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Abstract

In this paper, we will present a unified view for LDA. We will
(1) emphasize that standard LDA solutions are not unique,
(2) propose several new LDA formulations: St-orthonormal
LDA, Sw-orthonormal LDA and orthogonal LDA which have
unique solutions, and (3) show that with St-orthonormal LDA
and Sw-orthonormal LDA formulations, solutions to all four
major LDA objective functions are identical. Furthermore, we
perform an indepth analysis to show that the LDA sometimes
performs poorly due to over-fitting, i.e., it picks up PCA di-
mensions with small eigenvalues. From this analysis, we pro-
pose a stable LDA which uses PCA first to reduce to a small
PCA subspace and do LDA in the subspace.

Introduction

Linear discriminant analysis (LDA)(Fisher 1936) is widely
used classification method, especially in applications where
the data dimension is large, such as in computer vision(Turk
and Pentland 1991; Belhumeur, Hespanha, and Kriengman
1997) where data objects are images with typically 1002

dimensions. Since it is invented in late 1940’s, there is
a large number of studies on LDA methodology, among
them Fukunaga’s book(Fukunaga 1990) is the most author-
itative. Since 1990, there are many developments, such as
uncorrelated LDA(Jin et al. 2001), orthogonal LDA, (Ye
and Xiong 2006), null-space LDA(Chen et al. 2000), and
a host of other methods such as generalized SVD (Park
and Howland 2004) for LDA, 2DLDA (Ye et al. 2004;
Luo, Ding, and Huang 2009) , etc.

For the simple formulation of LDA of Eq. (1), it is a bit
surprising to have this large number of varieties. In this pa-
per, we undertake a different route. Instead of developing
newer methods, we ask a few fundamental questions about
LDA.

Given the fact that there are so many LDA varieties, a
natural question is: is the LDA solution unique? A related
question: is the LDA solution global solution? Consulting
on Fukunaga’s book and other books(Duda, Hart, and Stork
2000; Hastie, Tibshirani, and Friedman 2001), and reading
recent papers, these questions were not addressed (or not
emphasized at least), to the best of our knowledge.
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Our investigation of this neglected area of LDA uncover
a large number of new results regarding uniqueness, nor-
malization, global solutions. We also investigate the LDA
overfitting problem. Our experiments on real life datasets
show that LDA often overfits by incorporating PCA (princi-
pal component analysis) dimensions with small eigenvalues
which causes poor performance. Our results suggest several
new approaches to improve the performance.

Outline of New Results
We first introduce the LDA formulation and outline the new
results.
Classic LDA. In LDA, the optimal subspace G =
(g1, · · · ,gk) is obtained by optimizing

max
G

J1(G) = Tr
GTSbG

GTSwG
(1)

where the between-class (Sb) and within-class (Sb) scatter
matrices are defined as

Sb =
∑
k

nk(mk −m)(mk −m)T , (2)

Sw =
∑
k

∑
i∈Ck

(xi −mk)(xi −mk)
T , (3)

where mk is the mean of class Ck and m is the global total
mean. The total covariance matrix is St = Sb + Sw. The
central idea is to separate different classes as much as possi-
ble (maximize the between-class scatter Sb) while condense
each class as much as possible (minimize the within-class
scatter Sw).
Traditional Solution In both the book and most (if not all)
previous papers, the solution of G for LDA is considered to
be given the k eigenvectors of S −1

w Sb

S −1
w SbG0 = G0Λ0, Λ0 = (λ0

1, · · · , λ0
k), (4)

associated with the largest eigenvalues. The dimension k of
the subspace is set to k = C − 1 where C is the number of
classes. We call this traditional solution.

New LDA Formulations

We first note that the classic LDA is implicitly defined with
constraints:

max
G

Tr
GTSbG

GTSwG
, s.t. {gk} linearly independent, ||gk|| = 1.
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(5)
Without the constraint the optimal solution would be G1 =
(g1, · · · , g1), because

Tr
GT

1 SbG1

GT
1 SwG1

= kλ1 > Tr
GT

0 SbG0

GT
0 SwG0

= λ1 + · · ·+ λk.

