
Optimal Rewards versus
Leaf-Evaluation Heuristics in Planning Agents

Jonathan Sorg
Computer Science and Engineering

University of Michigan
jdsorg@umich.edu

Satinder Singh
Computer Science and Engineering

University of Michigan
baveja@umich.edu

Richard L. Lewis
Department of Psychology

University of Michigan
rickl@umich.edu

Abstract

Planning agents often lack the computational resources needed
to build full planning trees for their environments. Agent de-
signers commonly overcome this finite-horizon approximation
by applying an evaluation function at the leaf-states of the
planning tree. Recent work has proposed an alternative ap-
proach for overcoming computational constraints on agent
design: modify the reward function. In this work, we compare
this reward design approach to the common leaf-evaluation
heuristic approach for improving planning agents. We show
that in many agents, the reward design approach strictly sub-
sumes the leaf-evaluation approach, i.e., there exists a reward
function for every leaf-evaluation heuristic that leads to equiv-
alent behavior, but the converse is not true. We demonstrate
that this generality leads to improved performance when an
agent makes approximations in addition to the finite-horizon
approximation. As part of our contribution, we extend PGRD,
an online reward design algorithm, to develop reward design
algorithms for Sparse Sampling and UCT, two algorithms
capable of planning in large state spaces.

Introduction

In this work, we consider model-based planning agents which
do not have sufficient computational resources (time, mem-
ory, or both) to build full planning trees. Thus, estimates of
the expected sum of rewards, or return, from the current state
will only be approximate. Agent designers often build in
heuristics for at least partially overcoming these limitations.
For example, in the case of limited planning depth, the Leaf-
Evaluation Heuristic (LEH) (Shannon 1950) adds a heuristic
value to the estimated return at the leaf states of the planning
tree. If the expected return obtainable after the leaf state were
known, then it could be used as the leaf-state return estimate
to compensate for the missing subtree below the leaf. As this
is not known in practice, some method must be employed to
estimate the leaf-state values.

In recent work, Sorg et al. (2010b) proposed an alternative
approach to mitigating computational limitations in planning
agents: modify the agent’s reward function. They defined the
Optimal Reward Problem (ORP)—choose the reward func-
tion for a given agent architecture that maximizes the reward

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

received by the agent designer. An optimal reward func-
tion can compensate for general computational limitations on
agents, including limits on the depth of a planning tree. How-
ever, the optimal reward approach has not yet been compared
to the more-common leaf-evaluation heuristic approach.

One method for modifying reward functions, Potential-
Based Reward Shaping (PBRS) (Ng, Russell, and Harada
1999; Asmuth, Littman, and Zinkov 2008), modifies the
agent’s reward function in a particular constrained form. An
optimal policy under a potential-based reward function is
guaranteed to be optimal under the original reward function.
However, a limited agent may exhibit different behavior when
using a potential-based reward than when using the original.

In this work, we compare the ORP approach—which does
not restrict its class of reward functions—to the LEH and
PBRS approaches. The central claim of this work is that there
exist environments and agents in which the ORP approach
outperforms both the LEH and PBRS approaches. In fact, we
show that the LEH approach and the PBRS approach are ef-
fectively equivalent: for every leaf-evaluation heuristic, there
exists a potential-based reward which produces equivalent be-
havior, and vice versa. Furthermore, we show that the effects
achievable through reward function design subsume those
of the set of leaf-evaluation heuristics (and potential-based
rewards). The key aspect of this generality is path depen-
dence. Reward function design is able to modify the agent’s
return function in a way that depends on entire state-action
trajectories, while a leaf-evaluation heuristic only applies to
states at the ends of trajectories. As a result, in agents which
make approximations in shallow portions of the tree, optimal
reward functions can compensate for errors that the LEH and
PBRS approaches cannot compensate for.

