
Multi-Level Cluster Indicator
Decompositions of Matrices and Tensors

Dijun Luo, Chris Ding, Heng Huang
The University of Texas at Arlington, Arlington, Texas, USA

dijun.luo@gmail.com, chqding@uta.edu, heng@uta.edu

Abstract

A main challenging problem for many machine learning and
data mining applications is that the amount of data and fea-
tures are very large, so that low-rank approximations of orig-
inal data are often required for efficient computation. We
propose new multi-level clustering based low-rank matrix
approximations which are comparable and even more com-
pact than Singular Value Decomposition (SVD). We utilize
the cluster indicators of data clustering results to form the
subspaces, hence our decomposition results are more inter-
pretable. We further generalize our clustering based matrix
decompositions to tensor decompositions that are useful in
high-order data analysis. We also provide an upper bound for
the approximation error of our tensor decomposition algo-
rithm. In all experimental results, our methods significantly
outperform traditional decomposition methods such as SVD
and high-order SVD.

Introduction

Matrix/tensor decomposition approaches serve as both data
compression and unsupervised learning techniques. They
have successfully applied in broad applications in artificial
intelligence/machine learning domains, including document
analysis (Deerwester et al. 1990), bioinformatics (Homay-
ouni et al. 2005), computer vision (Lathauwer, Moor, and
Vandewalle 2000; Ding, Huang, and Luo 2008; Ye 2004), in-
ferencing under uncertainty (Wood and Griffiths 2006) and
approximate reasoning (Smets 2002) etc. Many other appli-
cations were reviewed by Acar and Yener (2008), and Kolda
and Bader (2008).

In matrix applications, Singular Value Decomposition
(SVD) is the best known and most widely used one, be-
cause it provides the best low rank approximation. And in
higher order tensors, multi-linear analysis approaches are
developed by investigating the projection among multiple
factor spaces, e.g. High-Order SVD (HOSVD) (Lathauwer,
Moor, and Vandewalle 2000; Vasilescu and Terzopoulos
2002) which are popularly used in data mining areas.

As a standard unsupervised learning approach, however,
traditional matrix and tensor decomposition approaches of-
ten generates results which are not interpretable and further
analysis processes are needed. In this paper, one of our major

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

contributions is to propose a decomposition approach which
directly outputs interpretable results using clustering based
low-rank matrix/tensor approximations. This decomposition
uses cluster indicators which has a nice property that they
can be compacted into a single vector. We use the indica-
tor space as the subspace bases and project the data onto the
spaces. The immediate advantage of this approach is that it
costs much less storage. Another advantage is that the ma-
trix/tensor reconstruction process becomes extremely effi-
cient, comparing with tradition decompositions.

We further introduce the multi-scale versions of our
method which generate much lower approximation error.
Our Cluster Indicator Decomposition (CID) and Multi-
Level Cluster Indicator Decomposition (MLCID) are com-
pact (comparable and even more compact than SVD. Figure
1 shows the examples to visually compare the original im-
ages, SVD reconstruction results, and MLCID reconstruc-
tion results. The results of our method are obviously bet-
ter than the results of SVD. The details of experimental set
up can be found in Experiments section. We also generalize
our MLCID methods to tensor decompositions that performs
clustering on each dimension and uses clustering indicators
to consist of subspaces of tensor decomposition.

Another contribution in the paper is the theoretical anal-
ysis of the proposed approach, which provides a tight upper
bound of the decompositions. Empirical results show that
our MLCID and tensor MLCID decompositions outperform
state-of-the-art methods such as SVD and HOSVD decom-
positions in data sets with clustering structure.

Related Work

We first introduce two traditional matrix and tensor decom-
position approaches SVD and HOSVD. The uninterpretable
deficiency of decomposition results of these methods intu-
its us to propose the new matrix and tensor decomposition
methods.

