
Towards Evolutionary Nonnegative Matrix Factorization

Fei Wang, Hanghang Tong and Ching-Yung Lin
IBM T. J. Watson Research Center

–fwang,htong,chingyung˝@us.ibm.com

Abstract

Nonnegative Matrix Factorization (NMF) techniques
has aroused considerable interests from the field of ar-
tificial intelligence in recent years because of its good
interpretability and computational efficiency. However,
in many real world applications, the data features usu-
ally evolve over time smoothly. In this case, it would be
very expensive in both computation and storage to rerun
the whole NMFprocedure after each time when the data
feature changing. In this paper, we propose Evolution-
ary Nonnegative Matrix Factorization (eNMF), which
aims to incrementally update the factorized matrices in
a computation and space efficient manner with the vari-
ation of the data matrix. We devise such evolutionary
procedure for both asymmetric and symmetric NMF. Fi-
nally we conduct experiments on several real world data
sets to demonstrate the efficacy and efficiency of eNMF.

Introductions

The recent years have witnessed a surge of interests on
Nonnegative Matrix Factorization (NMF) from the artifi-
cial intelligence field (Lee and Seung 1999)(Lee and Seung
2001)(Lin 2007)(Kim and Park 2008). Differernt from tra-
ditional spectral decomposition methods such as Principal
Component Analysis (PCA) and Singular Value Decomposi-
tion (SVD), NMF (1) is usually additive, which results in a
better interpretation ability; (2) does not require the factor-
ized latent spaces to be orthogonal, which allows more flex-
ibility to adapt the representation to the data set. NMF has
successfully been used in many real world applications, such
as information retrieval (Shahnaz et al. 2006), environmen-
tal study (Anttila et al. 1995), computer vision (Guillamet,
Bressan, and Vitrià 2001) and computational social/network
science (Wang et al. 2010).

Formally, what NMF does is to factorize a nonnegative
data matrix into the product of two (low-rank) nonnegative
latent matrices. As NMF requires both factorized matrices
to be nonnegative, this will generally lead to sparse, part-
based representation of the original data set, which is se-
mantically much more meaningful compared to traditional
factorization/basis learning methods. Due to the empirical
and theoretical success of NMF, people have been working

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on a lot of NMF extensions in the last decade to fit in more
application scenarios. Some representative algorithms in-
clude nonnegative sparse coding (Eggert and Korner 2004),
semi and convex NMF (Ding, Li, and Jordan 2010), and or-
thogonal tri-NMF (Ding et al. 2006).

Many algorithms have been proposed to solve NMF, such
as multiplicative updates (Lee and Seung 2001), active set
(Kim and Park 2008) and projected gradient (Lin 2007).
However, all these algorithms require to hold the whole data
matrix in main memory in the entire NMF process, which
is quite inefficient in terms of storage cost when the data
matrix large (either in data size or the feature dimension-
ality). To solve this problem, several researchers proposed
memory efficient online implementations for NMF in recent
years (Cao et al. 2007)(Wang, Li, and König 2011)(Saha
and Sindhwani 2010). Rather than processing all data points
in a batch mode, these approaches process the data point one
at a time in a streaming fashion. Thus they only require the
memory to hold one data point through the whole procedure.

In this paper, we consider the problem of NMF in another
scenario where the data features are evolving over time1.
A straightforward solution is to rerun the whole NMF pro-
cedure at each time stamp when the data feature change.
However, this poses several challenges in terms of space
cost, computational time as well as privacy. Let X and
X̃ = X + ΔX be the old and new data feature matrices
respectively. In many real applications, ΔX is usually very
sparse while X̃ is not2. It therefore is not efficient in terms
of space cost to re-run NMF since we need to store the whole
data feature matrix X̃. It is also not efficient in computation
since it requires some matrix-matrix multiplication between
X̃ and the two factorized matrices. What is more, this strat-
egy becomes infeasible for those privacy-sensitive applica-
tions where the whole data feature matrix X̃ might not be
available at a given time stamp. For instance, Facebook’s3

1The difference between this setting and online learning is that
in online learning, the data points are processed one by one, i.e.,
the elements in the data matrix are changed one column at a time.
However, in our scenario, we allow any elements in the data matrix
to change from time to time.

