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Abstract

A common approach in machine learning is to use a large
amount of labeled data to train a model. Usually this model
can then only be used to classify data in the same feature
space. However, labeled data is often expensive to obtain. A
number of strategies have been developed by the machine
learning community in recent years to address this prob-
lem, including: semi-supervised learning, domain adaptation,
multi-task learning, and self-taught learning. While training
data and test may have different distributions, they must re-
main in the same feature set. Furthermore, all the above meth-
ods work in the same feature space. In this paper, we consider
an extreme case of transfer learning called heterogeneous
transfer learning - where the feature spaces of the source
task and the target tasks are disjoint. Previous approaches
mostly fall in the multi-view learning category, where co-
occurrence data from both feature spaces is required. We
generalize the previous work on cross-lingual adaptation and
propose a multi-task strategy for the task. We also propose
the use of a restricted Boltzmann machine (RBM), a special
type of probabilistic graphical models, as an implementation.
We present experiments on two tasks: action recognition and
cross-lingual sentiment classification.

Introduction

In machine learning we often come across scenarios where
we have plenty of labeled data in an “older” feature space,
but we are short of examples in the new feature space. For
example, there are a lot of annotated corpora in English, but
there are usually far fewer in other languages or even none
for some small languages. We are thus motivated to trans-
fer knowledge between different feature spaces. This prob-
lem has been characterized as “translated learning” (Dai et
al. 2008) or “heterogeneous transfer learning” (Yang et al.
2008).

To address the problem introduced by different feature
spaces, researchers have studied the problem of multi-view
learning (Blum and Mitchell 1998). In multi-view learning,
each instance has multiple views in different feature spaces.
Yet this approach is inapplicable in many real life appli-
cations where we typically have training data in a source
feature space, the test data in a totally different target fea-
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ture space and there may be no correspondence between in-
stances in these spaces. Heterogeneous transfer learning thus
relaxes many constraints on the problem compared to other
types of learning and allows a wide variety of more flexible
set-ups for applications.

Dai et al. (2008) proposed to learn a feature translator
p(xt|xs) and optimize the model under the risk minimiza-
tion framework. To estimate the feature translator it is re-
quired to have some co-occurrence data across the two fea-
ture spaces. The authors performed experiments on two
tasks: cross-language classification and text-aided image
classification. For the cross-language task the co-occurrence
data is extracted from electronic dictionaries while for im-
age classification annotated images are extracted from social
websites and search engines.

The idea of Dai et al. is straightforward, yet one may ques-
tion the necessity of building such a feature level translator.
After all, in most real world applications we have a very
high dimension feature space and often only a small num-
ber of features are useful. Further, we are often not really
interested in learning how to generate pixel intensities from
words and what we really need is a classifier in the target
space.

Yang et al. (2008) also studied the text aided image pro-
cessing problem. Instead of going through the indirect trans-
lator, the authors proposed to directly model the relations
between features from different spaces and the target label
we want to predict. A modified PLSA model is designed to
model the two co-occurrence matrices: the one between im-
age clusters and visual features and the one between text an-
notations and visual features. Their co-occurrence data was
obtained from social websites like Flickr.

The task of heterogeneous transfer learning is difficult be-
cause the feature spaces are non-overlapping. Unlike other
learning scenarios, one has no natural bridge between the
two spaces. While older work has relied on co-occurrence
data, some recent effort (Prettenhofer and Stein 2010; Wei
and Pal 2010) has been directed towards adapting a domain
adaptation algorithm called structural correspondence learn-
ing (SCL) (Blitzer, Dredze, and Pereira 2007; Blitzer, Mc-
Donald, and Pereira 2006) to perform cross-lingual docu-
ment classification and obtained positive results.