Now, we introduce several more meaningful constraints.
St-orthonormal LDA

First, we consider the St-orthonormal LDA:

max
G

Tr
GTSbG

GTSwG
, s.t. GTStG = I, (6)

This is a meaningful variant, because the projected data
yi = GTxi, Y = GTX,

are obtained such that the total covariance matrix for Y
St(Y ) = GTSt(X)G = I. (7)

Thus the projected data Y is not only uncorrelated, they are
also properly orthonormal. Transforming data into a unit-
covariance is often done in the prepossessing stage in statis-
tical analysis. It often helps the analysis.
Sw-orthonormal LDA

We consider the Sw-orthonormal LDA:

max
G

Tr
GTSbG

GTSwG
, s.t. GTSwG = I, (8)

This is a meaningful variant, because G is obtained such
that the total within-class covariance matrix for the projected
data Y = GTX

Sw(Y ) = GTSw(X)G = I. (9)
This is called sphering the data in statistics (Hastie, Tibshi-
rani, and Friedman 2001). Sphering the within-class covari-
ance matrix is the direct motivation for LDA.
Orthogonal LDA

We will show in Lemma 2 that the classic LDA solution
G0 are not orthogonal, i.e., GT

0 G0 �= I . In many subspace
project, we desire the projection directions are mutually or-
thonormal. For example, PCA projections are mutually or-
thonormal. Therefore, we propose the orthogonal LDA as
the following:

max
G

Tr
GTSbG

GTSwG
, s.t. GTG = I, (10)

Main Results

Our main results are Theorems 1 and 2 below. Let GLin.ind. be
the solution to the linearly independently constrained LDA
of Eq.(5); Gt be the optimal solution to the St orthonormal
LDA of Eq.(6); Gw be the optimal solution to the Sw or-
thonormal LDA of Eq.(8); and Gorth be the optimal solution
to the orthonormal LDA of Eq.(10). Our main results are:
Theorem 1 (1) All these four solutions are the Global so-
lutions for the four different LDA formulations. (2) All these
four different LDA formulations attain the same objective
function value:

J1(GLin.ind.) = J1(Gt) = J1(Gw) = J1(Gorth).

The proof is given in later section.

LDA Objective Functions

Besides the J1 objective function of Eq.(1), there exist three
other objective functions as mentioned in Fukunaga’s book
(Fukunaga 1990)[p.447]. In this paper, we show some inter-
esting results on the different LDA objective functions.

The first and most commonly used LDA objective is J1 of
Eq.(1). The second is determinant based objective:

max
G

J2(G) =
detGTSbG

detGTSwG
. (11)

The third objective is the difference of traces:

max
G

J3(G) = TrGTSbG− (TrGTSwG− μ). (12)

The 4th objective is the ratio of traces:

max
G

J4(G) =
TrGTSbG

TrGTSwG
. (13)

Fukunaga showed that J2 is essentially identical to J1. But
he dismissed J3 and J4.

Interestingly, all four above objective functions are the
same under certain reasonable constraints:
Theorem 2 (1) Under the St-orthonormal constraint
Eq.(7). The optimal solutions for all four objective functions
J1, J2, J3, J4 of Eqs.(1,11,12,13) are identical. (2) Under
the Sw-orthonormal constraint Eq.(9), the optimal solutions
for all four objective functions are identical.

Theorems 1 & 2 are the main results of this paper. They
provide a unified view of all LDA objective functions and
formulations. (The fact that solutions of J1 and J2 are iden-
tical is previously known (Fukunaga 1990)[p.447].)

Invariance of LDA
It is comforting that all optimal solutions to various LDA
formulations are global solutions, i.e., there is no local opti-
mal solution.

However, global solution may not be unique. Recall the
definition of global solution: G̃ is a global solution if
J(G) ≤ J(G̃) for any G. We could have, however, G̃1 �= G̃2

and J(G̃1) = J(G̃2). Thus both G̃1 and G̃2 are global solu-
tions.