2Even if X̃ is also sparse, it is usually much denser compared
with the ΔX matrix. See table 1 for some examples.

3http://www.facebook.com/

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

501



privacy policy prohibits the user to keep the downloaded
data longer than 24 hours. So, if a data analyst wants to track
the community structure on the daily-base, s/he would only
have the access to the data feature within a 24 hour window.

For evolutionary data, one common assumption is that the
data features evolve smoothly over time (Chi et al. 2007),
i.e., the norm of the difference between the data feature ma-
trices at two consecutive time stamps is very small. Based on
this assumption, we develop a novel Evolutionary Nonneg-
ative Matrix Factorization (eNMF) algorithm in this paper,
where we assume that the factorized matrices also evolve
smoothly over time. Instead of minimizing a new similar
objective on the evolved feature matrix, eNMF minimizes
an upper bound of the objective, and we devise an efficient
projected gradient method to solve the problem. Finally
we conduct experiments on several real world data sets to
demonstrate the efficacy and efficiency of eNMF.

It is worthwhile to highlights several aspects of eNMF.

• eNMF is space efficient. eNMF only needs to hold the
difference matrix, which is usually much sparser due to
the smoothness assumption.

• eNMF is computationally efficient. One major computa-
tional cost in NMF the matrix-matrix multiplications. Our
eNMF achieves computational savings by using a much
sparser matrix in such matrix-matrix multiplications.

• eNMF is privacy-friendly. eNMF does not need to know
the exact data feature matrix. It only requires the fac-
torized matrices at the initial time stamp and the differ-
ence data feature matrix. This is particularly useful for
those privacy-sensitive applications, e.g., the data feature
is only available for a short time window.

• eNMF can be applied to different types of data. We
developed two instantiations for both traditional asym-
metric NMF(where the feature matrix is rectangular) and
symmetric NMF(where the feature matrix is symmetric
square, e.g., data similarity matrix).

The rest of this paper is organized as follows. Section 2
introduces the problem formulation and algorithm details.
The experimental results are presented in Section 3, fol-
lowed by the conclusions in Section 4.

The Algorithm

In this section we will introduce our eNMF algorithm in de-
tail. First we will introduce the basic notations that will be
used throughout this paper and problem formulation.

Problem Formulation

Suppose we have a nonnegative matrix X ∈ R
n×d, and we

want to factorize it into the product of two nonnegative ma-
trices F ∈ R

n×k and G ∈ R
d×k (usually k � min(d, n))

under some loss. In this paper we will concentrate on the
Frobenius norm loss as it is one of the most popular loss
forms, the algorithms under other loss such as Kullback-
Leighbler divergence (Lee and Seung 2001), β-divergence
(Févotte and Idier 2010) and Bregman divergence (Dhillon
and Sra 2005) can be derived similarly. The optimization

problem we need to solve is

min
F�0,G�0

∥∥∥X− FG�
∥∥∥2
F

(1)

where ‖A‖2F = tr
(
A�A

)
is the square of the matrix

Frobenius norm. This problem can be solved via multiplica-
tive updates (Lee and Seung 2001), active set method (Kim
and Park 2008) or projected gradient (Lin 2007) method.

Now suppose there is a small on variation on X so that X
becomes

X̃ = X+ΔX (2)

and X̃ ∈ R
n×d is also nonnegative. Our goal is to factorize

X̃ into the product of two nonnegative matrices F̃ ∈ R
n×k

and G̃ ∈ R
d×k, then we need to solve the following opti-

mization problem

min
˜F�0,˜G�0

∥∥∥X̃− F̃G̃�
∥∥∥2
F

(3)

We assume ‖ΔX‖2F is very small, and F̃, G̃ can be repre-
sented as

F̃ = F+ΔF (4)

G̃ = G+ΔG (5)

Bringing Eq.(4) and Eq.(5) into problem (3), we can get that∥∥∥X̃− F̃G̃�
∥∥∥2

F
=

∥∥∥X+ΔX− (F+ΔF) (G+ΔG)�
∥∥∥2

F

=
∥∥∥X+ΔX− FG� −ΔFG� − FΔG� −ΔFΔG�

∥∥∥2

F
(6)

and the constraint here is that

F̃ = F+ΔF � 0 (7)

