state-of-the-art clustering algorithms.

The rest of this paper is organized as follows. After
brief review of spectral clustering in section 2, we detail our
NSDR algorithm in section 3. After that, we show that our
algorithm leads to several extensions. Experiment are given
in section 5 and section 6 concludes this paper.

Spectral Clustering

Before getting started, we first summarize the notations
which will be frequently used in this paper. Denote X =
{x1, x2, ..., xn} as the input data set to be clustered, where
xi ∈ R

d(1 ≤ i ≤ n) is the i-th datum and n is the total
number of input data. The task of clustering is to partition X
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into c clusters {Cj}cj=1. Y = [y1, y2, ..., yn]
T ∈ {0, 1}n×c,

where yi ∈ {0, 1}c×1(1 ≤ i ≤ n) is the cluster indica-
tor vector for the datum xi. The j-th element of yi is 1 if
xi ∈ Cj , and 0 otherwise. Following (Ye, Zhao, and Wu
2008), we define the scaled cluster indicator matrix F as
F = [F1, ..., Fn]

T = Y (Y TY )−1/2, where Fi is the scaled
cluster indicator of xi. It follows that the j-th column of F
is given by (Ye, Zhao, and Wu 2008)

fj = [ 0, ..., 0︸ ︷︷ ︸
∑j−1

i=1 ni

, 1, ...1︸ ︷︷ ︸
nj

, 0, ..., 0︸ ︷︷ ︸
∑c

i=j+1 ni

]T /
√
nj , (1)

where nj is the number of data in j-th cluster. The objective
function of spectral clustering algorithms can be unified as

min
F

Tr(FTLF ) s.t. F = Y (Y TY )−1/2, (2)

where Tr(•) is the trace operator and L is a Laplacian ma-
trix computed according to local data structure using differ-
ent strategies (Yang et al. 2010b). Let us define

Aij=

{
exp

(
− ‖xi−xj‖2

σ2

)
xi and xj are k nearest neighbors;

0 otherwise,

where σ is the bandwidth parameter. Denote I as the identity
matrix. The normalized Laplacian matrix Ln is defined as

Ln = I −D−1/2AD−1/2, (3)

where D ∈ R
n×n is a diagonal matrix with its element de-

fined as Dii =
∑n

j=1 Aij . If we replace L in (2) by Ln, (2)
turns to the objective function of the well-known spectral
clustering algorithm normalized cut (Shi and Malik 2000;
Yu and Shi 2003). Similarly, if we replace L in (2) by Ll

which is the Laplacian matrix obtained by local learning
(Wu and Schölkopf 2006), (2) is then the objective function
of Local Learning Clustering (LLC).

The Proposed NSDR Algorithm

The Objective Function

Because the exploration of local data structures is a good
choice to deal with the data sampled from non-linear man-
ifolds (Nie et al. 2010b; Roweis and Saul 2000; Yang et al.
2010a), most of the existing spectral clustering algorithms
only utilize local structures for clustering. Although the term
”global” occurs in some spectral clustering algorithms such
as (Yang et al. 2010b), the Laplacian matrix is purely based
on k nearest neighbors of the input data. Sometimes, em-
phasizing local structures only may induce overfitting and
thus degrades the clustering performance. Therefore, we ad-
ditionally incorporate a regularization term Ω(F ) in the ob-
jective function and propose to minimize the following for
clustering

min
F

Tr(FTLF ) + λΩ(F )

s.t. F = Y (Y TY )−1/2, (4)

where λ ≥ 0 is a regularization parameter. H = I− 1
n1n1

T
n

is the centering matrix and 1n ∈ R
n is a vector of 1s.

X = [x1, x2, ..., xn] ∈ R
d×n represents the data matrix.

The between-cluster scatter and total scatter are defined as
follows (Fukunaga 1990)

Sb = X̃FFT X̃T , (5)

St = X̃X̃T , (6)

where X̃ = XH is the centered data matrix. We assume
that the distance between data from different clusters should
be as large as possible and the distance between data from
the same cluster should be as small as possible. Under such
a criterion, it is reasonable to maximize the following

max
F

Tr[(St + μI)−1Sb], (7)

where μ > 0 is a parameter and μI is added to make (St +
μI) invertible. Note that

Tr(FTHF ) = Tr(FT (I − 1

n
1n1

T
n )F )

= c− 1

n
Tr[1TnY (Y TY )−1Y T1n] = c− 1.