Of course, the nature of this benefit depends heavily on the
planning algorithm chosen and we cannot consider all plan-
ning algorithms in this paper. We focus on UCT (Kocsis and
Szepesvári 2006), a state-of-the art planning algorithm that
has been used in many applications (Gelly and Silver 2008;
Finnsson and Björnsson 2008). UCT makes several approxi-
mations that can be mitigated through solving the ORP: (1) it
cannot generate unbounded-length trajectories, causing the
finite-horizon bias; (2) it uses Monte-Carlo sampling to ap-
proximate return values, resulting in sampling variance; and
(3) its early sample trajectories evaluate a suboptimal policy,
a problem we refer to as search control bias.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

465

To analyze the differing abilities of leaf-evaluation func-
tions and optimal rewards to compensate for these approxi-
mations, we additionally consider two planning algorithms
which share some of these approximations: Full Finite-
Horizon Planning (FFHP), which only suffers from the finite-
horizon, and Sparse Sampling (Kearns, Mansour, and Ng
1999), which makes the finite-horizon and sampling approxi-
mations. We extend an online reward function optimization
method developed for the FFHP algorithm, PGRD (Sorg,
Singh, and Lewis 2010a), to develop reward function opti-
mization methods for Sparse Sampling and UCT, enabling
reward functions to be optimized in agents whose computa-
tional complexity is independent of the size of the state space.
We use these methods to demonstrate our claims.

Optimal Heuristics

Formally, we consider discrete-time environments M with
a finite number of states s ∈ S and actions a ∈ A.
The dynamics are governed by a state-transition function
P (s′|s, a) that defines a distribution over next state s′ con-
ditioned on current state s and action a. The agent G has
a reward function, R(s, a, s′) that maps state s, action a,
and next-state s′ tuples to scalar values and an accumula-
tion function U which defines how rewards are summed
over time. Together they define an agent’s return func-
tion UR. For example, the discounted return function is
UR(h) = limH→∞

∑H
i=0 γ

iR(si, ai, si+1) for some state-
action trajectory h = s0, a0, s1, a1, ...s∞ and discount factor
γ ∈ [0, 1). A policy μ maps state s to distributions over
actions μ(a|s). A value function V μ is the expected return
of following the policy μ given that the agent starts in a
particular state: V μ(s) = E[UR(h)|μ, s0 = s]. An opti-
mal policy μ∗ maximizes expected return from the current
state, i.e. μ∗ = argmaxμ V

μ(s). The optimal value func-
tion is the value function of an optimal policy V ∗ = V μ∗

.
Local planning agents repeatedly estimate these quantities
from a current state by building planning trees using a given
or learned model P̂ (s′|s, a), and selecting the action corre-
sponding to a locally optimal policy.

Optimal Reward Functions

In the standard view of Reinforcement Learning (RL), the
agent uses the same reward function as the designer. Optimal
reward theory allows for the agent’s reward function to be
specified separately from the agent designer’s. The designer’s
goals are specified via an objective reward function RO and
an accumulation function U which defines how they are
summed over time. Together, they define the objective return
function URO

. The designer’s goal is to design an agent
whose behavior maximizes the expected objective return.

The optimal reward function R∗ is defined by the optimal
reward problem:

R∗ = argmax
R∈R

E [URO
(h)|G(UR),M] ,

where the distribution over h is the result of agent G planning
with return function UR acting in environment M . The setR
is the set of all mappings from state, action, next-state tuple

to real number: S × A × S → R . In words, an optimal
reward function leads to an agent with the greatest expected
objective return for the designer.

Optimal Leaf-Evaluation Heuristics

Let h[i, j] = si, ai, si+1, ai+1, ..., sj denote the subsequence
of trajectory h from time i to j. Given some finite horizon
H , we define the truncated return function URO

(h[0, H]) =∑H−1
i=0 γiRO(si, ai, si+1). The truncated return ignores re-

wards after the horizon H .
The leaf-evaluation heuristic compensates for this finite-

horizon bias in an agent’s return estimates. A leaf-evaluation
heuristic is a function L(s) defined over the state space s ∈ S.
When planning with truncated trajectories, an agent adds
L to its return estimates as a function of the final state
in the trajectory. Define the leaf-evaluation return to be
UL
RO

(h[0, H]) = URO
(h[0, H]) + γHL(sH).

V∗ LEH. The value function of an optimal policy, V ∗, is
the traditional notion of the ideal leaf-evaluation heuristic
(hereafter called the V ∗-leaf-evaluation heuristic). This cor-
responds to setting L(s) = V ∗(s) ∀s. Using this function
completely corrects for the finite-horizon bias when comput-
ing full expectations over the truncated return. We use the
V ∗-LEH as a baseline in our empirical work.

