
Non-Parametric Approximate
Linear Programming for MDPs

Jason Pazis and Ronald Parr
Department of Computer Science, Duke University

Durham, NC 27708
{jpazis,parr}@cs.duke.edu

Abstract

The Approximate Linear Programming (ALP) approach
to value function approximation for MDPs is a para-
metric value function approximation method, in that it
represents the value function as a linear combination of
features which are chosen a priori. Choosing these fea-
tures can be a difficult challenge in itself. One recent
effort, Regularized Approximate Linear Programming
(RALP), uses L1 regularization to address this issue by
combining a large initial set of features with a regular-
ization penalty that favors a smooth value function with
few non-zero weights. Rather than using smoothness as
a backhanded way of addressing the feature selection
problem, this paper starts with smoothness and devel-
ops a non-parametric approach to ALP that is consis-
tent with the smoothness assumption. We show that this
new approach has some favorable practical and analyti-
cal properties in comparison to (R)ALP.

1 Introduction and motivation

Linear value function approximation is a standard technique
for discovering approximate solutions to large Markov Deci-
sion Processes (MDPs). One of the major difficulties in lin-
ear value function approximation for MDPs is finding a good
set of features. If the feature set is too restrictive, it will fail
to capture important structure in the value function (bias).
On the other hand if the feature set is too expressive, the
value function can overfit the training samples (variance).
Regularization and feature selection have recently been the
focus of much research in the field of reinforcement learn-
ing as a potential solution to these problems (Kolter and Ng
2009; Petrik et al. 2010).

Linear value function approximation represents the value
of every state with a linear combination of a (possibly non-
linear) set of features. One family of approaches to the fea-
ture selection problem starts with an initially large set of
features and adds an L1-norm penalty or constraint on the
weights. For example, in the Approximate Linear Program-
ming (ALP) approach for MDPs, which is most closely
related to the topic of this paper, the regularized exten-
sion (RALP) imposes a hard bound on the L1-norm of the
weights, but solves an otherwise identical linear program.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A penalty or constraint on the weights of a linear value
function approximation (regardless of norm) can be viewed
as a form of smoothness assumption. When L1 regulariza-
tion, which favors solutions with few non-zero weights, is
used as a feature selection method, any smoothing effect
from the penalty/constraint on the weights is often seen
merely as a means to achieving the primary goal of a sparse
set of features.

This paper takes a novel approach to ALP that starts with
a smoothness assumption on the value function. Using noth-
ing more than the smoothness assumption, we develop an
LP approach that is entirely non-parametric, bypassing the
need for features and feature selection. The new method
is straightforward in implementation, has more easily com-
puted error bounds than ALP, is amenable to problems with
large (multidimensional) or even infinite (continuous) action
spaces, and (unlike ALP) does not require a model to select
actions using the resulting approximate solution.

2 Background

A Markov Decision Process (MDP) is a 5-tuple
(S,A, P,R, γ), where S is the state space of the pro-
cess, A is the action space, P is a Markovian transition
model

(
P (s′|s, a) denotes the probability of a transition

to state s′ when taking action a in state s
)
, R is a reward

function
(
R(s, a) is the expected reward for taking action

a in state s
)
, and γ ∈ (0, 1) is a discount factor for future

rewards. A deterministic policy π for an MDP is a mapping
π : S �→ A from states to actions; π(s) denotes the action
choice in state s.

The value V π(s) of a state s under a policy π is defined as
the expected, total, discounted reward when the process be-
gins in state s and all decisions are made according to policy
π. The goal of the decision maker is to find an optimal pol-
icy π∗ for choosing actions, which yields the optimal value
function V ∗(s), defined recursively via the Bellman opti-
mality equation:

V ∗(s) = max
a

R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

The value Qπ(s, a) of a state-action pair (s, a) under a pol-
icy π is defined as the expected, total, discounted reward
when the process begins in state s, action a is taken at the

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

459

first step, and all decisions thereafter are made according to
policy π. Once again our goal is to find an optimal policy π∗
for choosing actions, which yields the optimal value func-
tion Q∗(s, a):

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′)

Reinforcement learning

In reinforcement learning, a learner interacts with a stochas-
tic process modeled as an MDP and typically observes the
state and immediate reward at every step; however, the tran-
sition model P and the reward function R are not accessi-
ble. The goal is to learn an optimal policy using the experi-
ence collected through interaction with the process. At each
step of interaction, the learner observes the current state s,
chooses an action a, and observes the resulting next state
s′ and the reward received r, essentially sampling the tran-
sition model and the reward function of the process. Thus
experience comes in the form of (s, a, r, s′) samples.