Because Tr(FTHF ) is a constant, (7) is equivalent to

min
F

Tr[FTHF − (St + μI)−1Sb]. (8)

Therefore, the regularization term Ω(F ) in (4) is given by

Ω(F ) = Tr[FTHF − (St + μI)−1Sb]

= Tr[FTHF − FT X̃T (X̃X̃T + μI)−1X̃F ]. (9)

We can see that Ω(F ) reflects the global discriminative in-
formation. Substituting Ω(F ) in (4) by (9), we arrive at

min
F

Tr{FT [L+ λ(H − X̃T (X̃X̃T + μI)−1X̃)]F}
s.t. F = Y (Y TY )−1/2. (10)

Recall that F is the scaled cluster indicator matrix. Accord-
ing to definition, in each row of F , only one element is pos-
itive and all the others are 0. Such a constraint makes the
optimization of (10) an NP-hard problem, which should be
relaxed to make the problem solvable.1 Note that

FTF = (Y TY )−1/2Y TY (Y TY )−1/2 = I. (11)

Traditional clustering algorithms usually relax the afore-
mentioned constraint and keep the orthogonality intact. Al-
though no element of F can be negative by definition, it
is ignored by most of the existing clustering algorithms.
If we simply follow the convention of spectral cluster-
ing, as those in (Shi and Malik 2000; Yu and Shi 2003;
Wu and Schölkopf 2006; Yang et al. 2010b), (10) is relaxed
to

min
F

Tr[FT (L+ λR)F ] s.t. FTF = I, (12)

where R = H−X̃T (X̃X̃T +μI)−1X̃ . The solution of (12)
for the relaxed F can be obtained by generalized eigenvalue

1For the same reason, (2) is an NP-hard problem as well.
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decomposition. Although it is easier to be solved with such
a relaxation, the eigenvector solution has mixed signs and
it may severely deviate from the ideal solution. Moreover,
the mixed signs make it difficult to get the cluster labels.
Spectral rotation or k-means is used in previous works to
get the cluster labels. Differently, we propose a more accu-
rate relaxation by the nonnegative constraint. The objective
function of NSDR is given by

min
F

Tr[FT (L+ λR)F ] s.t. FTF = I, F ≥ 0. (13)

While other sophisticated Laplacian matrices can be used
here, we employ Ln in NSDR for simplicity.

Optimization

In this subsection, we give an algorithm to solve the opti-
mization problem shown in (13). First, we rewrite the ob-
jective function of NSDR as follows

min
F

Tr[FT (L+ λR)F ] + ξ‖FTF − I‖2

s.t.F ≥ 0, (14)

where ξ > 0 is a parameter to control the orthogonality con-
dition. Usually, ξ should be large enough to insure the or-
thogonality satisfied and we fix it as 106 in our experiments.
Following (Lee and Seung 2001), we introduce an iterative
procedure to optimize (14). Let us define

hij(Fij) = h(F ) = TrFTLF+ξTr(FTF−I)T (FTF−I).

Then we have

h′ij(Fij) =
∂h(F )

∂Fij
= (2LF + 4ξFFTF − 4ξF )ij , (15)

which leads to the following updating rules.

• Fij ← Fij
(2ξF )ij

(LF+2ξFFTF )ij
;

• Normalize F such that (FTF )ii = 1 for i = 1, ..., n.
Next, we show that the above updating rules converges.
Definition 1. G(f, f ′) is an auxiliary function of

h(f) provided that G(f, f ′) ≥ h(f) and G(f, f) = h(f)
are satisfied.
Lemma 1. If G is an auxiliary function of h, then h is

nonincreasing under the following update rule.

f (t+1) = argmin
f

G(f, f t). (16)

Detailed proof of Lemma 1 can be found in (Lee and Seung
2001).
Theorem 1. The objective value of (14) is nonincreas-

ing using the proposed updating rules.
Proof: Let us define

G(Fij , F
t
ij) = hij(F

t
ij) + h′ij(F

t
ij)(Fij − F t

ij)

+
(LF t + 2ξF tF tTF t)ij

F t
ij

(Fij − F t
ij)

2.
(17)

G(Fij , F
t
ij) is usually an auxiliary function of hij(Fij). By

setting
∂G(Fij ,F

t
ij)