SVD

SVD (Singular Value Decomposition) factorizes a given ma-
trix in the following form,

X =
L∑

i=1

σiuiv
T
i , (1)

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

423

M
L

C
ID

S
V

D
O

ri
g

in
al

Figure 1: Color image reconstruction results of SVD and MLCID on four randomly selected images from WANG’s image
database (Li and Wang 2003).

where X is the input matrix and L is the rank of the decom-
position. In SVD, ui are orthonormal: uT

i uj = 1 if i = j, 0
otherwise, as well as vi.

It is well known that the solution of the following opti-
mization problem is given by SVD:

min
U,V

JSV D = ||X − UV T ||2

s.t. UTU = I, V TV = I, (2)

which means SVD is the best rank-L factorization of any
matrix. This is true for any matrix including random matrix.

What would happen in structured data? We show that in
well structured data, we are able to factorize a matrix into
several low-ranked matrices, some of which become very
sparse (we need much less storage to handle sparse matri-
ces). This phenomenon offers a new view of matrix decom-
position: SVD might not be the Bible, we might beat SVD.

HOSVD

Some of the data are organized in high order tensor form
such as video data. High Order SVD (HOSVD) was pre-
sented (Lathauwer, Moor, and Vandewalle 2000) to factorize
such data in high order tensors.

Given a 3D tensor X = {X1, · · · , Xn3
} where each Xi

is a 2D matrix of size n1 × n2, the standard HOSVD factor-
izations is to solve:

min
U,V,W,S

JHOSVD = ||X − U ⊗1 V ⊗2 W ⊗3 S||2

s.t. UTU = I, V TV = I, WTW = I (3)

where U, V,W are 2D matrices (the sizes are n1× k1, n2×
k2, and n3 × k3, respectively), S is a 3D tensor: S ∈
�k1×k2×k3 , and ⊗n is the n-th mode Tucker production.
More explicitly,

(U ⊗1 V ⊗2 W ⊗3 S)ijk =
∑
i′j′k′

Uii′Vjj′Wkk′Si′j′k′ .

X F
S

GT

Figure 2: Demonstration of CID decomposition.

One of the difficulties of HOSVD is that the resulting sub-
spaces U, V, and W are not interpretable. The columns are
mixed sign and no immediate conclusions can be made. In
practical applications, more processes are required in any
further analysis, see (Ding, Huang, and Luo 2008) for ex-
ample. This is similar to SVD.

Multi-Level Cluster Indicator Decomposition

We first introduce a Cluster Indicator Decomposition (CID)
(Luo, Ding, and Heng 2011) for two dimensional matrix. Af-
ter that, we describe the recursive CID and multi-level CID
decompositions.

Cluster Indicator Decomposition

For any input matrix X , we seek the decomposition

X ∼= FSGT . (4)

Here elements of X,S could have mixed signs. We restrict
F,G to strictly nonnegative.

The factors F, S,G are obtained from the optimization

min
F≥0,G≥0,S

‖X − FSGT‖2,

s.t. FTF = I, GTG = I, (5)

where the size of matrices are: Fm×k1
, Sk1×k2

, Gn×k2
.

It has been shown (Ding et al. 2006) that the above model
provides a model for simultaneous clustering of the rows and

424

columns of X; F,G play the roles of the cluster membership
indicators: F for row clustering and G for column cluster-
ing.

In this paper, we propose to use the clustering model
(based on Eq. (5)) to provide a generic low rank decomposi-
tion of matrices, in a similar way as SVD does. As one of the
major contributions in this paper, we explicitly require that
F,G be exact cluster indicators, i.e. each row of F and G
has only one non-zero element (which is “1”). This require-
ment leads to the following advantages:
(1) The vectors F,G have clear meaning: they are exact clus-
ter indicators.
(2) F and G is compact.
(3) Reconstruction of X becomes efficient.