The SCL algorithm was initially designed for semi-
supervised leaning by learning multiple related tasks to-
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gether (Ando and Zhang 2005). This inspired us to use a
similar idea for heterogeneous transfer learning. In our work
here, we will connect the two feature spaces by mapping
them to a common representation or latent space. To obtain
such a mapping, we consider how each feature functions in
a set of selected tasks. The assumption we make here is that
if we have a set of tasks semantically related to our target
task, and if some features behave similarly in these related
tasks, they should also have similar roles in the target prob-
lem (even they are from different feature spaces). Capturing
these similarities will enable us to connect the two feature
spaces to transfer knowledge. Note that different from Dai
et al. (2008), we do not ask for a full feature-level transla-
tor, what we seek here is a shared representation specific to
our target task. We call this setting multi-task heterogeneous
transfer learning. Any specific algorithm in this setting will
aim at finding a representation that works well for the set of
related task. Specifically in this paper, we propose an exam-
ple approach using restricted Boltzmann machines (RBMs).

The following section describes how we can use RBMs
for multitask heterogeneous transfer learning in a general
sense. We then present the exact RBM model we use for two
experiments: text-aided simple activity recognition cross-
lingual sentiment classification in the experiment section.

RBMs for multitask heterogeneous transfer

learning

Restricted Boltzmann machines (RBMs) have long been
used in problems like feature selection. Yet they can also
be used as general purpose classifiers and been shown to
achieve state of the art performance (Larochelle and Ben-
gio 2008). They have also been used as topic models us-
ing the term “harmonium” model(s) in tasks like video topic
identifications (Yang et al. 2007) and information retrieval
(Welling, Rosen-Zvi, and Hinton 2004). One of our goals in
this paper is to show that although simple, RBMs can be a
useful tool for transfer learning.

Problem formulation

Assume we have a learning task TT , and we have two feature
spaces Xs and Xt. We denote Xs = {xsi}N as the source
feature space, and Xt = {xtk}M the target feature space.
We have Xs ∩Xt = ∅.

We also have a set of related/auxiliary tasks {Tai}. And
again for each auxiliary task Tai, we observe instances from
both Xs and Xt. We have training instances for the auxiliary
problems in the two spaces as ({xsi}, Tai) and ({xtk}, Tai)
but they don’t need to be multi-view data. Our goal is to
use these auxiliary training instances plus some training in-
stances ({xsi}, TT ) for the target problem TT in the source
feature space to make a better prediction of TT given {xtk}.

To transfer knowledge between the two feature spaces, we
rely on the semantic correspondence among the auxiliary
tasks. In contrast with the usual set up in multi-task learn-
ing, we are now working on two different feature spaces.
But, the basic idea is still the same: we want to find a good
low dimensional representation shared by multiple auxiliary

Figure 1: Simple activities, from left to right: clapping, wav-
ing, walking, running

Table 1: Simple activities, text data

Activity Text

Clapping hit your hand together that make a sound

Waving move the hand or arm from side to side

Walking to move or travel on leg and foot alternately

Running go at fast pace to move rapidly on foot

tasks. As an example, consider the small activity recogni-
tion problem we study here where we have text features as
Xs and video features as Xt. For the 4 activities in Figure
1, we have some corresponding texts (dictionary glosses) as
in Table 1. Now, if in the text domain, the words “hand” and
“foot” are identified as important keywords, we can then ex-
pect the action type “running” to be more closely related to
“walking” compared with “waving” and “clapping”. We can
make this guess purely based on the text features and the
video features of the auxiliary types.

We use the RBMs to model the intuition above. An RBM
is a kind of bipartie graphical models where different ob-
served variables (features and labels) are connected through
a set of latent variables H = {hj}, which will act as the
low dimensional representation shared by the two different
feature spaces.

To use RBMs for heterogeneous transfer learning, we first
need to represent the two feature spaces, Xs and Xt, and the
label variables Yt for TT and {Tai}.

We follow the approach proposed in Welling, Rosen-Zvi,
and Hinton by starting with an independent model consisting
of distributions from the exponential family, then connecting
them with a hidden layer H . As an example, suppose we
have chosen the suitable marginal distributions for Xs and
H as :

p(X) = R(X) exp{
∑
a

θafa(X)−A({θa})}
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p(H) = S(H) exp{
∑
b

λbgb(H)−B({λb})}

where we have feature functions fa(X) and gb(H), parame-
ters θa and λb, normalization factors A({θa}) and B({λb}),
and the standard additional functions: R(X) and S(H). We
then alter these initial models by coupling them with a ma-
trix W to obtain:

P (X,H) ∝ exp{
∑
a

θafa(X) +
∑
b

λbgb(H) +

∑
a,b

Wa,bfa(X)gb(H)} (1)

Importantly, the new joint model is not a member of the ex-
ponential family, but the conditional distributions are simply
versions of exponential family distributions that are shifted
by a matrix operation applied to their sufficient statistics.
This fact leads to fast inference procedures which are often
critical for practical run-times during learning.