Solving MDPs via linear programming

The exact case One way to solve for the optimal value
function V ∗ is via linear programming, where every state
s ∈ S is a variable and the objective is to minimize the sum
of the states’ values under the constraints that the value of
each state must be greater than or equal to all Q-values for
that state:

minimize
∑
s

V ∗(s)

subject to :

(∀s, a)V ∗(s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)V ∗(s′)

Extracting the policy is fairly easy (at least conceptually),
just by picking the action with a corresponding non-zero
dual variable for the state in question (equivalently, pick-
ing the action that corresponds to the constraint that has no
slack in the current state). Note that we can have a set of
state-relevance weights ρ(s) associated with every state in
the optimization criterion; however, for the exact case every
set of positive weights leads to the same V ∗.

Approximate linear programming (ALP) In many real
world applications the number of states is too large (or even
infinite if the state space is continuous), rendering exact rep-
resentation intractable. In those cases we approximate the
value function via a linear combination of (possibly non-
linear) basis functions or features. The variables in the ap-
proximate linear program are now the weights assigned to
each basis function and the value of each state is computed
as φ(s)Tw, where φ(s) is the feature vector for that state,
and w is the weight vector. The linear program becomes:

minimize
∑
s

ρ(s)φT (s)w

subject to :

(∀s, a) φT (s)w ≥ R(s, a) + γ
∑
s′

P (s′|s, a)φT (s′)w

Using features dramatically reduces the number of variables
in the program, however it does not reduce the number of
constraints. Since the number of constraints is larger than
the number of variables in the exact linear program, we have
to find a way to reduce the number of constraints by sam-
pling. Making certain assumptions over our sampling dis-
tribution (de Farias and Van Roy 2004), or if we incorporate
regularization (Petrik et al. 2010), we can sample constraints
and bound the probability that we will violate a non-sampled
constraint, or bound the performance degradation that will
occur as a result of missing constraints.

Unfortunately this approximate formulation does not al-
low for easy extraction of a policy from the dual. Not only
is the number of dual variables large (the same as the num-
ber of samples) but it does not offer a straightforward way
to generalize to unseen states. Choosing an action using a
(R)ALP solution typically requires a model to compute Q-
values given the approximate value function returned by the
linear program. Also note that the state-relevance weights
now influence the solution, imposing a trade-off in the qual-
ity of the approximation across different states (de Farias
and Van Roy 2003).

An alternative way of expressing the ALP (consistent with
the notation in Petrik et al. 2010) that also emphasizes the
similarity to the exact LP is to express the problem as an
optimization within a constrained family of value functions:

minimize
∑
s

ρ(s)Ṽ (s)

subject to :

(∀s, a)Ṽ (s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)Ṽ (s′)

Ṽ ∈ M
This representation is more general than the typical ALP for-
mulation in that it allows arbitrary constraints on Ṽ via M.
For the standard ALP approach, M = span(Φ), but any
specification of M that can be implemented through linear
constraints can be seen as a form of ALP.

3 Related Work
Regularized approximate linear programming
(RALP) (Petrik et al. 2010) can be considered as a
close parallel of this work for parametric ALPs. Using
L1-norm regularization on the feature weights, RALP is
able to select a good set of features from a potentially very
large pool, while our work requires no features and only
a smoothness constraint on the value function. Another
important difference is that our approach is compatible
with infinite action spaces and does not require a model for
action selection.

Other non-parametric approaches to reinforcement learn-
ing include variable resolution grids (Munos and Moore
2002), the work of Ormoneit and Sen (2002), Fitted Q-
Iteration with tree-based approximators (Ernst, Geurts, and
Wehenkel 2005) and many kernelized methods (Taylor and
Parr 2009). Compared to the non-parametric ALP, these
methods may require storing significantly more informa-
tion, may be unable to handle very large action spaces and

460

characterizing their performance in terms of easily measured
model parameters can be a challenge.

