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Abstract
Ensemble classification methods that independently
construct component models (e.g., bagging) improve
accuracy over single models by reducing the error due
to variance. Some work has been done to extend ensem-
ble techniques for classification in relational domains
by taking relational data characteristics or multiple link
types into account during model construction. How-
ever, since these approaches follow the conventional ap-
proach to ensemble learning, they improve performance
by reducing the error due to variance in learning. We
note however, that variance in inference can be an ad-
ditional source of error in relational methods that use
collective classification, since inferred values are prop-
agated during inference. We propose a novel ensem-
ble mechanism for collective classification that reduces
both learning and inference variance, by incorporating
prediction averaging into the collective inference pro-
cess itself. We show that our proposed method signifi-
cantly outperforms a straightforward relational ensem-
ble baseline on both synthetic and real-world datasets.

Introduction
Ensemble classification methods learn an ensemble of mod-
els, apply them each for classification, then combine the
models’ predictions to produce more accurate classifica-
tion decisions than the individual base models constitut-
ing the ensemble (Bauer and Kohavi 1999). These meth-
ods were initially developed for classification of indepen-
dent and identically distributed (i.i.d.) data, but they can be
directly applied to relational data just by using a relational
classifier as the base model. This straightforward approach
can increase prediction accuracy in relational domains, but
only to a limited extent. This is because relational data char-
acteristics (which are often exploited to improve classifica-
tion) will be considered only by the base classifier and not
the ensemble method itself, thus opportunities to further ex-
ploit these characteristics in the ensemble will be ignored.
Furthermore, since the typical ensemble methods were ini-
tially developed for i.i.d. datasets, their aim is to reduce
errors associated with i.i.d. classification models, thus er-
rors specific to relational classifiers will not be reduced by a
straightforward application of previous methods.
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Some recent work has addressed the first limitation by in-
corporating relational data characteristics directly into the
ensemble method. Preisach and Schmidt-Thieme (2006) de-
velop voting and stacking methods to combine relational
data with multiple relations. Eldardiry and Neville (2008)
outline a method for relational resampling that can im-
prove bagging in relational domains. However, these meth-
ods were both developed with the conventional goals of en-
sembles in mind. To our knowledge, there has been no work
that has focused on the second limitation—to extend ensem-
ble techniques to focus on reducing additional types of errors
that can result from relational classification techniques.

Specifically, classification error can be decomposed into
bias, variance, and noise components (Friedman 1997). En-
semble methods that independently construct component
models (e.g., bagging) can improve performance by reduc-
ing the error due to variance, while ensemble methods that
dependently construct component models (e.g., boosting)
can improve performance by reducing the error due to both
bias and variance. We note that previous analysis of ensem-
bles and the manner by which they reduce error has focused
on i.i.d. models and data.

In this work, we make the key observation that collective
classification models in statistical relational learning suf-
fer from two sources of variance error (Neville and Jensen
2008). Collective classification methods (Sen et al. 2008)
learn a model of the dependencies in relational graph (e.g.,
social network) and then apply the learned model to col-
lectively (i.e., jointly) infer the unknown class labels in the
graph. The first source of variance error for these mod-
els is the typical variance due to learning—as variation in
the data used for estimation causes variation in the learned
models. The second source of error is due to variance in
inference—since predictions are propagated throughout the
network during inference, variation due to approximate in-
ference and variation in labeled test data can both increase
prediction variance.

In this paper, we focus on reducing error due to variance
and propose a relational ensemble framework that uses a
novel form of across-model collective inference for collec-
tive classification. Our method propagates inference infor-
mation across simultaneous collective inference processes
running on the base models of the ensemble to reduce infer-
ence variance. Then the algorithm combines the final model
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Algorithm 1 Relational Learning (RL)
RL(G=(V,E), X, Y )

1: Use G, X , Y to learn a node classifier F for vi ∈ V
2: F := P (Yi|Xi,XRYR) where R = {vj : eij ∈ E}
3: return F

Algorithm 2 Collective Classification (CC)