Sign and Rotational Invariance

Suppose G = (g1, g2, · · · , gk) is a global optimal solution
to LDA objective J1(G) of Eq.(1). Then it is easy to see that
there are 2k variants

GS = (±g1,±g2, · · · ,±gk) = GS,

where S = diag(±1,±1, · · · ,±1) contains the signs. It is
easy to see J1(G) = J1(GS) for any S. This means there
are 2k global solutions.

In fact, J1(G) has the rotational invariance. Let R be an
orthonormal matrix: RRT = RTR = I . A special case of
the rotational transformation is sign transformation R = S.
The coordinate transformation under the rotation R is: yi =
RTxi or Y = RTX . And the scatter matrices Sb, Sw are
transformed as

Sb(Y ) = RSb(X)RT , Sw(Y ) = RSw(X)RT .

It is easy to see that
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Proposition 3 (1) All four LDA objective functions of
Eqs.(1,11,12,13) are rotational invariant. (2) All 4 con-
straints: the linear independent, the Sb-orthonormal, the
Sw-orthonormal, the orthonormal constraints are rotational
invariant.

Therefore, LDA solutions can not be unique in the strict
sense. If G∗ is the global optimal solution for any one of
the four LDA objective functions with any one of the four
constraints, then G∗R is also a global optimal solution.

However, this non-uniqueness due to a rotational transfor-
mation is not a problem in many pattern recognition applica-
tions. For examples, if we do KNN classification or K-means
clustering, this rotational invariance causes no problem, be-
cause KNN and K-means are themselves rotational invari-
ant. We also note that PCA solution has the same rotational
invariance.

Generic linear invariance

The J1(G) objective has a generic linear invariance prop-
erty. Let A ∈ �m×m be a non-singular matrix, which is
more general than rotation R. A defines a linear transforma-
tion yi = ATxi or Y = ATX .

Proposition 4 J1 is invariant under any nonsingular linear
transformation A. J2 has the same invariance, while J3, J4
are not invariant.

Proof. Under the transformation, Sb(Y ) = ATSb(X)A, and
Sw(Y ) = ATSw(X)A. Thus

J1(Y ) = Tr
ATSb(X)A

ATSw(X)A
= Tr [ATSw(X)A]−1[ATSb(X)A]
= Tr [A−1S−1

w (X)(AT )−1][ATSb(X)A]
= Tr S−1

w (X)Sb(X). (14)

�–
Proposition 4 can be stated in a different way: Suppose G∗
is an optimal solution. Then G∗∗ = G∗A is also an optimal
solution.

This generic invariance is important for proving Theo-
rem 1. It was briefly noted in Fukunaga’s book(Fukunaga
1990)[p.447] in passing without elaboration.

The generic invariance of J1 is the source of non-
uniqueness of the global solutions to LDA. Fortunately, the
four constraints discussed this paper are not generic invari-
ant. Global solutions to the four constrained LDA formula-
tions are unique (up to a rotation). This result is the main
motivation of emphasizing the 4 new constrained LDA for-
mulations.

Solutions to New LDA Formulations

The Sw-orthonormal LDA solution

The Sw-orthonormal LDA formulation of Eq.(8 can be writ-
ten as

max
G

TrGTSbG, s.t. GTSwG = I, (15)

Assuming Sw is non-singular and let F = S
1/2
w G, this be-

comes

max
F

TrFTS
− 1

2
w SbS

− 1
2

w F , s.t. FTF = I, (16)

Because S−1/2
w SbS

−1/2
w is a positive definite symmetric ma-

trix, solution to the optimization of Eq.(16) are the prin-
cipal eigenvectors. Therefore, the global solution F =
(f1, · · · , fk) are given by the K eigenvectors of (associated
with k largest eigenvalues)

S−1/2
w SbS

−1/2
w fk = λkfk, (17)

This is consistent, because eigenvectors of Eq.(17) automati-
cally satisfies the orthogonality FTF = I . Thus the solution
of Sw-orthonormal LDA is

Gw = S−1/2
w F. (18)

We have automatically GT
wSwGw = I . We list some useful

relations below:

SbGw = SwGwΛ,
GT

wSbGw = Λ,
Λ = diag(λ1, · · · , λk). (19)