4 Non-parametric ALP

If the optimal value function is Lipschitz continuous it satis-
fies the following constraint for every two states s and s′:

|V ∗(s)− V ∗(s′)| ≤ LV ∗d(s, s′)

where:

d(s, s′) = ||k(s)− k(s′)|| (1)

and k(s) is a mapping from the state space to some normed
vector space.

We will use the notation ML to denote the set of func-
tions with Lipschitz constant L. Observe that for any L, the
constraint Ṽ ∈ ML can be enforced via linear constraints:

(∀s, s′)Ṽ (s) ≥ Ṽ (s′)− LṼ d(s, s
′) (2)

If LṼ = LV ∗ and all constraints are present in the LP, the
smoothness constraints will have no effect on the solution
and Ṽ = V ∗. In practice LṼ will typically differ from LV ∗ ,
either by design (to avoid overfitting) or due to lack of suffi-
cient knowledge of LV ∗ . Also, it will be impractical to have
one constraint per state. Using S̃ to represent the set of state-
action pairs for which the Bellman equation is enforced, the
non-parametric approximate LP will be:

minimize
∑
s

Ṽ (s)

subject to :

(∀s ∈ S̃, a)Ṽ (s) ≥ R(s, a) + γ
∑
s′

P (s′|s, a)Ṽ (s′)

Ṽ ∈ MLṼ

When Ṽ ∈ MLṼ
is implemented via the linear constraints

in 2, this provides a complete specification of NP-ALP. A
few subtleties in the LP above bear note: First, the smooth-
ness constraint on Ṽ is defined over the entire state space,
not just the states in S̃. It might seem that enforcing this
constraint would require constraints for every state in S, sac-
rificing any efficiency gained by sampling the constraints for
the Bellman operator. In practice, however, it suffices to im-
plement smoothness constraints only for states in S̃ or reach-
able in one step from a state in S̃. Smoothness constraints on
other states will not influence the solution to the LP. Second,
the sum over all states in the objective function may seem
impractical. However, summing over the values of states not
in S̃ has no effect on the LP solution.

In comparison to standard ALP, the non-parametric ALP
has some desirable properties. In standard ALP, the state rel-
evance weights ρ impose a trade-off in approximation re-
sources devoted to different states. While this adds flexi-
bility, it’s quite difficult to know what a good value for ρ
is in practice (without knowing the stationary distribution
of the optimal policy) and ρ becomes yet another difficult
to tune input into the function approximation process. In
contrast, there is no change in the non-parametric solution

if different states are assigned different weights in the ob-
jective function. (Since the approximator is non-parametric,
there is no sense in which accuracy in one state could be
traded off against accuracy in another via ρ.) Another desir-
able property of the non-parametric ALP is that it ensures
a bounded solution even when constraints are sampled. In
ordinary ALP, a single missing constraint can, in the worst
case, cause the LP to be unbounded.

Using Ṽ

When presented with an unknown state t that was not di-
rectly constrained in the LP, an estimate of its value can be
obtained by identifying a constrained state s (variable V (s))
that maximizes the bound1 Ṽ (t) ≥ Ṽ (s) − LṼ d(s, t). This
procedure determines the value that state t would have been
assigned by the LP if a smoothness constraint on t had been
included. Note that if such a constraint had been included, it
would not have changed the value of any other state.

We will call all variables corresponding to state-action
pairs for which the corresponding Bellman constraint holds
with equality (the dual variables are non-zero) basic and the
rest non-basic. Non-basic variables can be discarded with-
out changing the solution. This is useful both for sparsifying
the solution to make evaluation faster and can be used to
construct a homotopy method for solving the linear program
efficiently.

To see why the above is true, consider a state-action
pair s, a corresponding to a non-basic variable. This implies
Ṽ (s) = Ṽ (s′) − LṼ d(s, s

′) for some state2 s′. When pre-
sented with state s′′ to evaluate, we have:

Ṽ (s′′) ≥ Ṽ (s)− LṼ d(s
′′, s) (3)

Ṽ (s′′) ≥ Ṽ (s′)− LṼ d(s
′′, s′) (4)

Substituting Ṽ (s) = Ṽ (s′)− LṼ d(s, s
′) into 3:

Ṽ (s′′) ≥ Ṽ (s′)− LṼ (d(s
′′, s) + d(s, s′)) (5)

By the triangle inequality d(s′′, s′) ≤ d(s′′, s)+d(s, s′) thus
constraint 3 does not influence the value of Ṽ (s′′).