CC(G=(V,E), X,Ỹ , F=P (Yi|G,X, Y ))
1: Ŷ = Ỹ ;YT = ∅
2: for all vi ∈ V s.t. yi /∈ Ỹ do
3: Randomly initialize ŷi ; Ŷ = Ŷ ∪ ŷi
4: repeat
5: for all vi ∈ V s.t. yi /∈ Ỹ do
6: ŷnewi = P (Yi|Xi,XRŶR) where R = {vj :

eij ∈ E}
7: Ŷ = Ŷ − {ŷi}+ {ŷnewi } ; YT = YT ∪ ŷnewi
8: until terminating condition
9: Compute P = {Pi : yi /∈ Ỹ } using YT

10: return P

predictions to reduce learning variance. To the best of our
knowledge, this is the first ensemble technique that aims to
reduce error due to inference variance.

We evaluate our method using real-world and synthetic
datasets and show that it outperforms four baseline alter-
native solutions, including a straightforward relational en-
semble approach. The results show that while prediction
accuracy is improved using a straightforward ensemble ap-
proach, our proposed method achieves significant additional
gains by reducing error due to inference variance.

Problem Formulation

Background

The general relational learning and collective classification
problem can be described as follows. Given a fully-labeled
training set composed of a graph Gtr = (Vtr, Etr) with
nodes Vtr and edges Etr; observed features Xtr; and ob-
served class labels Ytr, the relational learning procedure
(RL) outlined in Algorithm 1, outputs a model F that can
be used to infer a joint probability distribution over the la-
bels of Vtr, conditioned on the observed attributes and graph
structure in Gtr. Given a partially-labelled test set composed
of a graph Gte = (Vte, Ete) with nodes Vte and edges Ete;
observed features Xte; and partially-observed class labels
Ỹte ⊂ Yte, and the model F learned using RL, the collective
classification procedure (CC) outlined in Algorithm 2, out-
puts a set of marginal probability distributions P (i.e., pre-
dictions) over the labels of nodes Vte. Note that Gtr used for
RL is different from Gte used for CC. The collective classi-
fication pseudocode primarily describes inference based on
Gibbs sampling. However, many other approximate infer-
ence methods (see e.g., Sen et al. 2008) are quite similar.

Algorithm 3 Collective Ensemble Classification (CEC)

CEC(F1, F2, . . . , Fk, G=(V,E), X,Ỹ , Fk=P (Yi|G,X, Y ))
1: for all i in 1 to k do
2: Ŷ i = Ỹ ;Yi

T = ∅
3: for all vj ∈ V s.t. yj /∈ Ỹ do
4: Randomly initialize ŷij ; Ŷ i = Ŷ i ∪ ŷij
5: repeat
6: for all i = 1 to k do
7: for all vj ∈ V s.t. yj /∈ Ỹ do
8: ŷinew

j = F i : P i(Yj |Xi.j ,Xi.R, Ŷi
R)

where R = {vk : ejk ∈ Ei}
9: ŷ

iagg

j = 1
k

∑k
j=1 ŷ

inew
j

10: Ŷ i = Ŷ i − {ŷij}+ {ŷiagg

j } ; Yi
T = Yi

T ∪ ŷ
iagg

j

11: until terminating condition
12: for all i = 1 to k do
13: Compute Pi = {P i

j : yj /∈ Ỹ } using Yi
T

14: P = ∅
15: for all vj ∈ V do
16: pj =

1
k

∑k
i=1 p

i
j ; P = P ∪ {pj}

17: return P

Collective Classification with Multiple Networks
For this work, we consider the problem of relational learn-
ing and collective classification in domains where a single
set of objects (i.e., V ) are connected through multiple link
graphs (i.e., G1 = (V,E1), G2 = (V,E2), ...). For exam-
ple, in an online social network, a friendship graph connects
users that list each other as friends, a message graph con-
nects users that communicate via micro-communications,
and a photo graph connects users that tag one another in
photos. For these types of networks, and many other rela-
tional domains with different types of relations, each graph
provides complementary information about the same set of
objects and can thus be viewed as different “sources” of link
information.