Optimal LEH. However, if the agent cannot exactly com-
pute the full expectation over the truncated trajectories, the
V ∗-leaf-evaluation heuristic may not be optimal. This can
happen if the agent makes approximations in addition to the
finite-horizon approximation, as is usual in planning meth-
ods applicable to real domains. An optimal LEH is defined
similarly to an optimal reward function:

L∗ = argmax
L∈L

E
[
URO

(h)
∣∣G(UL

RO
),M

]
,

where the distribution over h is the result of agent G planning
with leaf-evaluation return function UL

RO
acting in environ-

ment M , and L is the set of all mappings from S to R. An
optimal LEH leads to an agent with the best expected objec-
tive return for the designer. Below, we present a method to
find approximately optimal leaf-evaluation heuristics.

Reward Design Subsumes Leaf-Heuristics

In this section, we prove that for any leaf-evaluation heuristic,
there exists a reward function that produces identical behavior.
Our analysis is most closely related to the work of Asmuth
et al. (2008) on potential-based reward shaping in model-
based agents. Specifically, applying an evaluation function
at the leaf is equivalent to adding a potential-based shaping
function to the reward, minus a constant offset depending on
start state.

Define a potential-based reward to be RL(s, a, s
′) =

RO(s, a, s
′)−L(s)+γL(s′) for some function of state L(s).

Then, the following theorem holds:
Lemma 1. For any leaf-evaluation heuristic L, there ex-
ists an effectively equivalent potential-based reward RL and
vice versa. Specifically, for any history h and for all finite
horizons H , the leaf-evaluation return UL

RO
(h[0, H]) and

the potential-based return URL
(h[0, H]) differ by a constant

dependent only on start state.

466

Proof. The additive reward bonus creates a telescoping sum:

URL
(h[0, H])

=
H−1∑
t=0

γtRO(st, at, st+1) +
H∑
t=1

γtL(st)−
H−1∑
t=0

γtL(st)

= URO
(h[0, H]) + γHL(sH)− L(s0)

= UL
RO

(h[0, H])− L(s0)

The constant offset L(s0) will not affect an agent’s pref-
erence between outcomes, but this does not guarantee that a
particular approximate planning algorithm will return identi-
cal policies when planning with URL

versus planning with
UL
RO

. However, for the algorithms used in this paper, it can
easily be shown that planning with URL

and UL
RO

do indeed
lead to identical behavior.

Lemma 1 shows that the set of reward functions effectively
subsumes the set of leaf-evaluation functions, in the sense
that they are capable of specifying at least as broad a set
of preference orderings over policies. In Theorem 1 below,
we prove that the relationship is strict; there exist reward
functions that express preference orderings over trajectories
which cannot be expressed via a leaf-evaluation heuristic.

Theorem 1. The set of potential-based return functions is a
strict subset of the set of reward-based return functions.

Proof. Lemma 1 proves non-strict subsumption. Here,
we prove strictness. Consider two trajectories: h1 =
(s1, a1, s2, a2, s3) and h2 = (s1, a1, s4, a2, s3), where the
subscripts here indicate identity, not time. Let URO

(h1) =
URO

(h2) = 0. Then, URL
(h1) = URL

(h2) = −L(s1) +
γ2L(s3) regardless of L. However, in general, UR(h1) =
R(s1, a1, s2)+γR(s2, a2, s3) �= UR(h2) = R(s1, a1, s4)+
γR(s4, a2, s3).

The proof highlights the difference between general re-
wards and both leaf-evaluation heuristics and potential-based
rewards. General rewards allow for path dependent modifi-
cations of objective return—they depend on the entire state-
action sequence in the trajectory—while leaf-evaluation func-
tions and potential-based rewards only modify the return as a
function of the leaf state.

Optimal Rewards Outperform Leaf-Values

In this section, we discuss how the extra generality afforded
by reward functions can be beneficial in UCT by first dis-
cussing two other planning algorithms: Full Finite-Horizon
Planning and Sparse Sampling. This progression will enable
us to isolate different approximations made by UCT. For each
approximation, we discuss whether the generality of reward
design can lead to better performance over leaf-evaluation
heuristics.