G̃ = G+ΔG � 0 (8)

For matrix Frobenius norm, we have the following triangle
inequality∥∥∥X+ΔX− FG� −ΔFG� − FΔG� −ΔFΔG�

∥∥∥
F

�
∥∥∥X− FG�

∥∥∥
F
+

∥∥∥ΔX−ΔFG� − FΔG� −ΔFΔG�
∥∥∥
F

In our evolutionary setting, we already got the optimal F and
G by solving problem (1), thus ‖X − FG�‖F is already
minimized. In order to minimize the objective of problem
(3), we propose to solve the following optimization problem

minΔF,ΔG

∥∥ΔX−ΔFG� − FΔG� −ΔFΔG�∥∥2
F

s.t. F+ΔF � 0, G+ΔG � 0 (9)

This is an optimization problem with box constraints, and
we propose to apply Projected Gradient (PG) (Lin 2007)
method to solve it.

Projected Gradient

In this section we will introduce how to make use of PG to
solve problem (9). For notational convenience, we introduce
a box projection operator PB[A] as

(PB[A])ij =

{
Aij if Aij � Bij

Bij otherwise (10)

502



Algorithm 1 Projected Gradient

Require: 0 < β < 1, 0 < σ < 1. Initialization A(0).
Ensure: A(0) � B

for k = 1, 2, · · · do
A(k) = PB

[
A(k−1) − αk∇f

(
A(k−1)

)]
where αk = βtk , and tk is the first nonnegative integer
for which

f
(
A(k)

)
−f

(
A(k−1)

)
�σ

〈
∇f

(
A(k−1)

)
,
(
A(k)−Ak−1)

)〉
(12)

end for

Then the PG method for solving the problem

min
A�B

f(A) (11)

can be presented in Algorithm 1, where 〈·, ·〉 is the sum of
elementwise multiplication, and the rule for determining the
step size in Algorithm 1 is usually referred to as the Armijo
rule (Bertsekas 1999).

Now let us return to problem (9). If we denote the objec-
tive of the above problem by

J =
∥∥ΔX−ΔFG� − FΔG� −ΔFΔG�∥∥2

F
(13)

Then the gradient of J with respect to ΔF and ΔG are

∂J
∂ΔF

= −2
(
ΔX−ΔFG�−FΔG�−ΔFΔG�

)
(G+ΔG) (14)

∂J
∂ΔG

= −2
(
ΔX−ΔFG�−FΔG�−ΔFΔG�

)
�(F+ΔF) (15)

We can observe that there are two variables, ΔF and ΔG,
in problem (9). It is not easy to solve for ΔF and ΔG
simultaneously. However, if we fix one variable, then the
problem is convex with respect to the other. Therefore it is
natural to adopt the block coordinate descent scheme (Bert-
sekas 1999), which is an alternating optimization strategy, to
solve it. At each round of the iteration, we fix one variable
and solve the other (via PG), until some stopping criterion is
satisfied. As the objective is lower bounded by zero and after
each round its value will decrease, the algorithm is guaran-
teed to converge. The basic algorithm sketch is summarized
in Algorithm 2.

Algorithm 2 eNMF

Require: Initialization ΔF(0), ΔG(0).
Ensure: ΔF(0) � 0, ΔG(0) � 0

for t = 1, 2, · · · do
Fix ΔF = ΔF(t−1), update ΔG(t) using PG
Fix ΔG = ΔG(t), update ΔF(t) using PG

end for

Complexity Analysis

For Algorithm 2, we need to hold F, G and ΔF, ΔG in the
main memory, thus the total storage complexity is O(2k(n+
d)). Actually in our experiments, we usually find that the

obtained ΔF or ΔG is sparse, therefore the storage cost can
be further reduced by only storing the nonzero elements.

For computational complexity, as both eNMF and NMF
need to evaluate the function objective value (in Armijo rule)
when applying PG, the main difference would lie in the eval-
uation of the function gradient. Suppose that we have m and
m̂ non-zero elements in the matrices X + ΔX and ΔX re-
spectively, then the time cost for eq. (14) and Eq. (15) is
O(m̂k) + O(nk2) + O(dk2). In contrast, the time com-
plexity for computing the gradient for the original NMF is
O(mk) +O(nk2) +O(dk2). In many real applications, the
matrix ΔX is usually much more sparser than the matrix
X + ΔX (i.e., m̂ � m). Moreover, since k � n, l < m,
O(mk) is dominant term of the time complexity for the orig-
inal NMF. Therefore, we would expect that the proposed
algorithm is much more efficient in computation compared
with the original NMF.