Here we consider the task of predicting a single class la-
bel Y (e.g., users political views) over the set of nodes V ,
given multiple types of relationships among V —the goal is
to combine the link sources to improve the quality of infer-
ences produced from collective classification. There are two
primary ways to combine the various link sources to improve
prediction—either we can combine the sources before learn-
ing and learn a joint model across all graphs, or we can com-
bine the sources after learning, by learning an ensemble of
models, one from each source. As discussed previously, in
order to reduce the prediction error due to variance (partic-
ularly due to collective inference), in this work we focus on
the latter. We describe our proposed ensemble method next.

Collective Ensemble Classification (CEC)
Ensemble Learning
Each base model is learned independently from one link
graph using the RL method outlined in Algorithm 1. The
resulting models can each be used to infer a joint probability
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distribution over the labels of the nodes of the training net-
work. This is analogous to learning a set of ensemble mod-
els by using different feature subsets (Cunningham and Car-
ney 2000), but in this case link types are treated as features.
For the Facebook example, this will correspond to learning
one model from each of the friendship, message exchange,
and photo-tagging graphs. This method of ensemble learn-
ing uses the complete set of nodes in the training network for
learning each model, as opposed to bootstrap sampling (El-
dardiry and Neville 2008) that learns models from subsets of
a single graph.

Ensemble Inference
For inference, we propose a novel across-models collec-
tive classification method that propagates inferences across
the models of the ensembles during collective inference.
We refer to our method as Collective Ensemble Classifica-
tion (CEC) and outline it in Algorithm 3. Given a test net-
work G with partially labeled nodes V , and k base mod-
els F1, F2, . . . , Fk learned as described above from different
link sources, the models are applied simultaneously to col-
lectively predict the values of unknown labels (lines 7-10).
First, the labels are randomly initialized (lines 1-4). Next,
at each collective inference iteration, the model Fi is used
to infer a label for each node v conditioned on the current
labels of the neighbors of v (line 8). This corresponds to a
typical collective inference iteration. Then instead of using
the prediction from Fi directly for the next round, it is av-
eraged with the inferences for v made by each other model
Fj s.t. j �= i (line 9). This interleaves the inferences made
across the set of ensemble models and pushes the variance
reduction gains into the collective inference process itself.
At the end, the predictions are calculated for each model
based on the stored prediction values from each collective
inference iteration (lines 12-13). Finally, model outputs are
averaged to produce the final predictions (lines 15-16). We
note that the manner in which CEC uses inferences from
other models (for the same node) provides more informa-
tion to the inference process, which is not available if the
collective inference processes are run independently on each
base model. Since each collective inference process can ex-
perience error due to variance from approximate inference
or from the underlying network structure, the ensemble av-
eraging during inference can reduce these errors before they
propagate throughout the network. This results in significant
reduction of inference variance, which is achieved solely by
our method.

Complexity
Let the number of component models in the ensemble be
k, and let the complexity of learning using the general RL
algorithm be Cl. Then CEC learning complexity is k ∗ Cl.
Also, let the complexity of inference using the general CC
algorithm be Ci. Algorithm 3 loops over CC k times (for k
models), and aggregates over k predictions within that loop.
Therefore CEC complexity is k2 ∗ Ci. Since k is usually a
small constant, the efficiency of CEC is comparable to col-
lective inference with a single relational model learned using
the RL algorithm.

Experimental Evaluation
Using real-world and synthetic datasets, we show that CEC
significantly outperforms a set of alternative methods under
a variety of conditions. Furthermore, we show that the accu-
racy gains are due to reduction in inference variance.

Datasets

Our first dataset is from the Purdue University Facebook
dataset. We use three link graphs connecting the same set of
users. The friendship graph has undirected friendship links.
The wall graph has directed links extracted from users’ in-
teractions through a public message board on their profile
wall page. The photo graph has directed links extracted from
users tagging others in their profile photo page. We con-
structed four network samples based on membership in Pur-
due Facebook subnetworks: [Purdue Alum ’07, Purdue ’08,
Purdue ’09, Purdue ’10]. Within each subnetwork, we con-
sidered the set of users connected in at least two link graphs
which resulted in network sizes [921, 827, 1268, 1384] re-
spectively. Each user has a boolean class label which indi-
cates whether their political view is ‘Conservative’. In ad-
dition, we consider nine node features and two link fea-
tures. The object features record user profile information.
Wall links have one link feature that counts the number of
wall posts exchanged between any two users, while photo
links have one link feature that counts the number of photos
shared between any two users.