Full Finite-Horizon Planning. FFHP is a simple example
of a computationally limited planning agent. Each time step,
FFHP computes a finite-horizon approximation of the full
planning problem. Specifically, Qμ

H is the expected truncated
return of policy μ given that the agent follows μ after taking
action a from state s: Qμ

H(s, a) = E[UR(h[0, H])|μ, s0 =

s, a0 = a]. FFHP computes the optimal action-value function
under the truncated return Q∗H(s, a) = maxμ Q

μ
H(s, a) ∀a ∈

A and acts greedily with respect to Q∗H(s, a). FFHP does this
by building a finite-horizon, balanced planning tree rooted
at the current state. For each state-action node, the tree
contains a child node for all possible successor states and
an entry describing the probability of reaching each state
under the model. FFHP computes the true expectation of the
truncated return; therefore, as discussed above, the V ∗-leaf-
evaluation heuristic perfectly corrects for the approximation.
Thus, the optimal reward function R∗ will do no better than
the optimal leaf-evaluation heuristic L∗ (or potential-based
reward) in FFHP. In other words optimal reward functions do
not outperform leaf-evaluation heuristics on an agent which
suffers only from the finite-horizon bias.

Sparse Sampling. FFHP is intractable in practice because
the number of next states from each node can be large or
infinite and because the size of the tree is exponential in the
horizon. To overcome the first concern, Kearns, Mansour, and
Ng (1999) proposed Sparse Sampling, which approximates
a FFHP planning tree by sampling the next-state dynamics.
It builds a balanced, approximate FFHP planning tree by
sampling C next-states for each state-action node.

The sample tree built by Sparse Sampling causes two types
of errors not present in FFHP when estimating the action-
value function at the root state: (1) the iterated sampling
of C next states in building the tree introduces a variance
into the action-value estimates; and (2) in the backing up
of values from the leaves of the tree to the root, the max
operation over noisy estimates introduces a positive bias
into the action-value estimates. Crucially these errors occur
throughout the tree, and indeed increasing depth compounds
both sources of errors. Thus, leaf-evaluation functions, which
are functions of the leaf state only, are less able to mitigate
these errors relative to designed reward functions, which
can have effects at all depths in the tree. To appreciate this
difference, consider that the V ∗-leaf-evaluation heuristic, in
particular, is entirely about accounting for the expected value
of the missing subtree below the leaf state. While effective
at mitigating the finite-horizon bias common to FFHP and
Sparse Sampling, it has little or no correlation to the factors
inducing the additional errors in the tree above the leaf state.
Our empirical results below confirm that not only can optimal
rewards be more effective than the V ∗-LEH, but they can
also be more effective than optimal leaf-evaluations heuristics
(L∗)—that is, even when allowing leaf evaluation heuristics
to mitigate errors introduced by the sampling approximations
to the greatest extent possible.

UCT. Even Sparse Sampling, however, is infeasible on
practical problems, because the expense of building the tree
is exponential in the horizon. UCT (Kocsis and Szepesvári
2006) does not build a balanced tree. Instead, it sam-
ples N , H-length trajectories from the current state, con-
structing an imbalanced tree from the sampled trajectories.
This results in the challenge of choosing sample actions, a
problem known as search control. UCT chooses actions
using statistics from previous sample trajectories. It esti-
mates the value of a state, action, depth tuple (s, a, d) as
the average return obtained after experiencing the tuple:

467

Q(s, a, d) =
∑N

i=1
Ii(s,a,d)
n(s,a,d)

∑H−1
k=d γk−dR(sik, a

i
k, s

i
k+1; θ),

where n(s, a, d) is the number of times tuple (s, a, d) has
been sampled, Ii(s, a, d) is 1 if tuple (s, a, d) is in trajec-
tory i and 0 otherwise, sik is the kth state in the ith trajec-
tory, and aik is the kth action in the ith trajectory. UCT se-
lects search control actions using Q and an additional bonus
which encourages balanced sampling. Specifically, the agent

chooses a∗ = argmaxa Q(s, a, d) + c
√

logn(s,d)
n(s,a,d) , where

n(s, d) =
∑

a n(s, a, d). With an appropriate choice of c,
UCT’s Q estimates at the root converge to FFHP’s Q esti-
mates as the number of trajectories N increases.