We call this decomposition as Cluster Indicator Decom-
position (CID), since we use the clustering indicators in
data compression. We give a toy example to illustrate the
main concept of CID decompositions. In Figure 2, there is
clear cluster structure in input data X . After applying CID
decomposition, F and G capture the clustering indictors.
One can prove that the solutions F and G in Eq.(5) satisfy
FTF = I, GTG = I . Instead of storing them, we use F̃
and G̃:

F̃ = Discretize(F)

G̃ = Discretize(G) (6)

Discretize(F): for each row of F , set the largest element to
1 and the rest to zero1. Similar to Discretize(G). F and G

can be easily recovered by F̃ and G̃. The algorithm of CID
will be described in the end of this section.
Storage Discussion. The key idea behind the CID is the
following. Due to the nonnegativity and orthogonality, each
row of F has only one 1. Therefore the m-by-k1 matrix F
can be stored in a single m-vector. Similarly, the n-by-k2
matrix G can be stored in a single n-vector.

The number of row clusters k1 is usually very small (typi-
cally ≤ 10). We pack this integer vector into b1 = � log2k1	
bits in the m-vector for F .

Similarly, the n×k2 matrix G is represented by a n-vector
of b2 = � log2k2	 bits. Thus, (F,G) requires mb1 + nb2
bits storage, which is much less than 64(m+n) bits storage
for a pair of singular vectors (ul, vl) using typical machine
precision.

In addition, CID also needs the storage for the k1×k2 ma-
trix S. This quantity is negligible because we are interested
in the case (m,n) are far larger than (k1, k2).

For example, let k1 = k2 = 8. CID needs 3(m + n) bits
per iteration [we assume min(m,n)
 max(k1, k2)]. Thus,
CID with L = 21 occupies the same storage as a single SVD
term.

We can easily show

JCID =

k1∑
p=1

k2∑
q=1

⎛
⎝∑

i∈Rp

∑
j∈Cq

(Xij − Spq)
2

⎞
⎠ (7)

1One can also apply the same strategy to SVD. However, since
SVD does not explicitly lead to indicator (for U and V in X ≈
USV), it generates much higher representation errors.

Figure 3: Image reconstruction results of MLCID on one
random selected image from WANG’s image database. SVD
reconstructed image is also plotted at the left bottom corner.

where Rp is the p-th row cluster and Cq is the q-th column
cluster. This model is essentially a block clustering model
and Spq is the mean value of the block.
Reconstruction Complexity In many kernel machines (e.g.
Support Vector Machines) we have to reconstruct the kernel
frequently. In this case, one of the bottleneck problems is
to fetch kernel values in an efficient way. Here we show that
CID has significant advantage in efficiency. We approximate
X by the following,

X ≈ (FSGT)ij =
∑
pq

SpqFipGjq = Sf igj
, (8)

where f ,g are single-column indicators: fi = p if Fip = 1,
i = 1, 2, ...,m and gj = q if Gjq = 1, j = 1, 2, ..., n.
This indicates that the computational complexity of every
entry Xij is just two steps of indexing (addressing): as if all
entries are pre-computed. This is useful when solving large
scale problems in which pre-computed kernels could not be
stored in fast memory.

Recursive CID Decomposition

Recursive CID performs repeated orthogonal-NMF cluster-
ing model on the input data X . The complete recursive CID
is

X =
L∑

l=1

FlSlG
T
l . (9)

Recursive CID is computed using deflection. We first
compute orthogonal NMF clustering of X to obtain
F1, S1, G1 using the same algorithm in the end of this sec-
tion. We set X1 = X−F1S1G

T
1 and apply the algorithm on

X1 to obtain F2, S2, G2. This is repeated L times.
We note that SVD of X can be written as X =∑L
l=1 ulσlv

T
l . where Fl has the same storage as ul and Gl

has the same storage as vl. Thus, we can compare these re-
construction errors of these two decompositions at same L.