Our second dataset is from the IMDb (Internet Movie
Database) dataset, which contains movie release informa-
tion. We constructed five link graphs among movies. The
actor graph links movies that share an actor. Similarly, we
constructed the studio, producer, director, and editor graphs
which link movies that share an entity of the corresponding
type. We constructed seven samples of US movies based on
movie release years: [2002, 2003, 2004, 2005, 2006, 2007].
Within each subnetwork, we considered the set of movies
connected in at least one link graph which resulted in net-
work sizes [269, 253, 264, 314, 305, 249] respectively. Each
movie has a boolean class label which indicates whether the
movie is a ‘Blockbuster’ (earnings >$60mil; inflation ad-
justed).

Our third dataset consists of synthetically generated rela-
tional data graphs with the latent group model described in
the work of Neville and Jensen (2005). The model uses a
hidden group structure to generate network data with vary-
ing levels of autocorrelation and linkage. We generated 10
different link graphs, for the same set of objects, with differ-
ent link density structures and link types. Graphs are gener-
ated with 500 nodes, in groups with an average size of 50.
Each node has one binary class label.

Baseline Methods

We consider four baselines methods to compare to re-
lated work, while controlling for model representation. Each
method uses the RL and CC algorithms for learning and in-
ference, respectively.
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Relational Ensemble (RE): The RE baseline uses the
same ensemble learning procedure of CEC, but applies each
model independently for inference to produce a set of prob-
ability estimates for nodes predictions. Then it averages the
resulting set of predictions for each node independently to
get the final predictions P . This is used to evaluate the
improvement achieved by our across-model inference ap-
proach (since RE uses the same learning and final predic-
tion averaging as CEC), and is intended to show that the in-
crease in accuracy of CEC cannot be achieved by a straight-
forward ensemble classification that combines different rela-
tions (e.g., Preisach and Schmidt-Thieme (2006)). The lim-
itation of RE is that inference is applied independently on
each base model, so the availability of multiple predictions
from the ensemble models is only utilized to average the fi-
nal ensemble predictions—after the inference algorithm is
finished and inference variance has propagated through the
graph. Our key insight is that the collective classification of-
fers a unique opportunity to jointly utilize information from
all the models during collective inference.

Multiple Relations (MR): The MR baseline is a single
model approach that learns one model from the merged set
of training graphs, using the multiple relation types as fea-
tures in the model. The learned model is applied collectively
to the test graph, producing a single set of predictions. This
allows us to evaluate the improvement achieved by the re-
lational ensemble approach, by comparing to just using a
single model approach that uses the link types as features
for learning. MR is similar to methods we mention in the re-
lated work section that combine multiple data sources into a
single network for learning.

Combined Relations (CR): The CR baseline is another
single model approach that learns one model from the
merged set of training graphs, however this method ignores
the relation types and just uses the single-source (i.e., at-
tribute) features. The model is also applied collectively on a
single, merged test graph that contains all link source infor-
mation but no link type features, resulting in a single set of
predictions. We compare to this simple method that does not
consider the various link types to assess any gains achieved
by considering link types as features in MR.

Single Relation (SR): The SR baseline learns one model
from a single link source and applies the model collectively
to the test network from the same source. We learn/evaluate
a SR model for each link source separately. Comparing to
this method allows us to assess the intrinsic value of each
relationship in the network when used for classification by
itself. In the experimental results, we report average perfor-
mance for the set of SR models learned from each link type.

Experimental Setup
We implement each of the above methods using a re-
lational dependency network (RDN) collective inference

model (Neville and Jensen 2007). RDNs use pseudolike-
lihood estimation to efficiently learn a full joint probabil-
ity distribution over the labels of the data graph, and are
typically applied with Gibbs sampling for collective infer-
ence. We note that we do not have to estimate the full
joint distribution over the test data for accurate inference,
it is sufficient to accurately estimate the per instance condi-
tional likelihoods, which is easy to do with Gibbs sampling
(e.g., Neville and Jensen (2007) showed typical empirical
convergence within 500 Gibbs iterations).