Action selection

In the exact LP formulation, the maximizing action is the
one corresponding to the non-zero dual variable for that
state. For the non-parametric ALP, after non-basic variables
have been discarded, there is only one such variable per ba-
sic state. For any basic state s, Ṽ (s) is bound by a Bellman
constraint from state-action pair s, a, so Ṽ (s) = Q̃(s, a).
If s bounds the value of a non-basic state t by3 Ṽ (t) ≥
Ṽ (s)−LṼ d(s, t), it also implicitly bounds Q̃(t, a). The pre-
dicted optimal action at t will therefore be the same as in s

1Note that this operation is quite trivial and does not require
solving a linear program.

2In the case where s = s′ this means that some other action
dominates the state-action pair in question.

3For simplicity of exposition, we assume that LQa = LV ∀a ∈
A. The case where different actions have different Lipschitz con-
stants extends naturally.

461

since the bounds from other states are lower, implying lower
estimated Q-values.

The above has two important consequences. The first is
that only actions present in the training set can ever be se-
lected during policy execution, since the value estimation
and action selection mechanisms are inherently pessimistic.
The second is that action selection complexity is indepen-
dent of the number of actions. Thus we can deal with spaces
with infinite (continuous) or massive (multidimensional) ac-
tion spaces. Sampling is of course important; however, this
goes beyond the scope of this paper (see future work for a
brief discussion).

Solving the NP-ALP

One important concern with many non-parametric methods
is computation time. For NP-ALP, the cause of concern is
the quadratic number of constraints relative to the number of
samples, arising from the Lipschitz continuity constraints. In
our experiments, this was not a problem; all programs took
at most a few minutes to complete on a modern CPU when
implemented exactly as specified in section 4.

For larger problems, the size of the NP-ALP could be-
come prohibitive. Fortunately the NP-ALP constraints have
favorable properties. All the continuity constraints involve
exactly two variables, resulting in a very sparse constraint
matrix, a property that modern solvers can exploit. Addi-
tionally, for every sample either its Bellman constraint or
exactly one of its Lipschitz constraints will be active. The
above facts can be used to construct a homotopy method.
Starting from LṼ = 0 only one Bellman constraint will be
active (the one with the largest reward) and all other states
will be bound by Lipschitz constraints to Ṽ = Rmax

1−γ . Pro-
gressively relaxing LṼ , the entire space of solutions can be
traversed. This was not implemented for our experiments.

5 Error bounds

Lemma 5.1. If V is a representable value function, V + ε1
is also representable, where 1 is a vector if all ones.

It is easy to see that by adding a constant ε to all the basic
variables, the entire value function is shifted by ε.
Definition 5.2. The set of ε-transitive feasible value func-
tions is defined for ε ≥ 0 as: K(ε) = V ∈ R|S| :
V ≥ TV − ε1. A value function is transitive-feasible when
V ≥ TV (K = K(0)).
Definition 5.3. εp(LṼ) ≤ dmax(LV ∗ + LṼ) bounds the
violation of Bellman constraints missing in the sampled LP,
where dmax is the maximum distance from a non-sampled
state to the closest sampled state.

Given lemma 5.1 and the definitions above, the follow-
ing theorem is a straightforward adaptation of an analogous
result for RALP from Petrik et al. 2010.
Theorem 5.4. Define ε to be the closest value function in
M(LṼ) to V ∗, ε = 2

1−γ minV ∈M(LṼ) ||V −V ∗||∞, and let

Ṽ be the solution to the non-parametric ALP then,

||Ṽ − V ∗||1 ≤ ε+ 2
εp(LṼ)

1− γ
.