Evolutionary Symmetric NMF

Another interesting scenario is Symmetric NMF (Wang et
al. 2010), where we have a symmetric square nonnegative
feature matrix S ∈ R

n×n (e.g., the connectivity matrix of an
undirected graph). The goal is to factorize it into the product
of a nonnegative matrix G ∈ R

n×k (usually k � n) and its
transpose by solving the following optimization problem

min
G�0

∥∥∥S−GG�
∥∥∥2
F

(16)

Wang et al.(2010) derived an multiplicative update approach
to solve problem (16). Actually, as problem (16) is also a
minimization problem with box constraint, we can also ap-
ply PG to solve it. Specifically, if we denote the objective of
the above problem as

JS =
∥∥∥S−GG�

∥∥∥2
F

(17)

then we can also solve it by PG using Algorithm 1 with A =
G, f(A) = JS , B = O (O ∈ R

n×k is an all-zero matrix),
and the gradient

∇f(A) =
∂JS

∂G
= −4

(
S−GG�

)
G (18)

In the evolutionary setting, S is changed to S̃ = S+ΔS with
a small ‖ΔS‖2F . Then we want to factorize S̃ by solving the
following optimization problem

min
˜G�0

∥∥∥S̃− G̃G̃�
∥∥∥2
F

(19)

We assume G̃ takes the following form

G̃ = G+ΔG (20)

with a small ‖ΔG‖2F . Bringing Eq.(20) into the objective of
problem (19), we obtain∥∥∥S̃− G̃G̃�

∥∥∥
F
=

∥∥∥S+ΔS− (G+ΔG)(G+ΔG)�
∥∥∥
F

�
∥∥∥S−GG�

∥∥∥
F
+
∥∥∥ΔS−GΔG�−ΔGG�−ΔGΔG�

∥∥∥
F

(21)

503



Similar as in the asymmetric case, we also minimize the up-
per bound instead of the original objective in problem (19).

As
∥∥∥S−GG�

∥∥∥2
F

already minimized, we solve the follow-
ing optimization problem instead for evolutionary SNMF

minΔG

∥∥ΔS−GΔG�−ΔGG�−ΔGΔG�∥∥2
F

(22)
s.t. G+ΔG � 0

This problem is still a minimization problem with box con-
straints, which can be solved by PG. We denote the objective
of the above problem by

J e
S (ΔG) =

∥∥ΔS−GΔG�−ΔGG�−ΔGΔG�∥∥2
F

(23)

Then problem (22) can be solved using PG in Algorithm 1
with A = ΔG, f(A) = J e

S , B = −G, and the gradient

∂J e
S

∂ΔG
=−4

(
ΔS−GΔG�−ΔGG�−ΔGΔG�

)
(G+ΔG)

We summarize the procedure of eSNMF in Algorithm 3.

Algorithm 3 eSNMF

Require: 0 < β < 1, 0 < σ < 1. Initialization ΔG(0).
Ensure: ΔG(0) � −G

for k = 1, 2, · · · do
ΔG(k) = P−G

[
ΔG(k−1) − αk∇J e

S

(
ΔG(k−1)

)]
where αk = βtk , and tk is the first nonnegative integer
for which

J e
S

(
ΔG(k)

)
−J e

S

(
ΔG(k−1)

)
�σ

〈
∇J e

S

(
ΔG(k−1)

)
,
(
ΔG(k)−ΔG(k−1)

)〉

end for

Suppose that we have m and m̂ non-zero elements in the
matrices S + ΔS and ΔS respectively, then the time cost
for eq. (24) is O(m̂k) +O(nk2). In contrast, the time com-
plexity for computing the gradient for the original NMF is
O(mk)+O(nk2). In many real applications, the matrix ΔS
is usually much more sparser than the matrix S + ΔS (i.e.,
m̂ � m). Moreover, since k � n, l < m, O(mk) domi-
nates the time complexity for the original SNMF. Thus we
would expect that the proposed algorithm is computationally
more efficient compared with the original SNMF.