The approach of coupling X and H in (1) can be repeated
for coupling Y and H as discussed in (Yang et al. 2007) and
(Wang, Pal, and McCallum 2007). We will use a matrix U to
encode the Y and H coupling. One can then view the next
step of our approach for our heterogeneous transfer learn-
ing as the creation of two discriminative RBMs, one for the
marginal conditional probability P (Y |Xs) using only Xs

(with coupling matrix W ) and one for P (Y |Xt), using only
Xt (using coupling matrix V ), followed by a form of pa-
rameter tying for the U matrices for the label to hidden vari-
able interactions. In other words, we couple H and the label
variables to obtain an RBM for the source feature space and
repeat the same steps and obtain another RBM for the tar-
get feature space. Since the two RBMs are dealing with the
same T and {Tai}, we require that they share the same cou-
pling matrix from H to the label variables. The same idea
could also be implemented via a single discriminative RBM
model with the constraint that unobserved features between
the source and target feature sets have no impact on the hid-
den representation. We present this type of RBM in figure
2.

The two RBMs have their own mapping from the features
to the hidden layer H respectively but must share the same
mapping from H to Y . Our objective function is the combi-
nation of conditional log likelihood in both spaces:

L = α
∑

log(p({y}|{xsi})+(1−α)
∑

log(p({y}|{xtk})),
(2)

where the sums are over the training examples and we have
omitted subscripts to simplify the equation. Note that as we
introduce the hidden layer H , the features Xs and Xt are no
longer directly connected to each other as in previous work,
and this allow us to relax requirements on the co-occurrence
data. Meanwhile, the connection between features is now
built on their relations to the auxiliary problems. Features,
whether from the same or different feature spaces, will be
grouped together in the hidden layer if they behave simi-
larly regarding to the auxiliary problems. Again, consider
the activity example, the word “foot” and the image part of
foot will be connected as they are both good indicators of

action types “walking” and “running” but not for “waving”
and “clapping”. The latent variables H thus encode the cor-
respondences between the two feature spaces.

Furthermore, the exponential family RBM framework al-
lows one to easily incorporate different types of features,
whether they are continuous or discrete, into our models, as
long as they can be modeled as members of the exponential
family. This property is especially helpful in the heteroge-
neous transfer learning case as we may have bags of words
in one feature space, and continuous pixel intensities in the
other.

h1

xsI xtK

yt

xs1 xt1

hJ

y1 yT

��

����

�� ��

Figure 2: An RBM for multi-task heterogeneous transfer
learning

Relation with SCL

The SCL approach of Blitzer, McDonald, and Pereira (2006)
can also be viewed as a way to implement our multi-task
heterogeneous transfer learning strategy. In both SCL and
RBMs, we introduce a set of hidden variables and a set
of auxiliary tasks. While SCL is a discriminative approach,
RBMs are probabilistic models which can be formulated as
joint or conditional (discriminative) models. One advantage
of using probabilistic models is the simplicity of incorpo-
rating different kinds of variables as mentioned above. Fur-
thermore, after we obtain the mappings from the training
process, the SCL approach will need to deterministically cal-
culate the value of hidden variables. On the other hand, for
RBMs we don’t have to explicitly infer the values for the
hidden layer, we can simply integrate out the hidden vari-
ables and perform classification based on the observed fea-
tures.

Experiment

A toy example: Text-aided simple human activity
recognition

In this experiment, we consider how to incorporate text in-
formation with the ‘old” activities to recognize new hu-
man activities. This problem is derived from the application
where a user wants to identify a new action which he has not
seen before. Our goal is to show that with the help of texts,
we can identify a new action more accurately. In this exper-
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iment, the source feature space is the text while the target
space is the video.