As with RALP, if sampled transitions are used, an addi-
tional additive term: 3 εs(LṼ)

1−γ would be included, where εs is
derived from the error introduced by using sampled transi-
tions instead of the full Bellman equation. Since the analysis
is identical to that of Petrik et al., we omit further discus-
sion of εs for brevity. The RALP analysis also includes an εc
term which results from discrepancies between the objective
function of the original problem and the objective function
in the constraint sampling case. This term does not appear
in our analysis because the solution is invariant to changes
in state relevance weights (see Section 4). A key difference
between our bound and that of RALP, is it is easy to connect
ε to properties of the model.

Theorem 5.5.

ε ≤ Rmax −Rmin

(1− γ)2

(
1− LṼ

LV ∗

)

Proof. If LṼ ≥ LV ∗ , V ∗ ∈ MLṼ
and ε = 0. Otherwise,

the value function V ′ produced by translating V ∗ so that
|V ∗

max| = |V ∗
min|, scaling by LṼ

LV ∗ and translating back to
where V ∗ was, is in MLṼ

:

V ′ =
(
V ∗ − V ∗

max + V ∗
min

2

)
LṼ

LV ∗
+

V ∗
max + V ∗

min

2
∈ MLṼ

V ′s distance from V ∗ is:

||V ′ − V ∗||∞ =
V ∗
max − V ∗

min

2

(
1− LṼ

LV ∗

)

≤ Rmax −Rmin

2(1− γ)

(
1− LṼ

LV ∗

)

The ratio LṼ

LV ∗ may be difficult to determine, but can be
bound by more easily determined quantities.

Lemma 5.6. If the fastest changing state-action value func-
tion Q∗

a is LQ∗
max

-Lipschitz continuous, LV ∗ ≤ LQ∗
max

.

Definition 5.7. If the reward function is Lr-Lipschitz contin-
uous, it satisfies the following constraint for every two states
s1 and s2:

|r(s1, a)− r(s2, a)| ≤ Lrd(s1, s2)

Definition 5.8. If the transition model is Lp-Lipschitz con-
tinuous it satisfies the following constraint for every two
states s1 and s2, and all V with LV = 1:

∣∣ ∫
s′
(p(s′|s1, a)− p(s′|s2, a))V (s′)ds′

∣∣ ≤ Lpd(s1, s2)

Observe that this bounds the difference in expected next
state values with respect to a normalized V . If LV �= 1, the
worst case difference can be scaled appropriately.

Theorem 5.9. If γLp < 1:

LV ∗ ≤ Lr

1− γLp

462

Proof. For every two states s1 and s2:

LQ∗
max

d(s1, s2) ≤ |Q∗(s1, a)−Q∗(s2, a)|
LQ∗

max
d(s1, s2) ≤ |R(s1, a) + γ

∫
s′
p(s′|s1, a)V ∗(s′)

−R(s2, a)− γ

∫
s′
p(s′|s2, a)V ∗(s′)|

LQ∗
max

d(s1, s2) ≤ (Lr + γLpLV ∗)d(s1, s2)

LQ∗
max

≤ Lr + γLpLV ∗ .

In the penultimate step above, we have used the definition of
Lp and scaled by LV ∗ . Using lemma 5.6:

LV ∗ ≤ Lr + γLpLV ∗

LV ∗ ≤ Lr

1− γLp

γLp < 1 is satisfied is many noise models, e.g., actions
that add a constant impulse with Gaussian noise.

6 Experimental Results

In this section we test the non-parametric approach to ap-
proximate linear programming on three popular domains in
reinforcement learning and compare its performance against
RALP4. Given that RALP uses the model to evaluate every
action during policy execution, this is an unfair comparison.
Nevertheless, the non-parametric approach is able to achieve
comparable performance even without the use of a model.

We should also note that all our samples come in the form
of (s, a, r, s′) samples, thus we only have one constraint per
sampled state, which amounts to sampling the right hand
side of the Bellman equation5.

Car on the hill

The car on the hill problem (Ernst, Geurts, and Wehenkel
2005) involves driving an underpowered car stopped at the
bottom of a valley between two hills, to the top of the steep
hill on the right. The 2-dimensional continuous state space
(p, v) includes the current position p and the current velocity
v. The controller’s task is to (indirectly) control the accelera-
tion using a thrust action u ∈ {−4, 4}, under the constraints
p > −1 and |v| ≤ 3 in order to reach p = 1. The task
requires temporarily driving away from the goal in order to
gain momentum. The agent receives a reward of −1, if a
constraint is violated, a reward of +1, if the goal is reached,
and a zero reward otherwise. The discount factor of the pro-
cess was set to 0.98 and the control interval to 100ms.