For finite N , UCT shares the finite depth and sample vari-
ance errors from Sparse Sampling, but it also introduces
another source of error in the estimation of action values at
the root. During initial trajectory generation, the algorithm
incorporates sub-optimal actions into its evaluation of the
optimal policy, producing an error in the value estimates that
we refer to as the search control bias. This error in UCT oc-
curs throughout the trajectories. Thus, we expect that optimal
reward functions, which can modify the calculation of return
based on all the state-action pairs along a trajectory, will be
better at mitigating this error relative to leaf evaluation heuris-
tics, which can modify the calculation of return based only
on the leaf state of the trajectory. Our experimental results
below confirm this intuition.

Reward Design in Sampling Planners

The agents we present in our experiments plan using the
algorithms above, but execute actions according to a soft-
max distribution at the root of the tree. Specifically,
μ(a|s) def

= eτQ(s,a)
∑

b eτQ(s,b) , where τ is a temperature parameter
controlling how deterministically the agent selects the action
with the highest score and Q(s, a) is the action-value com-
puted by the planning tree rooted at state s. Using stochastic
policies allows us to compute gradients. Also, from this
section onward, we assume that the reward function is param-
eterized R(s, a, s′; θ) via some set of parameters θ ∈ Θ.

Policy Gradient for Reward Design (PGRD) (Sorg, Singh,
and Lewis 2010a) views these reward function parameters
as policy parameters of the above stochastic policy, for the
special case where Q in the soft-max above is calculated
via FFHP. It optimizes the parameters using the standard
policy gradient algorithm OLPOMDP (Bartlett and Bax-
ter 2000). At each time step, OLPOMDP requires (1) the
agent’s distribution over actions in the current state μ(a|st),
from which it samples an action at; (2) the gradient of
the agent’s policy with respect to the policy parameters
∇θμ(at|st) (3) the resulting next state, sampled from the
environment; and (4) the resulting designer’s objective re-
ward. It uses these to optimize the agent’s policy param-
eters θ while following the agent’s policy μ. In PGRD,
the agent’s policy is computed via FFHP and the parame-
ters are the reward function parameters. Because the policy
is a soft-max on Q, the gradient is given by ∇θμ(a|s) =
τ ·μ(a|s)[∇θQ(s, a) −∑

b∈A μ(b|s)∇θQ(s, b)]. Although
the Q function in FFHP is not differentiable everywhere (due
to the max operation), the subgradient is computable and

resembles planning itself (Neu and Szepesvári 2007). Its use
in PGRD has been demonstrated to work well in practice for
FFHP (Sorg, Singh, and Lewis 2010a). In order to extend
PGRD to work for Sparse Sampling and UCT, we must de-
velop similar subgradient computations for their planning
algorithms. We refer to the resulting reward design algo-
rithms as PGRD-SS and PGRD-UCT, respectively. In this
section, we present these methods.

Reward Improvement in Sparse Sampling. Unlike in
FFHP, there are two sources of stochasticity in Sparse Sam-
pling. In addition to the stochasticity created by the soft-
max action selection, the tree sampling creates stochastic-
ity in the computed Q values. We denote the distribution
over Q-values p(Q|s; θ). Combining these two sources of
randomness produces the full distribution over next action:
μ(a|s; θ) = ∑

Q μ(a|s,Q)p(Q|s; θ). We do not have an an-
alytical formula which computes p(Q|s; θ). Estimating it is
prohibitively expensive, requiring many sample trees.

This problem can be solved by noting that the distribution
over planning trees is independent of the reward parameters.
Thus, the Sparse Sampling algorithm can be viewed as be-
ing composed of two stages. First, the algorithm samples
a planning tree, then the reward function is applied to that
tree to compute the Q-values. Let T denote a sampled plan-
ning tree. The stochastic policy can now be broken up as:
μ(a|s; θ) = ∑

Q μ(a|Q)
∑

T p(Q|s, T ; θ)p(T |s).
We simplify this equation in two steps. First, note that the

Q-function is deterministic given a fixed tree and return func-
tion. Second, note that the tree distribution, though dependent
on root state, is independent of the reward distribution. In
other words, the distribution over trees can be handled as
if it were a property of the environment. Viewed this way,
the agent acts according to μ(a|〈st, Tt〉; θt), where 〈st, Tt〉
is the joint environment–planning-tree state. The agent no
longer needs to marginalize over planning trees; however, this
adds variance to the stochastic gradient ascent by effectively
adding variance to the environment.