Data set We select 8 activities from the 13-action UIUC
dataset 1 reported in Tran and Sorokin (2008). The 8 ac-
tion types are walking, running, jumping, jumping jacks,
waving, clapping, crawling, and turning. We use the same
video features as in Tran and Sorokin (2008) where the tar-
get feature space Xt = {xtk} contain 286 dimension con-
tinuous features. We also re-sample the videos by the ratio
1:4: choosing 1 from every 4 consecutive frames. The num-
ber of frames varies from 13 to 45. There are 38 videos for
each actions and the total size is 312.

For the text data, we extract texts mainly from differ-
ent on-line dictionaries (cambridge 2, webster 3, merrian-
webster 4,wiki 5, free-dict 6, msn 7) We simply extract the
first sense for each action except for the “jumping jacks”
which is mainly the second sense in most of the dictionar-
ies. We extract around 20 documents for each action type
and after preliminary stop words removal and data cleaning
we have a vocabulary about 500 words. Xs contain simple
unigram features and modeled as binary features.

Model For a video clip, we have one set of hidden
layer variables {hfj} for each frame f . We model {hfj}
and{xtfk} with normal distribution and discrete distribution
for {y}. The joint likelihood after coupling is as follows:

p({xtfk}, {hfj},{y}) ∝

exp

{∑
t

∑
j

(∑
k

Vjkhfjxtfk

+
∑
l

Ujlhfjy −
∑
k

x2
tfk

2
−
∑
j

h2
fj

2

)}

We optimize the conditional likelihood:

p({y}|{xtfk}) ∝ exp

{∑
t

∑
j

(∑
k

Vjkxtfk+
∑
l

Ujly

)2}

Similarly, for the text features {xsi}, we have:

p({xsi}, {hj}, {y}) ∝

exp

{∑
j

(∑
i

Wjihjxsi +
∑
l

Ujlhjy −
∑
j

h2
j

2

)}
,

p({y}|{xsi}) ∝ exp

{∑
j

(∑
i

Wjixsi +
∑
l

Ujly

)2}

We need to estimate the three coupling matrices: W ,
U ,and V . The corresponding gradient updates are listed be-

1http://vision.cs.uiuc.edu/projects/activity/
2http://dictionary.cambridge.org/dictionary/
3http://www.webster-dictionary.org/
4http://www.merriam-webster.com/
5http://simple.wikipedia.org/wiki/
6http://www.thefreedictionary.com/
7http://encarta.msn.com/encnet/features/dictionary/

low:

∂Vjk = Em(xtkUjly)− Ep(y|{xtk})(xtkUjyy)

∂Wji = Em(Ujly)− Ep(y|{xsi})(Ujyy)

dUxs = Em

(∑
i

Wjixsi +
∑
l

Ujly

)
−

Ep(y|{xsi})

(∑
i

Wjixsi +
∑
l

Ujyy

)

dUxt
= Em

(∑
k

Vjkxtk +
∑
l

Ujly

)
−

Ep(y|{xtk})

(∑
k

Vjixtk +
∑
l

Ujyy

)

∂Ujl = αdUxs
− (1− α)dUxt

Here Em stands for empirical expectation, and α is the pa-
rameter for trade-off between the two feature spaces.

Experiment design and results The task we perform in
the experiment is to identify new actions that has not been
seen before. Specifically, for each action type, we draw ran-
domly one video clip from each of the remaining seven ac-
tions as the supervised data set in the video feature space.
That is, in each experiment, we will have training video clips
for 7 known actions, yet we have no videos for the target ac-
tion. In the test stage, we will be given a mixture of videos
from both the 7 seen action types and the unseen target ac-
tion. The final model not only needs to distinguish the 7 ac-
tions it has seen, but also needs to identify the unseen tar-
get action from the other actions. This setting is denoted as
“video labeling with rejection” (Tran and Sorokin 2008).

To solve this problem purely in the video space, we use
the 1-NNMR approach taken in Tran and Sorokin (2008).
For each frame, 1-NNMR looks for its closest neighbor
frame within a predefined radius R, if it finds one, it uses
the type of the frame otherwise reports “new”. Each frame
votes to get the label of the whole video sequence.