We use 5 pairs of disjoint training and test sets from the
synthetic data, and 4 pairs from the Facebook and IMDb
data. The training and test pairs are constructed to account
for variability due to change in time. For the Facebook ex-
periments, we train on the two networks closest in date to the
test network (e.g., train on Purdue Alum ’07 and Purdue ’09,
and test on Purdue ’08). For the IMDb experiments, we train
on the two release year networks preceding the test network
(e.g., train on 2003 and 2004, and test on 2005).

For each experiment, we vary the labeled proportion of
the test set available before inference by randomly choosing
the set of nodes to label for each trial. At each proportion
level, the random labeling process is repeated 5 times and 5
rounds of inference are run for each random labeling. Each
inference run uses 500 Gibbs samples. We measure the area
under the ROC (AUC) to assess the prediction accuracy of
each model. The 5 × 5 = 25 trials are repeated for each
training and test pair, and the averages of the 125 AUC mea-
surements from each approach are reported.

We test the robustness of the methods to missing labels
(in the test set) by varying the proportion of labeled test
data at 10% through 90%. For the Facebook dataset, we re-
port results using 3 link sources: friendship, wall, and photo
graphs. For the IMDB dataset, we use 5 link sources: ac-
tors, studios, producers, directors and editors graphs. For the
synthetic data experiment we use 3 link sources, with high
autocorrelation and low link density.

We test the effect of increasing the number of link sources
by generating synthetic data with 1, 3, 6 and 9 sources.
When there is one source, this corresponds to the SR base-
line. In this evaluation, we report results with 10% labeled
nodes in the test set; high autocorrelation and low link den-
sity. Note that the same nodes are labeled across all the link
graphs and therefore increasing the number of link graphs
does not mean there is more labeled data available, just that
more link information is being considered.

Since collective inference in general, and the RDN specif-
ically, have been shown to exploit relational autocorrelation
and linkage in relational data (Neville and Jensen 2007),
we investigate the effects of increasing both levels. We var-
ied the autocorrelation level from low to high using 3 link
graphs, each with low link density and 10% labeled test data.
Then we varied the linkage level in the data from low to high,
using 3 sources, each with high autocorrelation and 10% la-
beled test data.

Empirical Results
The main finding across all experiments is that CEC consis-
tently and significantly outperforms the baselines. To sum-
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(a) Facebook (b) IMDb (c) Synthetic

Figure 1: AUC on real and synthetic datasets for varying proportions of labeled test data.

marize our findings:

• CEC has significantly higher classification accuracy than
all the baselines.

• CEC is the most robust to missing labels (due to its ability
to best exploit the available label information).

• CEC best utilizes link information from additional
sources.

• CEC best exploits information due to higher linkage and
autocorrelation.

Figure 1 shows that as the proportion of labeled nodes
increases, accuracy increases. CEC is the most robust tech-
nique to missing labels across all datasets. Moreover, CEC
significantly (p < 0.01) outperforms RE at all label pro-
portions on the synthetic and Facebook datasets, and on the
IMDb at labeled proportions through 50%. (We analyze sig-
nificance using paired t-tests). It is clear that CEC results
in huge performance gains over other methods with very
few labeled instances. This is because when there is a lim-
ited number of labeled neighbors available, CEC is able to
best exploit the link information available from the multiple
sources to reduce inference error. Although we plot mean SR
performance, we note that CEC also outperforms the best SR
model. Furthermore, CEC is able to improve performance
even when the SR models do not have similar performance
(e.g., when some perform poorly).

Figure 2(a) shows that the ensemble methods improve
overall model performance as more sources are considered,
although again CEC achieves significantly (p<0.01) higher
accuracies compared to RE. On the other hand, the perfor-
mance of the single model baselines (MR, CR) degrade.
This can be explained by the fact that an ensemble approach
(RE) reduces the learning variance, and that interleaving the
collective inference processes (CEC) reduces the inference
variance on top of that. In contrast, the degradation in perfor-
mance for the single model baselines can be attributed to the
increased variance in the learned model due to the increased
number of links and features in the merged graph.