Multi-level CID Decomposition

In recursive CID, we iteratively do matrix decomposition
based on NMF clustering results. From the second itera-
tion, the clustering algorithm is always performed on the

425

residue between data matrix Xl (residue from previous it-
eration) and decomposition result Fl+1Sl+1G

T
l+1. We no-

tice the clustering structures in residues are less clear than
the structure in original data matrix. In order to improve the
performance of matrix decompositions, we propose to use
multi-level CID to efficiently seek clustering structures in
residues.

Although the clustering structures are weak in residues
globally, they still often clearly exist in local regions of
residues. In MLCID, we first apply CID on X to obtain
F1, S1, G1.

In second iteration, we split the residue matrix ΔX =
X − F1S1G

T
1 into 2× 2 equal area blocks(

ΔX11 ΔX12

ΔX13 ΔX14

)
,

and apply CID to each sub-matrix.
In iteration l, we split the current 22∗(l−1) blocks to 22∗l

smaller equal area blocks and apply CID to each block. The
level l MLCID decomposition is finished in l-th iteration.
The same step is repeated till the iteration number l reach
the given level number L.

If the number of row/column (m or n) is not even, we just
split them into (m+ 1)/2 and (m− 1)/2, or (n+ 1)/2 and
(n−1)/2. Meantime, the total iteration number L is given by
user. The storage of MLCID is k1k2(2(2L)−1)/3+(2l+1−
1)(nlog2k1+mlog2k2)/64, where the first term is for the S
factors, and the second term is for F and G indicators.

Figure 3 shows one example of MLCID decomposition.
MLCID has been performed on one random selected image
from WANG’s image database (Li and Wang 2003). L = 4
is used. Figures in the first row are input image of each level
(residues of previous level). Figures in the second row are
CID approximation of current level only. Figures in the third
row show the MLCID reconstruction images.

Figure 1 illustrates the image reconstruction comparison
between MLCID and SVD. We use four color images from
WANG’s image corpus (Li and Wang 2003). Please see the
detailed experimental setup in the experimental results sec-
tion. The first row of the figure lists the original images of
WANG’s image dataset. The second row includes the recon-
struction results of SVD, and the bottom row shows the re-
sults of our MLCID decomposition approach. In all four im-
ages, MLCID gives out much more clear reconstructed im-
ages compared to SVD.

CID Algorithm

The main algorithm of CID is
(A0) Initialize F,G using (S0)
(A1) Update S, F,G until convergence using (S1)
(A2) Discretize F,G using (S2)
(A3) Update S until convergence. using (S1)
(A4) Pack F as a vector. Pack G as a vector.
We compute the Semi-NMF factorization via an iterative

updating algorithm that alternatively updates F and G:
(S0) Initialize G. Do K-means clustering to cluster columns
of X into k2 clusters. This gives cluster indicator G: Gik =
1 if xi belongs to cluster k. Otherwise, Gik = 0. Let G0 =

G+ 0.2. Normalize each column of G0 to 1 using L2-norm
(thus GT

0 G0
∼= I). Initialize F in same way by clustering

rows of X into k1 clusters.
(S1) Update S, F,G using the rule
Repeat (S1a) - (S1c) until convergence:
(S1a) Compute S (while fixing F,G) using

S = (FTF)−1FTXG(GTG)−1. (10)

Note that computing (FTF)−1, (GTG)−1 are easy tasks be-
cause GTG and FTF are k1 × k1 and k2 × k2 positive
semidefinite matrices. The inversion of these small matri-
ces is trivial.
(S1b) Update G (while fixing F ⇐ FS) using

Gik ← Gik

√
(XTF)+ik

(XTF)−ik + [G(FTF)]ik
, (11)

where positive and negative parts of matrix A are

A+
ik = (|Aik|+Aik)/2, A

−
ik = (|Aik| −Aik)/2. (12)

(S1c) Update F (while fixing G⇐ GS) using

Fik ← Fik

√
(XG)+ik

(XG)−ik + [F (GTG)]ik
, (13)

(S2) Discretize F : for each row of F , set the largest element
to 1 and the rest to zero. Discretize G similarly. Note this
sparsity pattern remains unchanged during the updating of
(S1b) and (S1c).