PGRD-SS acts according to Sparse Sampling and com-
putes the gradient using this simplification. It amounts to
applying the FFHP subgradient computation to the sample
tree. It can be shown that using this gradient computation
results in a convergent method, as we state in the following
theorem (proof omitted for lack of space). Generally, it will
converge to a local optimum in the parameters.

Theorem 2. PGRD-SS converges to a stable equilibrium, as
in Theorem 3 in Sorg et al. (2010a).

Reward Improvement in UCT. Like Sparse Sampling,
PGRD-UCT has two sources of stochasticity when selecting
actions. Unlike Sparse Sampling, however, the search control
decisions depend on the reward function. Our approximate
solution ignores the dependence on the reward function in the
tree generation. This approximation is motivated by the proof
of convergence of UCT. With an unlimited number of sample
trajectories, the Q estimates converge to the FFHP estimates;
in the limit, the search-control effects are negligible.

After this assumption is made, we can use the same
trick used in Sparse Sampling—assume that the remain-

468

ing stochasticity is conditioned solely on the environment.
The resulting gradient computation is ∇θQ(s, a, 0) =∑N

i=1
Ii(s,a,0)
n(s,a,0)

∑H−1
k=0 γk∇θR(sik, a

i
k, s

i
k+1; θ). Notice that

the computation of the gradient resembles the computation of
the Q estimates. These two computations can be performed
simultaneously, as the trajectories are generated.

Experiments

In this section, we empirically validate our claim that opti-
mal rewards outperform optimal leaf-evaluation heuristics
(and therefore potential-based rewards) in some agents. The
experiments, along with the observations above, support our
claim that the optimal reward function R∗ is often better than
the optimal leaf-evaluation heuristic L∗. They also support
the conclusion that the optimal leaf-evaluation heuristic L∗
is sometimes better than the V ∗-leaf-evaluation heuristic.

Reward Spaces. Recall that using a potential-based re-
ward is equivalent to using a leaf-evaluation heuristic. Thus,
by optimizing both the potential-based rewards and more
general rewards, the PGRD algorithms can be used to com-
pare approximately optimal leaf-evaluation heuristics and
approximately optimal reward functions. The general reward
space we use in our experiments, R(s, a, s′; θ), is a look-
up table over (s, a, s′). The potential-based reward space is
RL(s, a, s

′; θ) = RO(s, a, s
′)− L(s; θ) + γL(s′; θ), where

L(s; θ) is a look-up table over s.
Marble Maze Environment. We empirically validate our

claims in the Marble Maze environment in Figure 1(a), a grid
world based on a commonly-used set of noisy dynamics (As-
muth, Littman, and Zinkov 2008). The agent starts in the
location marked S. The designer receives a reward of 1 when
the agent reaches the goal state, marked G, after which the
agent is transported back to the start. Otherwise, the designer
receives 0 reward. If the agent moves into a pit (gray square),
it is transported back to the start after 1 time step. The agent
has movement actions corresponding to the four cardinal di-
rections. Each action has a 0.2 probability of failing; if the
action fails, the agent instead moves in a random direction
perpendicular to the intended direction, each with probability
0.5. In each trial, an agent is placed in a different instanti-
ation of the Marble Maze environment, sampled uniformly
randomly from all solvable 5x5 Marble Maze worlds with 8
pits and the start and goal locations in opposite corners.

The properties of Marble Maze highlight the deficiencies
in Sparse Sampling and UCT. When a sample trajectory falls
into a pit, it does great damage to the value of a trajectory.
This creates a large return variance and a large search control
bias when the agent’s search control policy is poor.