We compare this with an approach using our RBM con-
structed as outlined above to incorporate the text informa-
tion. As we discussed earlier, we build two RBMs, one for
the video space which uses the same training video dataset
as 1-NNMR with the target action missing. Meanwhile, we
also construct an RBM on the text space with all 8 actions’
training texts.

In a word, for both the RBM model and the 1-NNMR,
there is no video clips of the new action provided. But com-
pared to 1-NNMR, our RBM model will have the extra in-
formation from texts. In both approaches, we both force ev-
ery frame of the same clip to have the same label, so we will
have dozens of training instances for each action in the video
space. By comparing the performance of 1-NNMR and the
RBM, we should be able to tell whether our RBM model
succeeds in connecting the video and text features.

In the test stage, when given a video clip from the un-
seen target action, the 1-NNMR is supposed to give the la-
bel “new”, while the RBM should simply label it to the target
category as it has labeled texts for the target action. We mea-
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Missing Actions 1-NNMR RBM
% Error
Reduction

jumping jack 50.12 48.71 2.81
crawl 66.81 60.30 9.74
jump 60.76 56.33 7.29
clap 53.69 44.31 17.47
run 62.89 55.01 12.53
turn 63.06 58.73 6.87
walk 57.45 49.02 14.67
wave 54.72 48.13 12.04
average 58.69 52.57 10.43

Table 2: Results for activity recognition, in the number of
misclassified video clips

sure the performance by simply counting how many misla-
beled (“new” or one of the 7 training types) video clips in
the whole test set. For each set of experiment, we sample 20
different training sets and reports the average. The results
are shown in Table 2.

As we can see, results in the table show some positive
signs of our RBM method in capturing the semantic in-
formation, the hybrid text-video method outperforms the
pure video-based approach by reducing the average error
by around 10%. The extra knowledge from the text space
indeed helps improve the performance. The improvement
benefits some actions more than others, as one might expect.
One explanation for this phenomenon is that our text data set
may be too small. Recall, in this experiment we mainly use
glosses from different on-line dictionaries. These texts are
of high precision, but are usually short and may not reflect
all the semantic connections between actions. Another rea-
son is more intrinsic. For some action pairs like walking and
running, clapping and waving, they are “neighbors” in both
the video and text spaces. On the other hand, the complex
“jumping jacks” is quite different from all the other actions,
as a result the auxiliary data and text data set appear to help
less in this case.

Cross-lingual sentiment analysis

As labeling is expensive, it has long been a topic of inter-
est in the NLP community to reuse previously labeled data
for new applications. One recent effort is to transfer knowl-
edge gained from data gathered in one language to another
language. One obvious solution is to use the more and more
popular automatic machine translation services (Banea et al.
2008). However, while machine translation has been the sub-
ject of a great deal of development in recent years, many
of the recent gains in performance manifest as syntactically
as opposed to semantically correct sentences. This causes
problems especially when we are dealing with semantically
oriented tasks such as the sentiment analysis problem we
examine here. It is therefore still necessary to consider het-
erogeneous transfer learning when automatic translators are
available.

Data set In this section we consider the binary sentiment
classification problem. Given a review about a certain prod-
uct, we want to predict whether it is positive or negative. As
in our activity recognition setting, we will only have labeled
data in the source feature space. But we will have some un-
labeled data in the target space. We use the same training
and test set as Wan (2009).

Model For this problem we have both X and Z as binary
n-gram features. The joint model and gradient update is the
same as we outline in the previous experiment. The remain-
ing problem is that we do not have a natural auxiliary prob-
lem set in this case. We therefor need to construct these aux-
iliary problems in a way that we can automatically obtain
labels for them.

We follow the work of Blitzer, Dredze, and Pereira (2007)
by selecting a set of features (n-grams), which are highly re-
lated to the sentiment classification problem. The selection
is performed by measuring the mutual information between
features and the sentiment label variables ytarget on the la-
beled data set in the source feature space (labeled English re-
views). The auxiliary tasks are binary decision problems for
these selected features. That is: whether a certain selected
feature occurs in a text.