Tensor Clustering Indicator Decomposition

Our CID, recursive CID, and MLCID decompositions can
be generalized to high dimensional tensor decompositions.
Similar to other multilinear analysis methods, tensor CID
still searches low ranked matrixes and a core tensor to ap-
proximate high order tensors.

Tensor CID Decomposition

Given a 3D tensor X = {X1, · · · , Xn3
} where each Xi is a

2D matrix of size n1 × n2, the tensor CID is to solve:

min
U,V,W,S

J1 = ||X − U ⊗1 V ⊗2 W ⊗3 S||2

s.t. UTU = I, V TV = I, WTW = I

U ≥ 0, V ≥ 0,W ≥ 0 (14)

where U, V,W are 2D matrices (consisting of clustering in-
dicators) and S is a 3D tensor: S ∈ �k1×k2×k3 .

Tensor CID algorithm is:
(B0) Do K-means clustering on each direction of tensor

X to get clustering indicator matrices U , V , and W
(B1) Discretize U : for each row of U , set the largest ele-

ment to 1 and the rest to zero. Normalize each column of U
to 1 using L2-norm (thus UTU = I). Similar to discretize
V and W .

(B2) Calculate S = UT ⊗1 V
T ⊗2 W

T ⊗3 X
The tensor CID decomposition result is

X = U ⊗1 V ⊗2 W ⊗3 S (15)

426

Tensor Recursive CID Decomposition

Tensor recursive CID algorithm is:
(C0) Given total iteration number L, starting from l = 1,

and X1 = X
(C1) Do tensor CID on tensor Xl to get Ul, Vl, Wl, and

Sl

(C2) Calculate residue Xl+1 = Xl−Ul⊗1Vl⊗2Wl⊗3Sl

(C3) If the iteration number is beyond given number L,
then stop. Otherwise, let l = l + 1 and go to (C1).

The complete tensor recursive CID decomposition is

X =

L∑
l=1

Ul ⊗1 Vl ⊗2 Wl ⊗3 Sl (16)

Tensor MLCID Decomposition

Tensor MLCID algorithm is:
(D0) Given multi-level number L, starting from level l =

1, set up tensor set Y1 = {X}, assuming the number of
tensors in tensor set Yl is Nl

(D1) Do tensor CID on each tensor in Yl to get Uli, Vli,
Wli, and Sli, i = 1, · · · , Nl

(D2) If the level number is beyond given number L, then
stop. Otherwise, uniformly split each tensor in Yl to 2×2×2
sub-tensors and create a new tensor set Yl+1 to include all
these sub-tensors. Let l = l + 1 and go to (D1).

Error Analysis for Tensor CID

We provide a theoretical analysis of our proposed approach.
Since CID is a special case of tensor CID, we only show
the analysis of tensor CID here. Given a 3D tensor: X =
{Xijk}n1

i=1
n2
j=1

n3

k=1, we denote

Islab = {Xi,j,k|1 ≤ j ≤ n2, 1 ≤ k ≤ n3},
Jslab = {Xi,j,k|1 ≤ i ≤ n1, 1 ≤ k ≤ n3},
Kslab = {Xi,j,k|1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.

Let JTCID be the reconstruction error of the tensor CID
decomposition. Let JIslab

Kmeans be the error in K-means clus-
tering of the Islab of X , JJslab

Kmeans be the error in K-means
clustering of the Jslab of X , and JKslab

Kmeans be the error in K-
means clustering of the Kslab of X . We have the following
Theorem 1 In tensor CID composition, we have

JTCID ≤ JIslab

Kmeans + JJslab

Kmeans + JKslab

Kmeans. (17)

Proof.