Relations between Gw and G0, Gt, Gorth

Given Sw, we can obtain the traditional solution G0, the
solution Gt to the St-orthonormal LDA, and the solution
Gorth to the orthonormal LDA via the theoretical relations:

Theorem 5 , G0, Gt, Gorth relate to Gw by the relations

G0 = Sw[diag(G
T
wGw)]

− 1
2 ,

Gt = Gw(I + Λ)−
1
2 ,

Gorth = Gw(G
T
wGw)

− 1
2 . (20)

Proof of Theorem 1

With the developments in previous sections, we are ready to
prove Theorems 1. We first prove the second part of The-
orem 1: J1(G0) = J1(Gt) = J1(Gw) = J1(Gorth). This
is obvious now because: (1) By Theorem 5, G0, Gt, Gorth
relates to Gw through linear transformations, and (2) By
Proposition 4, J1(G) is invariant w.r.t. these linear transfor-
mations.

We now prove the first part of Theorem 1, i.e.,
G0, Gt, Gorth, Gw are global optimal solutions.

From §4.1, Sw is the global solution. This fact, together
with J1(G0) = J1(Gt) = J1(Gw) = J1(Gorth), implying
that G0, Gt, Gorth are also global optimal solutions.

We prove this by contradiction. Suppose this is not true,
i.e., there exists a G′0 �= G0 and J1(G

′
0) > J1(G0). Then

through the first relation in Theorem 5, we obtain G′w =
G′0D

1/2, and J1(G
′
w) = J1(G

′
0) because J1(G) is generic

invariant. This leads to J1(G
′
w) > J1(Gw) which contra-

dicts to the fact that Gw is global solution.
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Proof of Theorem 2

The first part of Theorem 2 becomes obvious because J3
maximization of Eq.(12) and J4 maximization of Eq.(13)
becomes identical to Eq.(15), which is identical to J1 max-
imization of Eq.(8) and J2 maximization with same con-
straint. Thus they all have the identical solution Sw.

To prove the second second part of Theorem 2, we note
the known fact (Fukunaga 1990),

Proposition 6 Under any orthogonality conditions, the fol-

lowing optimizations are identical

max
G

Tr
GTSbG

GTSwG
⇐⇒ max

G
Tr

GTSbG

GTStG
. (21)

From this, the St-orthonormal LDA can be cast as

max
G

TrGTSbG, s.t. GTStG = I, (22)

Under St-orthonormality, J3 = 2TrGTSbG + const, iden-
tical to Eq.(22). Thus J3 has the same solution Gt. J4 be-
comes J4 + 1 = TrGT (Sb+Sw)G

TrGTSwG
= TrGTStG

TrGTStG−TrGTSbG
.

Since TrGTStG = constant, maxG J4(G) becomes
maxG TrGTSbG, reducing to Eq.(22). Thus the solution to
J4 is Gt, which is also the solution for J1, J2.

Overfitting Analysis in LDA

Although elegant and effective in some applications, LDA
can also overfit. In this section, we analyze the overfitting
problem.

Our results are that LDA often incorporates many dimen-
sions associated with small PCA eigenvalues (we call these
dimensions insignificant PCA dimensions). These insignifi-
cant PCA dimensions are always ignored in PCA. Their in-
clusion in LDA causes overfit which often shows up in un-
stable LDA results especially in cross validation.

Theoretically, due to the presences of Sw in the denom-
inator of Eq.(1) or St in Eq.(22), the weight of dimensions
with small eigenvalues of Sw (St) are magnified. This cause
the overfitting.

Empirically, we have found (and other studies also im-
plicitly support) that if we use all data points (test data and
training data) in computing the LDA subspace, and then do
cross validation, the results are particularly good. However,
if we compute the LDA subspace using training data only
and do cross-validation, the results are much more realistic.
This shows the LDA subspace change quite significantly us-
ing different portion of the data as training data. This large
fluctuations is due to the inclusion of insignificant PCA di-
mensions.

For this purpose, we use the St-orthonormal LDA where
the analysis takes a very simple form.