Experiment Methodology. For each planning algorithm,
we plot PGRD learning curves for each reward space using
various planning depths. For each reward-space and for each
planning-depth, we optimized PGRD’s learning rate parame-
ter to a constant from a discrete set on a logarithmic scale in
the range [10−6, 10−3]. Each learning curve uses the learning
rate which yields the maximum expected cumulative objec-
tive reward. We used PGRD parameters β = 0.9 and λ = 0
and the soft-max temperature τ = 100. The reward parame-
ters for both general rewards and potential-based rewards are

initialized such that the functions are equal to the objective
reward RO. The agents learned the transition models online
using empirical counts: P̂ (s′|s, a) = n(s,a,s′)

n(s,a) , where n(·) is
the number of times the agent has experienced each tuple.

We used an additional baseline algorithm for learning
potential-based reward functions, SARSA(λ), for compar-
ison. The SARSA(λ) agent learns a Q-function from the
objective rewards and uses the maximum action-value in
each state as the L(s) value in the potential-based reward
definition. The agent takes a random action with probability
ε and the planning algorithm’s action otherwise, planning
with the learned potential-based reward function. We opti-
mized over ε in the set {0, 0.01, 0.1, 0.2}. We optimized over
learning rates from discrete values in the range [0.01, 0.2]
and used λ = 0.95. As opposed to the PGRD agent with
potential-based rewards, which attempts to find the equivalent
of the L∗-LEH, the SARSA(λ) agent learns a value function,
and uses this as the LEH. In other words, the SARSA(λ)
agent attempts to find the V ∗-LEH. Finally, we also tested
the V ∗-leaf-evaluation heuristic, found via value iteration.

Sparse Sampling Experiment. In this section, we show
that rewards are better than leaf-evaluation heuristics at im-
proving performance in agents with sampling approximation
errors. Figure 1(b) presents learning curves for PGRD-SS
agents with a fixed sample count of C=2. We varied over
planning depths 1 through 4, though we show only depths 1
and 3 for readability. The leftmost points on the curve repre-
sent agents which use the objective reward. The remainder
of the curve plots the objective reward per step obtained by
PGRD-SS during optimization, averaged over the previous
104 time steps. At the final points in the curve we plot 95%
confidence intervals. Each curve is an average of 100 trials.

The general reward functions (top 2 curves) outper-
form leaf-evaluation heuristics at each depth, both for
PGRD-optimized evaluation heuristics (bottom 2 curves) and
SARSA-optimized evaluation heuristics (middle 2 curves).
Although it might be difficult to see given the small graph
size, the leftmost points on the graph demonstrate that increas-
ing the planning depth improves the agent’s performance for
agents that use only the objective reward RO. This is because
increasing the planning depth reduces the finite-horizon ap-
proximation bias. Also as predicted, increasing the planning
depth hinders the leaf-value heuristic’s ability to compensate
for the finite-horizon approximation. Thus, there is a cross-
over effect. As a leaf-evaluation heuristic becomes more
accurate, the optimal planning depth decreases. This can be
seen by the fact that the Depth-1 V ∗-LEH agent outperforms
the Depth-3 V ∗-LEH agent. In contrast, the ability of optimal
reward functions to induce path-dependent modifications of
the objective return allows the reward-design agents to con-
verge to near-optimal behavior (optimal behavior not shown)
at each planning depth.

UCT Experiment. In this section, we demonstrate that op-
timal rewards are better than leaf-evaluation heuristics at
mitigating the search-control bias. UCT has both the search
control bias and sampling approximation errors (in addition
to the finite-horizon bias). To separate the confounding sam-

469

S

G

Sample
Marble Maze

a)
0 2 4 6 8 10 12

x 10
4

0

0.02

0.04

0.06

Time Steps

M
ea

n
O

bj
ec

tiv
e

Re
w

ar
d

pe
r S

te
p

V*
 H

eu
ris

tic

Depth 1
Depth 3

 Rewards (PGRD)
Leaf-Values (PGRD)

Leaf-Values (SARSA)

b)

Sparse Sampling Experiment

0 2 4 6

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

Time Steps

M
ea

n
O

bj
ec

tiv
e

Re
w

ar
d

pe
r S

te
p

V*

c)

UCT Experiment

Depth 5
Depth 15

 Rewards (PGRD)
Leaf-Values (PGRD)

Leaf-Values (SARSA)

Figure 1: Marble Maze Experiment. Solid-lines/filled markers indicate general reward functions. Dashed or Dotted-lines/hollow
markers indicate leaf-evaluation functions. Inset on right: performance of V ∗-leaf-evaluation functions, indicated by marker.

pling error explanation from the search-control bias expla-
nation for the reward’s improvement over leaf-evaluation
heuristics, we perform this experiment in a deterministic
version of the Marble Maze—actions have a 0 probability
of failing. We tested UCT agents with planning horizons
1 through 15, N = 100, and c = 1. All other experiment
conditions were identical to the Sparse Sampling experiment.