JTCID = ||X − U ⊗1 V ⊗2 W ⊗3 S||
≤ ||X − U ⊗1 S

′||+ ||U ⊗1 S
′ − U ⊗1 V ⊗2 S

′′||
+||U ⊗1 V ⊗2 S

′′ − U ⊗1 V ⊗2 W ⊗3 S||
= ||X − U ⊗1 S

′||+ ||S′ − V ⊗2 S
′′||

+||S′′ −W ⊗3 S||
≤ JIslab

Kmeans + JJslab

Kmeans + JKslab

Kmeans. (18)

�
For tensor MLCID, Theorem 1 is held on each level de-

composition.

Experimental Evaluations

We present empirical results to show the efficiency of our
decomposition algorithms. In our experiments, we always
compare the performance of different methods over the same
storage, and the approximation error is computed as ε =

‖X − X̂‖2/‖X‖2, where X̂ is the reconstruction of X .

CID Decomposition for Images

We first perform decompositions on images to visualize the
approximation capability comparing to SVD. Here we ran-
domly select four color images from WANG’s image corpus
(Li and Wang 2003). In this experiment, we use the original
size of the image (384× 256) and divided the color images
into three channel images (red, green, and blue channels).
Decomposition approaches are applied to all three channels
independently. After we get the reconstructed images, we
combine the R,G,and B channels together to form a color
images, which are shown in Figure 1. The first row of the
figure lists the original images of WANG’s image data set.
The second row includes the reconstruction results of SVD,
and the bottom row shows the results of our MLCID decom-
position approach.

For MLCID, we choose k1 = k2 = 8 and L = 4 for
all the images. In this case, the total storage for MLCID is
5440 + 690 = 6130. For SVD, we choose k = 9 and the
corresponding storage is k(m + n) + k = 5769. In all four
images of Figure 1, MLCID gives out much better recon-
structed images compared to SVD. These results indicate
that MLCID is more compact than SVD.

Systematic Results for MLCID

Here we investigate the reconstruction error of MLCID de-
composition using four data sets: two data sets from UCI
(ECOLI, YEAST), one image data set from WANG’s image
data sets, and one from 20 News Group. For 20 News Group,
we used the first 2000 documents and use F-score to select
the top 1000 related words to form a 2000 × 1000 matrix.
The matrix size of the data can be found in the first part of
Table 1.

Table 1: Data sets statistics used in our experiment.
Data set n1 n2 n3

20NewsGroup 2000 1000
ECOLI 336 343
WANG 256 384
YEAST 1484 1470
WANG3D 128 192 100
Wimbledon 468 850 100

The comparison results can be found in Figure4. In all
data sets, our MLCID method provides better matrices ap-
proximations with lower reconstruction errors compared to
SVD. Notice that in data set Yeast, SVD is inefficient when
the size of storage is small. But compared to SVD (about
0.98), MLCID generates much lower reconstruction errors
(about 0.74) .

427

0 2000 4000 6000 8000
0

0.05

0.1

0.15

0.2

0.25

Storage

A
pp

ro
xi

m
at

io
n

E
rr

or

SVD
MLCID

(a) 20News

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

Storage

A
pp

ro
xi

m
at

io
n

E
rr

or

SVD
MLCID

(b) Ecoli

0 2000 4000 6000
0

0.05

0.1

0.15

0.2

0.25

Storage

A
pp

ro
xi

m
at

io
n

E
rr

or

SVD
MLCID

(c) WANG

0 2 4 6

x 10
4

0.8

0.85

0.9

0.95

1

Storage

A
pp

ro
xi

m
at

io
n

E
rr

or

SVD
MLCID

(d) Yeast

Figure 4: Approximation error comparison of SVD and MLCID under the same storage for 20NewsGroup, ECOLI, WANG,
and YEAST data.

1 2 3
0.08

0.1

0.12

0.14

0.16

Level

A
pp

ro
xi

m
at

io
n

E
rr

or

MLCID
HOSVD

(a) WANG

1 2 3
0.1

0.15

0.2

0.25

Level

A
pp

ro
xi

m
at

io
n

E
rr

or

MLCID
HOSVD

(b) Wimbledon

Figure 5: Approximation error comparison for tensor ML-
CID and HOSVD on tensor constructed in WANG’s and
Wimbledon data sets.