Table 1 shows that the ensemble methods better exploit
autocorrelation and link density than the single model base-
lines. CEC again significantly (p < 0.01) outperforms RE

Autocorrelation Linkage
Method Low High Low High
SR 0.51 0.58 0.58 0.630
CR 0.53 0.57 0.57 0.63
MR 0.52 0.56 0.56 0.68
RE 0.53 0.64 0.64 0.73
CEC 0.55 0.74 0.74 0.82

Table 1: AUCs for varying autocorrelation and linkage.

(a) (b)

Figure 2: (a) Performance as the number of link types in-
creases. (b) AUC and inference variance for a hybrid model
that only uses CEC on a limited number of models.

at both low and high levels of autocorrelation and link den-
sity. The performance of SR models improve as autocorre-
lation and link density increase, because RDNs use collec-
tive inference, which exploits autocorrelation and link den-
sity to use predictions of related instances to improve one
another. As discussed previously, RE aggregates those im-
proved predictions and hence improves the overall predic-
tions accuracy. CEC improves node predictions even further,
using predictions made by other models simultaneously dur-
ing collective inference. Finally, while MR and CR also im-
prove as autocorrelation and link density increase, they are
not able to achieve the same gains as the ensemble methods.

The difference between CEC and RE is due to the inter-
mediate averaging of predictions across the models that is
used by CEC. We conjecture that this process reduces the
error due to inference variance and that the magnitude of
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the effect is related to the number of models/sources that are
averaged during the inference process. To investigate this,
we evaluate a hybrid version of RE and CEC—where we
learn an ensemble of 10 models on 10 link sources, but vary
the number of models that are interleaved during the collec-
tive inference process. Interleaving 0 models corresponds to
RE, while interleaving 10 models corresponds to CEC. In
between these two extremes, the hybrid model performance
shows the effect of propagating prediction information dur-
ing inference. The blue, dashed line in Figure 2(b) shows
a smooth increment in the overall predictive performance as
the proportion of propagated predictions during inference in-
creases, which illustrates the relationship between CEC and
RE. The red, dotted line shows the average inference vari-
ance measured from the same set of experiments, indicating
that the accuracy improvement corresponds to a reduction in
inference variance.

Related Work
Many studies have shown that ensembles of multiple clas-
sifiers can usually achieve higher accuracy than individual
classifiers (Dietterich 2000). These methods typically as-
sume i.i.d. data and a single information source, but some
work has been done to extend ensemble techniques to struc-
tured and/or multi-source settings. For example, Blum and
Mitchell (1998) propose multi-view learning for i.i.d. data,
while Ganchev et al. (2008) propose multi-view learning for
structured data. In addition, Eldardiry and Neville (2008) de-
veloped a relational resampling method for bagging in rela-
tional domains. However, none of these methods are suit-
able for collective classification in a multi-source, relational
domain—since they either assume i.i.d. data, multiple struc-
tured examples, or a single source.

There are many machine learning methods that use multi-
ple information sources to improve classification—by either
combining data sources (at the input to learning), or by com-
bining predictions (at the output of inference). To the best of
our knowledge, our method is the first to combine informa-
tion during inference instead of after inference.

The first category of related work contains methods that
combine source information before learning, including work
on integrating multiple networks for label propagation meth-
ods (Kato, Kashima, and Sugiyama 2008; Tsuda, Shin, and
Scholkoopf 2005). Since these methods combine multiple
information sources and exploit the relational structure to
propagate inferences via label propagation, they may seem
similar to our work. However, in contrast to our method,
these approaches combine the source information before in-
ference and focus on label propagation to improve trans-
ductive inference within a single network—the methods do
not learn complex relational models to generalize to unseen
networks, nor do they combine information across networks
during inference.

In statistical relational learning, there are general learn-
ing methods that treat heterogeneous information of multiple
object and link types as a single information source and use
a single model approach for classification (see e.g., Getoor
and Taskar (2007)). There has also been some work that aug-
ments the observed relational data with additional ‘sources’

of link information to improve performance (Macskassy
2007; Eliassi-Rad et al. 2008). However, once again, these
methods combine this information before learning and in-
ference. Our MR results are intended to serve as a baseline
to compare to this broad class of methods, while control-
ling for model representation, since the MR models combine
all the source information before learning a single model.
In the future, we plan to evaluate our method in a context
similar to that of Macskassy (2007), which also used addi-
tional sources of information, but only for inference since
the model is not learned.