We write the total covariance matrix St = UΣUT . We do
a 2-stage transform

G = GPCAΣ
− 1

2Gb, GPCA = U

This is equivalent to 2 transforms: yi = GT
PCAxi = UTxi,

zi = GT
b Σ

− 1
2GT

PCAxi = GT
b Σ

− 1
2UTxi = GT

b Σ
− 1

2

⎛
⎜⎝
uT
1 xi

uT
2 xi

· · ·
uT
r xi

⎞
⎟⎠ .

Therefore, GT
b Σ

− 1
2 represents net effects of LDA. The r-

th column of GT
b Σ

− 1
2 incorporates the r-th PCA dimension

uT
r xi. Therefore we define

Definition. LDA factor is the net effect due to LDA on in-
corporating r-th PCA dimension, defined to be

fr =
k∑

i=1

[
(GT

b Σ
− 1

2 )ir

]2
. (23)

We want to show that the overfit of LDA is related to a large
value of fr for these insignificant PCA dimensions.

Using Theorem 4, and the St-orthonormal LDA of
Eq.(22), we construct

Tr
GTSbG

GTStG
= Tr

(GT
b Σ

− 1
2UT )Sb(UΣ−

1
2Gb)

(GT
b Σ

− 1
2UT )St(UΣ−

1
2Gb)

= Tr
GT

b (Σ
− 1

2UTSbUΣ−
1
2 )Gb

GT
b Gb

. (24)

Therefore, columns of Gb = (gb1, · · · , gbk) are given by the
eigenvector of

(Σ−
1
2UTSbUΣ−

1
2 )gbk = ξbkg

b
k

Because Σ−
1
2UTSbUΣ−

1
2 is positive definite symmetric, all

eigenvalues ξb ≥ 0, and the eigenvectors {gbk} are mutually
orthogonal, we have GT

b Gb = I . The magnitude of Gb will
be show in experiments.

Experiments

MNIST Hand-written Digit Dataset

The MNIST hand-written digits dataset consists
of 60,000 training and 10,000 test digits (Le-
Cun et al. 1998), which can be downloaded from
“http://yann.lecun.com/exdb/mnist/” with 10 classes.
Each image is centered on a 28x28 grid. We randomly
pick 20 images for each class, for a total of 200 images for
experiment.

Figure 1 shows the LDA classification accuracy (5-fold
cross validation) for 5 different LDA solutions at PCA sub-
space varies from 150 to 10. (Because we do 5-fold cross
validation, only 80% data are available for training which
limits the maximum PCA-dim to 200*0.8=160.) It is clear
that the performance of all LDA solutions are poor near
PCA-dim=100 - 150. In Figures 2 and 3, the LDA over-
fit results are shown. Shown are Gb the LDA Factor de-
fined in Eq.(23) without the eigenvalues Σ−

1
2 and the PCA

eigenvalues. From Figure 2, it is clearly the LDA Factor are
overwhelmed by the insignificant (small eigenvalue) PCA
dimensions (peak near PCA-dim= 140-150). This demon-
strates that LDA is clearly overfit at PCA dimension = 150.
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Figure 1: LDA results on MNIST

dataset.
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Figure 2: LDA Overfit results on

MNIST dataset at PCA-Dim=150.
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Figure 3: LDA Overfit results on

MNIST dataset at PCA-Dim=50.
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Figure 4: LDA results on ATNT dataset.

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

LD
A

 F
ac

to
r

0 50 100 150 200 250 300 350
0

2

4

6

|G
b| K

0 50 100 150 200 250 300 350
10

0

10
5

10
10

λ
K

PCA dimension K

Figure 5: LDA Overfit results on ATNT

dataset at PCA-Dim=310.
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Figure 6: LDA Overfit results on ATNT

dataset at PCA-Dim=100.

As the PCA-dimension is reduced towards 20, perfor-
mance of all LDA solutions increase steadily, because the
overfit problem is gradually reduced. From Figure 3, the
LDA Factor is no longer dominated by the insignificant PCA
dimensions. The best results are achieved at PCA-dim = 20
= 2C (C=10 is the number of classes).