Performance Evaluations on Tensor MLCID

We compare the compression capability of MLCID with
HOSVD using two data sets. The first one (WANG3D) is
from WANG’s image database. We randomly pick 100 im-
ages with resolution 256× 384, resize them into 128× 192,
and transfer them into gray level images. The final tensor
is 128 × 192 × 100. The other data set is extracted from
video of a final match in Wimbledon 2009 tennis champi-
onship. We resize the frames into 468×850 and pick up 100
frames. The final tensor size of the data is 468× 850× 100.
We set K1 = K2 = K3 = 4 and L = [1, 2, 3] for tensor
MLCID decomposition. And compare the tensor data recon-
struction errors under the same storage. Results are plotted
in Figures 5. Our tensor CID has lower reconstruction errors
on tensor data than HOSVD. When the storage is increased,
HOSVD will gradually get good reconstruction results. But
it will lose the low-rank approximation purpose.

Conclusion

In this paper, we show that data clustering can be used to
derive effective low rank matrix decompositions which are
both compact and interpretable. We proposed CID, recursive
CID, and MLCID matrix decomposition methods. More-
over, we also generalize them to tensor decompositions. The
empirical experimental studies show our methods outper-
form the traditional SVD method. Our approaches open a
new application area for data clustering and efficiently solve
the data low-rank approximation problem existing in many
large-scale machine learning and data mining applications.

Acknowledgments This research was supported by NSF-
CCF 0830780, NSF-CCF 0917274, NSF-DMS 0915228.

References

Acar, E., and Yener, B. 2008. Unsupervised multiway data
analysis: A literature survey. IEEE Transactions on Knowl-
edge and Data Engineering.
Deerwester, S.; Dumais, S.; Landauer, T.; and Harshman, G.
F. R. 1990. Indexing by latent semantic analysis. J. Amer.
Soc. Info. Sci 41:391–407.
Ding, C. H. Q.; Li, T.; Peng, W.; and Park, H. 2006. Or-
thogonal nonnegative matrix t-factorizations for clustering.
In KDD, 126–135. ACM.
Ding, C. H. Q.; Huang, H.; and Luo, D. 2008. Tensor reduc-
tion error analysis - applications to video compression and
classification.
Homayouni, R.; Heinrich, K.; Wei, L.; and Berry, M. W.
2005. Gene clustering by latent semantic indexing of MED-
LINE abstracts. Bioinformatics 21(1):104–115.
Kolda, T. G., and Bader, B. W. 2008. Tensor decompositions
and applications. SIAM Review.
Lathauwer, L. D.; Moor, B. D.; and Vandewalle, J. 2000. On
the best rank-1 and rank-(r1, r2, . . . , rn) approximation of
higher-order tensors. SIAM J. Matrix Anal. Appl. 21:1324–
1342.
Li, J., and Wang, J. Z. 2003. Automatic linguistic index-
ing of pictures by a statistical modeling approach. IEEE
Transactions on Pattern Analysis and Machine Intelligence
25(9):1075–1088.
Luo, D.; Ding, C.; and Heng, H. 2011. Cluster indicator
decomposition for efficient matrix factorization. Proc. Int’l
Joint Conf on Artificial Intelligence.
Smets, P. 2002. The application of the matrix calculus to
belief functions. Int. J. Approx. Reasoning 31(1-2):1–30.
Vasilescu, M., and Terzopoulos, D. 2002. Multilinear anal-
ysis of image ensembles: Tensorfaces. European Conf. on
Computer Vision 447–460.
Wood, F., and Griffiths, T. L. 2006. Particle filtering for
nonparametric bayesian matrix factorization. 1513–1520.
Ye, J. 2004. Generalized low rank approximations of matri-
ces. International Conference on Machine Learning.

428