∂Fij
= 0, we have

h′ij(F
t
ij) + 2

(LF t + 2λF tF tTF t)ij
F t
ij

(Fij − F t
ij) = 0

Then we have

Fij = F t
ij − (LF t+2λF tF tTF t)ij

F t
ij

h′ij(F
t
ij)

= F t
ij − (LF t+2λF tF tTF t)ij

F t
ij

(LF t + 2λF tF tTF t − 2λF t)ij

Let us define F t+1
ij = Fij = F t

ij
(2λF t)ij

(LF t+2λF tF tTF t)ij
. It is

obvious that

hij(F
t+1
ij ) ≤ G(F t+1

ij , F t
ij) ≤ G(F t

ij , F
t
ij) = hij(F

t
ij).

According to Lemma 1, we can see that the objective func-
tion value is nonincreasing under the updating rule Fij ←
Fij

(2λF )ij
(LF+2λFFTF )ij

. �

Discussions

Optimization for the objective function of spectral clustering
shown in (2) is an NP-hard problem. Although the elements
of F should be nonnegative by definition, most of the ex-
isting spectral clustering algorithms simply ignore this con-
straint when they relax the problem to make it solvable. The
mixed signs of F increases the difficulty in getting the clus-
ter labels. Typically, EM-like algorithm or spectral rotation
is performed to get the cluster labels in previous spectral
clustering algorithms.

Besides the global discriminative regularizer added into
the objective function, the major difference between NSDR
and existing spectral clustering algorithms is that the non-
negative constraint is explicitly imposed, making the results
much closer to the ideal solution. Provided that both orthog-
onal and nonnegative constraints are satisfied, in each row of
F , only one element is of positive value and all of the others
are 0. Therefore, F can be directly used to assign the cluster
labels for the input data. Taking the UMIST dataset2 as an
example, we plot the absolute values of the first 20 rows of
the optimal F corresponding to (12) and (13) respectively in
Fig.1. Fig.1(a) is the cluster indicator matrix obtained from
the traditional relaxation and Fig.1(b) is the cluster indicator
matrix obtained from nonnegative relaxation. Note that the
first 20 images in UMIST dataset are from an identical clus-
ter. In Fig.1(b) these 20 images are directly grouped into
one cluster (the 4-th cluster). However, it remains unclear
how to assign the cluster labels to the input data according
to Fig.1(a) directly.

The algorithm proposed in this paper is a general one,
which naturally leads to other nonnegative clustering algo-
rithms. Next, we show some examples by three propositions.
Proposition 1. NSDR leads to nonnegative spectral cluster-
ing when λ = 0.
Proof: This proposition naturally holds because if λ = 0 (4)
reduces to (2). �

According to Proposition1, our optimization approach is
readily to extend any spectral clustering to its nonnegative
version. For example, if we set λ = 0 and replace L in
(13) by the Laplacian matrix Ll, which is proposed in Lo-
cal Learning Clustering (LLC) (Wu and Schölkopf 2006), it
leads to nonnegative LLC. Similarly, under our framework

2http://images.ee.umist.ac.uk/danny/database.html
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(a) Mixed-signs (b) Nonnegative

Figure 1: First 20 cluster indicator vectors for UMIST. Each
row is a cluster indicator vector for an input datum. The
results are normalized for a clearer illustration.

any spectral clustering algorithm can be extended to its non-
negative version.
Proposition 2. NSDR leads to nonnegative k-means clus-
tering when μ → ∞ and λ → ∞.
Proof: It has been shown in (Zha et al. 2001) that the objec-
tive function of k-means clustering is

max
FTF=I

Tr(FT X̃T X̃F ). (18)

If we keep the nonnegative constraint for k-means clustering
during relaxation, we have

max
F

Tr(FT X̃T X̃F ) s.t.FTF = I, F ≥ 0. (19)

Because Tr(FTHF ) = c− 1 is a constant, if λ → ∞, (13)
is equivalent to

max
F

Tr(FT X̃T (X̃X̃T + μI)−1X̃F )

s.t.FTF = I, F ≥ 0.
(20)

If μ → ∞, it is easy to see that (20) is equivalent to (19). �
Recently, some researchers suggested to incorporate di-

mension reduction and clustering into a joint framework for
high dimensional data. Let W be the projection matrix for
dimension reduction, this family of algorithms, referred to
as discriminative k-means, tries to optimize the following
objective function

max
W,F

Tr

[(
WT (X̃X̃T + γI)W

)−1

WT X̃FFT X̃TW

]
. (21)