Figure 1(c) presents the results for the UCT agents with
depths 5 and 15. Each learning curve plots the average of 50
trials. Predictably, increasing the planning depth improves
performance for agents which use the objective reward, as
shown by the fact that the square marker is above the diamond
marker at 0 time steps. Also as predicted, the ability of a leaf-
evaluation heuristic to improve performance is reduced as the
tree is deepened, as shown by the superior performance of
the Depth-5 Leaf-Value(PGRD) agent (dashed line, diamond
markers) compared to the Depth-15 Leaf-Value(PGRD) agent
(dashed line, square markers) and the similar trend observed
in the V ∗-leaf-evaluation heuristic agents (inset on right).

In contrast, general reward functions are more resilient to
this bias at large planning depths. The learned rewards (top 2
curves) converge to near-optimal behavior at all tested depths.
Also, observe that the Depth-5 Leaf-Value(PGRD) agent out-
performs the corresponding Depth-5 V ∗-LEH agent shown in
the inset, verifying our claim that the optimal LEH, L∗, can
outperform the V ∗-LEH when the agent is unable to exactly
evaluate the expected return of the truncated trajectory.

Discussion
Although additional heuristics exist for overcoming some of
the agent limitations presented here (Gelly and Silver 2008),
solving the optimal reward problem is a general, principled
approach which applies across agent algorithms. We have
demonstrated that due to the added expressiveness of path
dependence, the optimal reward function approach is better
than the leaf-evaluation heuristic approach and the potential-
based reward shaping approach at improving the performance
of planning agents which make approximations in shallow
portions of the planning tree. Specifically, we showed that
reward design is preferred in agents affected by sampling
errors and search-control bias. We presented convergent and

approximate online reward optimization methods for Sparse
Sampling and UCT, respectively, and used these methods
to learn approximately optimal reward functions and leaf-
evaluation heuristics, improving the performance of UCT, a
state-of-the-art planning agent.

Acknowledgments: This work was supported by the Air
Force Office of Scientific Research under grant FA9550-08-
1-0418 as well as by NSF grant IIS 0905146. Any opinions,
findings, conclusions, or recommendations expressed here
are those of the authors and do not necessarily reflect the
views of the sponsors.

References
Asmuth, J.; Littman, M. L.; and Zinkov, R. 2008. Potential-based
shaping in model-based reinforcement learning. In Proceedings of
the 23rd AAAI, 604–609. AAAI Press.
Bartlett, P. L., and Baxter, J. 2000. Stochastic optimization of
controlled partially observable Markov decision processes. In Pro-
ceedings of the 39th IEEE Conference on Decision and Control.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based approach
to general game playing. In Proceedings of the 23rd AAAI, 259–264.
Gelly, S., and Silver, D. 2008. Achieving master level play in 9 x 9
computer Go. Proceedings of the 23rd AAAI.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 1999. A sparse sam-
pling algorithm for near-optimal planning in large Markov decision
processes. In Proceedings of the 16th IJCAI, 1324–1331.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In Proceedings of the 17th ECML, 282–293.
Neu, G., and Szepesvári, C. 2007. Apprenticeship learning using in-
verse reinforcement learning and gradient methods. In Proceedings
of the 23rd UAI, 295–302.
Ng, A. Y.; Russell, S. J.; and Harada, D. 1999. Policy invariance
under reward transformations: theory and application to reward
shaping. In Proceedings of the 16th ICML, 278–287.
Shannon, C. E. 1950. Programming a computer for playing chess.
In Philosophical Magazine Vol. 41, 256–275.
Sorg, J.; Singh, S.; and Lewis, R. L. 2010a. Gradient methods for
internal reward optimization. In Advances in NIPS 23.
Sorg, J.; Singh, S.; and Lewis, R. L. 2010b. Internal rewards
mitigate agent boundedness. In Proceedings of the 27th ICML.

470