For both algorithms we scaled the speed portion of the
state, from [−3, 3] to [−1, 1]. The distance function for the
non-parametric approach was chosen to be the two norm of
the difference between states and the Lipschitz constant was
set to LṼ = 1.0. The features for RALP comprised of a grid

4The Lipschitz constants LṼ and the regularization parameters
ψ for RALP were chosen via cross-validation.

5All the domains tested in this paper are noiseless, thus there is
only one possible next state for every state-action combination.

of 20× 20 equally spaced Gaussian radial basis functions in
[−1.0, 1.0] × [−1.0, 1.0] with σ = 1 and the regularization
parameter was set to ψ = 100.

Figure 1 (a) shows the total discounted reward as a func-
tion of the number of training episodes. Training samples
were collected in advance from “random episodes”, that is,
starting the car in a randomly perturbed state and following a
purely random policy. Each episode was allowed to run for a
maximum of 200 steps or until a terminal state was reached,
both during sampling and policy execution.

As we can see, even for such a naive choice of distance
function and without the use of a model, the non-parametric
ALP is able to perform as well as RALP, even surpassing its
performance when the number of episodes is limited.

Inverted Pendulum

The inverted pendulum problem (Wang, Tanaka, and Griffin
1996) requires balancing a pendulum of unknown length and
mass at the upright position by applying forces to the cart
to which it is attached. The 2-dimensional continuous state
space includes the vertical angle θ and the angular velocity θ̇
of the pendulum. The continuous action space of the process
is the range of forces in [−50N, 50N].

Most researchers in reinforcement learning choose to ap-
proach this domain as an avoidance task, with zero reward as
long as the pendulum is above the horizontal configuration
and a negative reward when the controller fails. Instead we
chose to approach the problem as a regulation task, where
we are not only interested in keeping the pendulum upright,
but we want to do so while minimizing the amount of force
we are using. Thus a reward of 1 − (u/50)2, was given as
long as |θ| ≤ π/2, and a reward of 0 as soon as |θ| > π/2,
which also signals the termination of the episode. The dis-
count factor of the process was set to 0.98 and the control in-
terval to 100ms. In this setting, making full use of the avail-
able action range is required to get good performance.

For both algorithms we standardized the state space and
used PCA, keeping only the first principal component. The
distance function for the non-parametric ALP was chosen
to be the two norm of the difference between states and
the Lipschitz constant was set to LṼ = 10.0. For RALP
the action space was discretized to 256 actions to approxi-
mate the continuous range [−50N, 50N], the features where
a grid of 200 equally spaced Gaussian radial basis functions
in [−1.5, 1.5] with σ = 1, and the regularization parameter
was set to ψ = 100.

Figure 1 (b) shows the total accumulated reward as a func-
tion of the number of training episodes. Training samples
were collected in advance by starting the pendulum in a ran-
domly perturbed state close to the equilibrium state (0, 0)
and following a purely random policy.

It is instructive to see why RALP performs (slightly) bet-
ter in this domain. RALP has access to the full reward and
transition model and is able to try every available action
before taking it. On the other hand, even though the non-
parametric ALP has access to every action in the continuous
range, it will only choose actions for which it has samples
close enough to the state in question to be dominant. This
highlights the importance of sampling.

463

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of training episodes

T
o

ta
l d

is
co

u
n

te
d

 r
ew

ar
d

RALP

N.P. ALP

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

Number of training episodes

T
o

ta
l a

cc
u

m
u

la
te

d
 r

ew
ar

d

RALP

N.P. ALP

��
��

��
��

��
�

��
��

���

�

���

�

���

	
���
�

�����������������

�
�
��
���
��
�
�
�
��
��
�
��
��
��
�

(a) (b) (c)

Figure 1: (a), (b): Performance versus training episodes for the car on the hill and inverted pendulum tasks. (c): Performance
versus the Lipschitz constant for bicycle balancing. Graphs show averages and 95% confidence intervals over 100 independent
runs.