Experiments

We conduct experimental results to evaluate the proposed
algorithms from the following three aspects:

1 Convergency. How does the overall reconstruction error
change wrt the iteration steps?

2 Effectiveness. How effective are the proposed algorithms,
compared with the original NMF and SNMF, respectively.

3 Speed. How fast are the proposed algorithms?

The data set we used for evaluation is from DBLP4.
We construct time-evolving matrices using the publication
records from one of the following four conferences: AAAI,

4http://www.informatik.uni-trier.de/˜ley/db/

KDD, SIGIR, NIPS. For each conference, we first construct
the author-paper and the co-authorship snapshot matrices
from each of its publication years. For the author-paper
snapshot matrices, they are asymmetric where each rows are
the authors and columns are the papers. If a given author
wrote a paper, the corresponding element in the matrix is 1
and 0 otherwise. We aggregate the first 6 snapshot matrices
as the initial X matrix, and treat each of the remaining snap-
shot matrices as the ΔX matrix in Algorithm 2. We denote
these four asymmetric time-evolving matrices as AAAI-AP,
KDD-AP, SIGIR-AP, NIPS-AP respectively, which are sum-
marized in Table 1. Each of these four asymmetric time-
evolving matrices typically contains a few thousands of rows
and columns (n× d), and a few thousands of non-zeros ele-
ments (m) in X, a few (T ) ΔX matrices, and a few hundreds
of non-zero elements (m̂) in the ΔX matrix on average.

For the co-authorship snapshot matrices, they are sym-
metric where each row/column corresponds to an author and
edge weights are the number of the co-authored papers. We
also aggregate the first 6 snapshot matrices as the initial S
matrix, and treat each of the remaining snapshot matrices
as the ΔS matrix in Algorithm 3. We denote these four
symmetric time-evolving matrices as AAAI-AA, KDD-AA,
SIGIR-AA, NIPS-AA respectively, which are summarized in
Table 1. For each of these four symmetric time-evolving ma-
trices, it typically contains a few thousands of rows/columns
(n × n), and a few thousand, or a few tens of thousands of
non-zeros elements (m) in the initial S matrix, a few (T ) ΔS
matrices, and a few thousands of non-zero elements (m̂) in
the ΔS matrix on average.

Table 1: Summary of the data sets
Name n× n (n× d) m T m̂

AAAI-AP 3,659 × 2,651 5,762 9 265
KDD-AP 1,974 × 1,118 3,202 7 256
SIGIR-AP 2,489 × 1,867 4,584 22 124
NIPS-AP 3,417 × 2,927 7,111 13 355
AAAI-AA 3,659 × 3,659 10,849 9 5,059
KDD-AA 1,974 × 1,974 3,717 7 5,639
SIGIR-AA 2,489 × 2,489 3,957 22 6,336
NIPS-AA 3,417 × 3,417 6,063 13 6,860

Convergence. In both eNMF and eSNMF, instead of min-
imizing the true reconstruction error directly, we try to mini-
mize its upper bound. Here, we test how the true reconstruc-
tion error change wrt the iteration steps. Figures 1-2 show
the results on NIPS-AP and NIPS-AA for one time stamp,
respectively. We compared our algorithms with the origi-
nal NMF and SNMF respectively. From the figures, it can
be seen that for both eNMF and eSNMF, the overall recon-
struction error decreases quickly and reaches an steady state
wrt the iteration steps, suggesting that our algorithms indeed
converge fast. It is worth pointing out that the final recon-
struction error of eNMF is very close to that of the original
NMF. We have similar observation for eSNMF and SNMF.

Effectiveness Comparison. Here, we evaluate the ef-
fectiveness of the proposed eNMF and eSNMF in terms of

504



0 10 20 30 40 50 60 70 80 90 100

28

30

32

34

36

38

Iteration Step

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eNMF
NMF

Figure 1: The reconstruction error vs. iteration steps on
NIPS-AA data. The proposed eNMF converges quickly,
leading to a similar reconstruction error as NMF after con-
vergence.