AT&T Face Image Dataset

The AT&T database, which can be downloaded from
“http://www.cl.cam.ac.uk/research/dtg/attarchive/”, is
widely used in computer vision as a benchmark for classi-
fication. There are total 400 images for 40 persons. Each
image has a size 112× 92, which is reduced to size 56× 46
before analysis. Figure 4 shows the LDA classification
accuracy (5-fold cross validation) for 5 different LDA
solutions at PCA subspace varies from 320 to 50. (Because
we do 5-fold cross validation, only 80% data are avail-
able for training which limits the maximum PCA-dim to
400 × 0.8 = 320.) It is clear that the performance of all
LDA solutions are poor near PCA-dim=250-320. In Figure
5 the LDA overfit results are shown at PCA dimension =
320. Clearly LDA is overfitting at PCA dimension = 320.
This explains the poor performance of LDA solutions. As
the PCA-dimension is reduced from 320 towards 50, perfor-
mances of all LDA solutions increase steadily, because the

overfit problem is gradually reduced. At PCA dimension
= 100, as shown in Figure 6, the LDA Factor is no longer
dominated by insignificant PCA dimensions. This trend is
consistent. The best results are achieved at PCA-dim = 50 =
1.2C (C=40 is the number of classes).

YaleB Dataset

The Yale database B (Georghiades, Belhumeur, and Krieg-
man 2001) contains images of 31 persons (This is a stan-
dard subset of of the original 38 persons, but some im-
ages of 7 persons were corrupted). We randomly select
10 illumination conditions for a total 310 images. The
size of each original image is 192 × 168, which is re-
duced to 48 × 42 for our experiments. Figure 7 shows the
LDA classification accuracy (5-fold cross validation) for
5 different LDA solutions at PCA subspace at PCA-dim=
31, 61, 91, 121, 181, 211, 241. (Because we do 5-fold cross
validation, only 80% data are available for training which
limits the maximum PCA-dim to 310 × 0.8 = 248.) It is
clear that the performance of all LDA solutions are poor near
PCA-dim=181 ∼ 241. In Figure 8 the LDA overfit results are
shown at PCA dimension = 230. Clearly LDA is overfitting.
This explains the poor performance of LDA solutions. As
the PCA-dimension is reduced from 320 towards 150, per-
formances of all LDA solutions increase steadily, because
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Figure 7: LDA results on YaleB dataset.
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Figure 8: LDA Overfit results on YaleB

dataset at PCA-Dim=230.
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Figure 9: LDA Overfit results on YaleB

dataset at PCA-Dim=150.

the overfit problem is gradually reduced. At PCA dimension
= 150, as shown in Figure 9, the LDA Factor is less domi-
nated by insignificant PCA dimensions. The best results are
achieved at PCA-dim = 31-61 = (1 - 2)C (C=31 is the num-
ber of classes).
Which LDA solution is the best? From the LDA perfor-
mance of Figures 1, 4, and 7, it seems that Gw consistently
performs the best, G0 consistently performs well, Gt per-
forms well 2 out of 3 datasets.
Implication. Our results show that in application of LDA,
due to overfitting, we should first perform PCA to reduce
data to a suitable subspace and do LDA in the subspace. The
exact PCA subspace dimension L should be chosen as small
as possible by cross-validation. Our experiments suggest

PCA dimension ≈ 2C,

where C is the number of classes. In early work (Belhumeur,
Hespanha, and Kriengman 1997), PCA dimension is mostly
set at rank(Sw)−C. This is far larger than 2C. As shown in
Figures 2, 5, and 8, at PCA-dim = rank(Sw)−C, overfitting
often occur.

Conclusions

In this paper, we have clarified a large number of issues re-
garding to LDA on whether the solution is (1) unique or not,
(2) global not local, (3) rotational invariant or generic in-
variant. We also show the solutions of St-orthonormal LDA
and Sw-orthonormal LDA are also the solutions of all four
possible LDA objective functions. We systematically ana-
lyze the overfitting problem of LDA and show that LDA of-
ten incorporate insignificant PCA dimensions. We carry out
extensive experiments on 3 widely used datasets to demon-
strate the overfitting problem. Overall, our analysis provides
a unified and systematic analysis of the LDA classification
methodology.
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