To label the data set with these auxiliary problems, we
need the co-occurrence data (y, {xi}) which is between a
selected feature and a certain document in the target space.
This can be obtained either by translating the whole docu-
ment or simply referring to on-line dictionaries as we only
need feature level co-occurrence. Note that our approach has
less requirement on these co-occurrence statistics compared
to Dai et al. (2008) as in their translator setting, all the fea-
ture pairs need to be considered in theory. While in our case,
only a small number of co-occurrence data is used(only be-
tween normal features and pivot features).

To better estimate the performance of SCL and RBMs, we
fix the Chinese unlabeled data set and sample different En-
glish labeled data sets from Blitzer, Dredze, and Pereira. We
then calculate the average overall accuracy and the standard
deviation of 20 experiment runs.

Result We use the results from Wan (2009) and Wei and
Pal (2010) for comparison as we are using exactly the same
training and test data set. The result of Wan was obtained by
first translating the source label data into the target language,
then using co-training scheme, which is a multi-view learn-
ing algorithm, on classifiers trained in both languages and
let the two classifiers teach each other for the unlabeled ex-
amples. We use “co-train” for this result in the table. While
the result from Wei and Pal was obtained by adapting the
SCL algorithm, which is also a multi-task algorithm. We use
“SCL” for the results. Finally, our results for the RBM ap-
proach is the average of 20 runs. By comparing our result
with the two previous approaches, we can see how well our
method is compared to the multi-view approach and other
multi-task style algorithm.

From the figure, we can see that although our method
doesn’t use as much information as Wan from the machine
translation, we obtain a comparable and slightly better re-
sult.
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CoTrain SCL RBM

Pre(P) 76.8% 77.2% 77.0%
Rec(P) 90.5% 91.4% 90.9%
F1(P) 83.1% 83,8% 83.4%
Pre(N) 87.9% 93.1% 90.0%
Rec(N) 71.7% 75.2% 74.0 %
F1(N) 79.0% 83.3% 81.2 %
Overall 81.3% 83.5% 82.9%

Table 3: Results on cross-lingual sentiment analysis, Pre
stands for precision, Rec for recall and F1 stands for F1
score; (P) means results on positive reviews, (N) on nega-
tive reviews

Method μ δ
SCL 83.2 % 0.13 %
RBM 83.0 % 0.10 %

Table 4: Average accuracy and Deviation, μ denotes the av-
erage overall accuracy, and δ stands for the standard devia-
tion

The performance of RBMs in the specific experiment set-
ting is slightly worse than the SCL approach. To more accu-
rately estimate the performance of SCL and RBMs, we run
20 experiments on different English unlabeled data. And the
result from Table 4 suggest that RBMs and SCL are statis-
tically close to each other in the cross-langauge adaptation
task.

Conclusion

In this paper, we have examined a problem setting we call
heterogeneous transfer learning, a special case of trans-
fer learning where the transfer is performed on two non-
overlapping feature spaces. Different from the earlier work,
our approach relaxes the requirement of co-occurrence data
in training. Instead, we build the connection between the two
feature spaces by considering their relations to a set of re-
lated tasks. We also show that simple RBMs can be useful
in transfer learning. We study two problems as experiments:
text-aided activity recognition and cross-lingual sentiment
classification. In both cases, the RBM method outperforms
the previous multi-view learning approaches. The perfor-
mance on the cross-lingual experiment is slightly worse than
the result obtained in the SCL. Yet repetitive experiments
show the results of RBMs and SCL are statistically similar.

In this paper, we perform our experiments using a sim-
ple line search with the exact gradient. While more aggres-
sive gradient approximation schemes such as contrastive di-
vergence are commonly used for RBMs, for heterogeneous
transfer learning with discriminative RBMs it may be worth-
while to explore if other optimization approaches might fur-
ther boost performance.

In transfer learning, there is the possibility that the two
tasks are unrelated, in this case, the knowledge obtained may
not help, and even hurt. For heterogeneous transfer learning,
this risk of negative transfer is even higher, as the different

feature space makes it harder to decide the similarity be-
tween the source and the target task. We believe future work
exploring this issue could be fruitful. We also wish to per-
form experiments on other complex real world data.
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