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Iteration Step

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eSNMF
SNMF

Figure 2: The reconstruction error vs. iteration steps on
NIPS-AA data. The proposed eSNMF converges quickly,
leading to a similar reconstruction error as SNMF after
convergence.

the final reconstruction error (i.e., the reconstruction error
after the algorithms converge). For each time stamp of a
given data set, we run eNMF(or eSNMF for the symmetric
matrix) and NMF (or SNMF for the symmetric matrix) un-
til convergence, and then compare the reconstruction errors.
The results are summarized in figures 3-4. It can be seen
that in terms of the final reconstruction error, our algorithms
are very close to the original methods (NMF and SNMF).
In most cases, the final reconstruction error of the proposed
eNMF and eSNMF is within the range of 1± 10% of that by
the original NMF and SNMF respectively. For those excep-
tions (e.g., KDD-AP, KDD-AA, SIGIR-AA), our algorithms
actually lead to smaller reconstruction error. On the other
hand, our proposed methods do not require the original X
and S matrices, which in turn leads to some nice properties
for the applications (e.g., space and computation efficient,
privacy-friendly, etc).

Speed Comparison. We also compared the speed be-
tween our algorithms and the original NMF and SNMF. Fig-
ure 5 show the average wall-clock time on each data set.

The results are consistent with the complexity analysis in
Section . In most cases, our eNMF and eSNMF are faster
than the original NMF and SNMF respectively. The only ex-
ception is the NIPS-AA data set, where the proposed eSNMF
is slightly slower than the original SNMF. This is because
for this data set, we have more non-zero elements in the ΔS
matrix (m̂ = 6, 860) than that of the original the S matrix
(m = 6, 063) on average. Compared with eNMF and eS-
NMF, we can see that the speed saving is more significant in
eNMF. This is because the ΔX matrix is much more sparser
than the ΔS matrix, - on average, there are a few hundred of
non-zero elements in ΔX, and a few thousand of non-zero
elements in ΔS.

AAAI KDD NIPS SIGIR
0

100

200

300

400

500

600

700

A
ve

ra
ge

 W
al

l−
cl

oc
k 

T
im

e

 

 

eNMF

NMF

(a) Author-Paper

AAAI KDD NIPS SIGIR
0

100

200

300

400

500

600

700

A
ve

ra
ge

 W
al

l−
cl

oc
k 

T
im

e

 

 

eSNMF
SNMF

(b) Author-Author

Figure 5: Speed comparison of eNMF/eSNMF and NMF.
Our eNMF is much faster than NMF

Conclusion

We present a novel evolutionary Nonnegative Matrix Fac-
torization (eNMF) strategy to efficient perform NMF in the
scenario where the data features are evolving over time. Our
method is both storage and computational efficient as well
as privacy friendly. The experimental results on real world
time evolving networks are presented to demonstrate the ef-
fectiveness of our proposed methods.

Acknowledgement

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Num-
ber W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References

Anttila, P.; Paatero, P.; Tapper, U.; and Järvinen, O. 1995.
Source identification of bulk wet deposition in finland by
positive matrix factorization. Atmospheric Environment
29(14):1705–1718.
Bertsekas, D. P. 1999. Nonlinear Programming. Athena
Scientific, 2nd edition.
Cao, B.; Shen, D.; Sun, J.-T.; Wang, X.; Yang, Q.; and Chen,
Z. 2007. Detect and track latent factors with online nonneg-

505



1 2 3 4 5 6 7 8 9
30

35

40

45

50

55

60

65

70

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eNMF

NMF

(1+10%) NMF

(1−10%) NMF

(a) AAAI-AP

1 2 3 4 5 6 7

15

20

25

30

35

40

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eNMF

NMF

(1+10%) NMF

(1−10%) NMF

(b) KDD-AP

0 5 10 15 20 25

30

35

40

45

50

55

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eNMF

NMF

(1+10%) NMF

(1−10%) NMF

(c) SIGIR-AP

2 4 6 8 10 12 14
30

35

40

45

50

55

60

65

70

75

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eNMF

NMF

(1+10%) NMF

(1−10%) NMF

(d) NIPS-AP

Figure 3: Comparison for asymmetric matrices. The x-axis is time stamp (each corresponds to a publication year.), and y-axis
is the final reconstruction error. The reconstruction error of the proposed eNMF is very close to that of the original NMF.