Bicycle Balancing

The bicycle balancing problem (Ernst, Geurts, and We-
henkel 2005), has four state variables (angle θ and angular
velocity θ̇ of the handlebar as well as angle ω and angular
velocity ω̇ of the bicycle relative to the ground). The con-
tinuous action space is two dimensional and consists of the
torque applied to the handlebar τ ∈ [−2,+2] and the dis-
placement of the rider d ∈ [−0.02,+0.02]. The goal is to
prevent the bicycle from falling.

Again, we approached the problem as a regulation task,
rewarding the controller for keeping the bicycle as close to
the upright position as possible. A reward of 1−|ω|×(π/15),
was given, as long as |ω| ≤ π/15, and a reward of 0, as soon
as |ω| > π/15, which also signals the termination of the
episode. The discount factor was 0.98, the control interval
was 10ms and training trajectories were truncated after 20
steps. We standardized the state space and used PCA, keep-
ing only the first principal component. The distance function
was the two norm of the difference between states.

Figure 1 (c) shows total accumulated reward versus the
Lipschitz constant for 100 training episodes. As we can
see, the controllers learned have excellent performance for
a wide range of Lipschitz constants (notice the logarithmic
scale for the x axis).

7 Discussion and future work

This paper introduced a non-parametric approach to ALP
which bypasses the need for features, is compatible with
continuous actions, and requires nothing more than a
smoothness assumption on some function of the state.

As shown, the non-parametric ALP approach does not
need a model during policy execution. Furthermore, the
amount of information that needs to be stored can be quite
small. This is because only state-action pairs corresponding
to tight Bellman constraints need to be stored. This allows
non-parametric ALP to handle large action spaces well.

The majority of domains used in reinforcement learning
experiments, have a very small number of discrete actions.
In more realistic domains, sufficient sampling of each action
is a challenging problem. In an online learning setting, an
approach similar to the one used in this paper to provide pes-
simistic estimates of states’ values could provide optimistic

estimates, identifying promising actions for exploration.
One of the biggest strengths of non-parametric methods is

the great flexibility in selecting the distance function. How-
ever this is simultaneously their greatest weakness. A poor
choice can have catastrophic effects to performance. In our
experiments we used very simple distance functions. A more
sophisticated choice for function k(s) in equation 1 should
allow us to tackle much more challenging domains. Apart
from statically choosing a distance function from a fixed set,
we could also learn one. Recent work in manifold learning
is especially relevant.

Acknowlegments
We thank the reviewers for helpful comments and sugges-
tions. This work was supported by NSF IIS-0713435. Opin-
ions, findings, conclusions or recommendations herein are
those of the authors and not necessarily those of NSF.

References
de Farias, D. P., and Van Roy, B. 2003. The linear programming
approach to approximate dynamic programming. Operations Re-
search 51(6):850–865.
de Farias, D. P., and Van Roy, B. 2004. On constraint sampling
in the linear programming approach to approximate dynamic pro-
gramming. Mathematics of OR 29(3):462–478.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based batch
mode reinforcement learning. JMLR 6:503–556.
Kolter, J. Z., and Ng, A. Y. 2009. Regularization and feature se-
lection in least-squares temporal difference learning. In ICML 09,
521–528. ACM.
Munos, R., and Moore, A. 2002. Variable resolution discretization
in optimal control. Machine learning 49(2):291–323.
Ormoneit, D., and Sen, Ś. 2002. Kernel-based reinforcement learn-
ing. Machine Learning 49(2):161–178.
Petrik, M.; Taylor, G.; Parr, R.; and Zilberstein, S. 2010. Feature
selection using regularization in approximate linear programs for
Markov decision processes. In ICML-10, 871–878. Haifa, Israel:
Omnipress.
Taylor, G., and Parr, R. 2009. Kernelized value function approxi-
mation for reinforcement learning. In ICML 09, 1017–1024. ACM.
Wang, H.; Tanaka, K.; and Griffin, M. 1996. An approach to fuzzy
control of nonlinear systems: Stability and design issues. IEEE
Trans. on Fuzzy Systems 4(1):14–23.

464