In (21), there are two variables, i.e. W and F , to be opti-
mized. Initial work usually iteratively optimizes W and F
(Torre and Kanade 2006). More recently, (Ye, Zhao, and Wu
2008) proved that the optimization problem can be solved by
optimize F only and they simplify (21) as follows:

max
FTF=I

Tr

{
FT

[
I − (I +

1

γ
X̃T X̃)−1

]
F

}
. (22)

In discriminative k-means proposed by (Torre and Kanade
2006; Ye, Zhao, and Wu 2008), the nonnegative constraint
is also ignored. Discriminative k-means can be extended to
its nonnegative version under our framework by the follow-
ing proposition.
Proposition 3. NSDR leads to nonnegative discriminative
k-means clustering (Ye, Zhao, and Wu 2008) when λ → ∞.

Table 1: Database Descriptions.

Dataset Size Dimension # of Classes
Ecoil 336 343 8
Yeast 1484 1470 10
UMIST 575 644 20
MSRA 1799 256 12
USPS 9298 256 10
WebKB 814 4029 7

Proof : As shown previously, when λ → ∞, (13) is equiva-
lent to (20). Note that

max
FTF=I

Tr

{
FT

[
I − (I +

1

γ
X̃T X̃)−1

]
F

}

⇔ max
FTF=I

Tr

{
FT

[
(I +

1

γ
X̃T X̃)−1(

1

γ
X̃T X̃ + I − I)

]
F

}

⇔ max
FTF=I

Tr

[
FT X̃T (

1

γ
X̃X̃T + I)−1X̃F

]
.

Therefore, if we add nonnegative constraint to (22) and
when λ → ∞, it is equivalent to (13). �

Experiments

Experiment Setup

We compare our NSDR with k-means (KM), discrimina-
tive k-means (DKM) (Ye, Zhao, and Wu 2008) and two
representative spectral clustering algorithms, i.e., Nonneg-
ative Normalized Cut (NNcut) (Ding, Li, and Jordan 2008),
and Local Learning Clustering (LLC) (Wu and Schölkopf
2006). To show the effectiveness of imposing the nonneg-
ative constraint during the relaxation, we additionally re-
port the results corresponding to (12), where the nonnegative
constraint is removed in NSDR and we denote it as SDR.

We set k, which specifies the size of neighborhood, to
5 for all the spectral clustering algorithms. We perform
the self-tuning algorithm (Zelnik-Manor and Perona 2004)
to determine σ in (3) for NNcut, SDR and NSDR. For the
parameters in DKM, SDR, NSDR and LLC, we tune them
from {10−6, 10−3, 100, 103, 106} and report their best re-
sults. The results of all the clustering algorithms depend on
initialization. To reduce statistical variation, each clustering
algorithms is independently repeated 20 times with random
initialization and we report the results corresponding to best
objective function values. For LLC and SDR, spectral rota-
tion is used to discretize the relaxed cluster indicator matrix
in order to obtain the cluster labels of the input data. For
NSDR, we use the results from SDR as initialization.

In our experiment, we have collected 6 public datasets,
including two UCI datasets Ecoil and Yeast3, two face im-
age datasets UMIST and MSRA (He et al. 2004), one hand
written digital image dataset USPS4 and one text database
WebKB collected by the University of Texas (Craven et al.
1998). Detailed information of the six datasets is summa-
rized in Table 1.

3http://archive.ics.uci.edu/ml/
4http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html
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Table 2: Performance Comparison (ACC %) of KM, DKM,
NNCut, LLC, SDR and NSDR

KM DKM NNcut LLC SDR NSDR
Ecoil 51.8 60.8 53.1 48.5 60.1 61.3

Yeast 32.8 35.0 29.8 26.3 38.1 41.2

UMIST 43.6 46.3 61.1 61.0 61.3 64.5

MSRA 52.7 67.7 55.6 56.3 85.3 86.3

USPS 67.3 68.8 72.6 70.8 80.9 82.5

WebKB 56.5 57.8 58.4 42.6 58.9 60.2

Table 3: Performance Comparison (NMI %) of KM, DKM,
NNCut, LLC, SDR and NSDR

KM DKM NNcut LLC SDR NSDR
Ecoil 48.9 52.6 50.2 47.1 50.6 55.0

Yeast 16.5 17.5 15.9 14.5 22.9 23.8

UMIST 66.1 66.7 80.6 78.2 80.6 81.8

MSRA 62.5 72.5 68.3 66.4 90.9 92.8

USPS 61.6 63.2 83.6 75.7 82.5 86.2

WebKB 14.6 13.3 15.6 8.3 17.0 17.6

Evaluation Metrics

Following the convention of clustering study, we use Accu-
racy (ACC) and Normalized Mutual Information (NMI) as
evaluation metrics. Denote qi as the clustering result from
the clustering algorithm and pi as the ground truth label of
xi. ACC is defined as:

ACC =

∑n
i=1 δ(pi,map(qi))

n
(23)

where δ(x, y) = 1 if x = y; δ(x, y) = 0 otherwise, and
map(qi) is the best mapping function that permutes cluster-
ing labels to match the ground truth labels using the Kuhn-
Munkres algorithm. A larger ACC indicates better perfor-
mance.

For two arbitrary variables P and Q, NMI is defined as
follows (Strehl and Ghosh 2002):

NMI(P,Q) =
I(P,Q)√
H(P )H(Q)

, (24)

where I(P,Q) is the mutual information between P and Q,
and H(P ) and H(Q) are the entropies of P and Q. tl is
the number of data in the cluster Cl (1 ≤ l ≤ c) obtained
from clustering algorithms and t̃h be the number of data in
the h-th ground truth class (1 ≤ h ≤ c). NMI is defined as
(Strehl and Ghosh 2002):

NMI =

∑c
l=1

∑c
h=1 tl,h log(

n·tl,h
tl t̃h

)√(∑c
l=1 tl log

tl
n

) (∑c
h=1 t̃h log

t̃h
n

) , (25)

where tl,h is the number of samples that are in the intersec-
tion between the cluster Cl and the h-th ground truth class.
Similarly, a larger NMI indicates better clustering results.

Experiment Results

Table 2 and Table 3 are the clustering results of different
algorithms over the 6 datasets. Fig.2 shows the performance
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Figure 2: Performance variation of NSDR w.r.t. the regular-
ization parameter λ.

variation w.r.t. the regularization parameter λ. Fig.3 shows
convergence curves of NSDR over all the six datasets. From
the tables and figures, we have the following observations.

• DKM outperforms KM because it incorporates discrim-
inative dimension reduction and clustering into a joint
framework (Ye, Zhao, and Wu 2008). This observation
also indicates that it is helpful to utilize discriminative in-
formation for clustering.

• Although the Laplacian matrix of LLC is more sophisti-
cated than that of NNcut, NNcut generally shows better
performance. A possible reason is that the nonnegative
constraint is imposed in NNCut during spectral relaxation
while LLC ignores it.

• SDR outperforms KM, DKM, NNcut and LLC, demon-
strating that simultaneously utilizing local data structures
and global discriminative information is beneficial for
data clustering.

• NSDR achieves the best performance for all of the six
datasets because

– NSDR simultaneously exploits local data structure in-
formation and discriminative information for data clus-
tering;

– the nonnegative constraint is imposed during spectral
relaxation, making the results more faithful.
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Figure 3: Convergence curve of NSDR.

• NSDR is not very sensitive to the regularization parame-
ter though the clustering performance is different when
we set this parameter as different values. The optimal
value for algorithmic parameter is data dependent. How to
choose the optimal parameter automatically will be stud-
ied in our future work.

• The proposed iterative approach to optimize the objective
function of NSDR always converges very fast, usually less
than 50 iterations.

Conclusion

In this paper, we proposed a new spectral clustering algo-
rithm NSDR. While most of the existing spectral clustering
algorithms only utilize local data structures for clustering,
we additionally take global discriminative information into
account to make the results more robust. It is an NP-hard
problem to optimize the objective function of any spectral
clustering algorithm. Traditional relaxation usually neglects
the nonnegative constraint. The relaxed cluster indicator ma-
trix has mixed signs, making it difficult to get the cluster la-
bels. Moreover, the mixed signed cluster indicator matrix
may deviate severely from the ideal solution. We therefore
impose the nonnegative constraint during the relaxation. We
proposed a new and efficient iterative algorithm to solve the
nonnegative optimization problem. We show that the pro-
posed algorithm is a general one which naturally leads to
many other extensions.
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