The second category of related work contains meth-
ods that combine prediction information at the output
level. Preisach and Schmidt-Thieme (2006) learn a separate
logistic regression classifier from each relational source then
combine the classifiers using voting and stacking. This is
similar to our method since it uses an ensemble approach to
combine multiple link sources. However, their method was
not designed for collective classification models, thus the ap-
proach is intended to reduce learning error, not inference er-
ror. Our RE results are intended to serve as a baseline com-
parison to this straightforward relational ensemble method.
The work of Gao et al. (2009) presents a method to maxi-
mize consensus among the decisions of multiple supervised
and unsupervised models. The method is similar to our ap-
proach since it combines predictions from multiple models
and uses label propagation for prediction. However, we note
that their label propagation approach is designed to maxi-
mize consensus among the model outputs after inference,
rather than during a collective inference process over a rela-
tional network. In addition, the method is designed primarily
for i.i.d. learners where again, there will be no inference er-
ror.

Fast and Jensen (2008) recently showed that stack-
ing (Kou and Cohen 2007) improves collective classifica-
tion models by reducing inference bias. Although this work
evaluated model performance in single source relational
datasets, it is interesting to note that stacking reduces infer-
ence bias, while our method reduces inference variance. In
future work, we will explore whether the two can be com-
bined in a larger ensemble framework.

Discussion and Conclusion
Ensemble techniques were initially developed for i.i.d. data,
so they are limited to reducing errors associated with i.i.d.
models and fail to reduce additional sources of error asso-
ciated with more powerful models. We note that collective
inference methods, which are widely used for classification
of relational data, can introduce a significant amount of in-
ference variance due to the use of approximate joint infer-
ence. This has been overlooked by current ensemble meth-
ods that assume exact inference models and focus on the
typical goal of reducing errors due to learning, even if the
methods explicitly considered relational data (Eldardiry and
Neville 2008; Preisach and Schmidt-Thieme 2006).

In this paper, we presented a novel method for applying
ensembles in collective classification contexts with multiple
link types, which can reduce the error due to inference vari-
ance (in addition to the reduction in learning variance typ-
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ically achieved by ensembles). The CEC method takes ad-
vantage of an opportunity unique to multi-source relational
domains, which is that inferences can be propagated across a
set of collective inference processes running simultaneously
on the various link sources. This approach maximizes agree-
ment between the predictions made by the different models
and can stop errors due to inference variance from propa-
gating throughout the network. The experiments show that
CEC results in significant performance gains compared to
more straightforward ensemble and collective classification
methods that do not attempt to reduce variance in the collec-
tive inference process.

There are of course, alternative means to reduce variance
error other than the use of ensembles. For example, increas-
ing the training set size can indeed reduce learning variance.
However, in relational datasets where instances are not in-
dependent, the effective sample size is often less than the
number of instances (i.e., nodes). Thus reduction in learn-
ing variance may require a larger than expected increase in
sample size. In this case, conventional ensembles offer an
alternative to reducing learning variance. Our proposed ap-
proach decreases both learning and inference variance. In-
ference variance is a unique characteristic of collective in-
ference models that depends on the interaction between the
network, model, and amount of labeled test data. More train-
ing data is unlikely to reduce inference variance, since infer-
ence variance can occur even when using the true model.

In this work we proposed CEC to exploit multiple link
graphs. The assumption of multiple link sources holds in
many real scenarios, as even datasets with a single link type
often contain many implicit link relationships (e.g., interac-
tions over the links).

In future work, we plan to extend our proposed approach
to single source network settings, using resampling to con-
struct the ensembles. In particular, the relational resampling
method proposed by Eldardiry and Neville (2008) has been
shown to improve the accuracy of bagging for relational
data, by focusing on the reduction of learning variance.
Combining this method with our CEC mechanism, which
achieved additional reduction of inference variance, will re-
sult in a unified method that can fully reduce errors due to
variance in both learning and inference. Moreover, using re-
lational resampling instead of separate link structures for
learning will facilitate application in single-source network
settings as well as multiple-source ones.
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