1 2 3 4 5 6 7 8 9
50

60

70

80

90

100

110

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eSNMF

SNMF

(1+10%) SNMF

(1−10%) SNMF

(a) AAAI-AA

1 2 3 4 5 6 7
20

25

30

35

40

45

50

55

60

65

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eSNMF

SNMF

(1+10%) SNMF

(1−10%) SNMF

(b) KDD-AA

0 5 10 15 20 25
40

45

50

55

60

65

70

75

80

85

90

Time Stamp
R

ec
on

st
ru

ct
io

n 
E

rr
or

 

 

eSNMF

SNMF

(1+10%) SNMF

(1−10%) SNMF

(c) SIGIR-AA

2 4 6 8 10 12 14
40

50

60

70

80

90

100

110

120

Time Stamp

R
ec

on
st

ru
ct

io
n 

E
rr

or

 

 

eSNMF

SNMF

(1+10%) SNMF

(1−10%) SNMF

(d) NIPS-AA

Figure 4: Comparison for symmetric matrices. The x-axis is time stamp (each corresponds to a publication year.), and y-axis is
the final reconstruction error. The reconstruction error of the proposed eSNMF is very close to that of the original SNMF.

ative matrix factorization. In Proc. of International Joint
Conference on Artificial Intelligence, 2689–2694.

Chi, Y.; Song, X.; Zhou, D.; Hino, K.; and Tseng, B. L.
2007. Evolutionary spectral clustering by incorporating tem-
poral smoothness. In KDD ’07: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 153–162.

Dhillon, I. S., and Sra, S. 2005. Generalized nonnegative
matrix approximations with Bregman divergences. In Ad-
vances in Neural Information Proc. Systems, 283–290.

Ding, C.; Li, T.; Peng, W.; and Park, H. 2006. Orthog-
onal nonnegative matrix t-factorizations for clustering. In
Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 126–135.

Ding, C.; Li, T.; and Jordan, M. I. 2010. Convex and Semi-
Nonnegative Matrix Factorizations. IEEE Transactions on
Pattern Analysis and Machine Intelligence 32(1):45–55.

Eggert, J., and Korner, E. 2004. Sparse coding and nmf.
In Proceedings of IEEE International Joint Conference on
Neural Networks, volume 4, 2529–2533.

Févotte, C., and Idier, J. 2010. Algorithms for nonneg-
ative matrix factorization with the beta-divergence. CoRR
abs/1010.1763.

Guillamet, D.; Bressan, M.; and Vitrià, J. 2001. A weighted
non-negative matrix factorization for local representations.
In Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), vol-
ume 1, 942–947.
Kim, H., and Park, H. 2008. Nonnegative matrix factor-
ization based on alternating non-negativity-constrained least
squares and the active set method. SIAM Journal on Matrix
Analysis and Applications 30(2):713–730.
Lee, D. D., and Seung, H. S. 1999. Learning the parts
of objects by non-negative matrix factorization. Nature
401(6755):788–791.
Lee, D. D., and Seung, H. S. 2001. Algorithms for Non-
negative Matrix Factorization. In Advances in Neural Infor-
mation Processing Systems 13, 556–562. MIT Press.
Lin, C.-J. 2007. Projected Gradient Methods for Nonnega-
tive Matrix Factorization. Neural Comp. 19(10):2756–2779.
Saha, A., and Sindhwani, V. 2010. Dynamic nmfs with tem-
poral regularization for online analysis of streaming text. In
Machine Learning for Social Computing (NIPS Workshop).
Shahnaz, F.; Berry, M.; Pauca, V.; and Plemmons, R. 2006.
Document clustering using nonnegative matrix factoriza-
tion. Info. Processing & Management 42(2):373–386.
Wang, F.; Li, T.; Wang, X.; Zhu, S.; and Ding, C. 2010.
Community discovery using nonnegative matrix factoriza-
tion. Data Mining and Knowledge Discovery.
Wang, F.; Li, P.; and König, C. 2011. Efficient document
clustering via online nonnegative matrix factorization. In
Proceedings of the 11th SIAM Conference on Data Mining.

506


