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Abstract

Automated feature discovery is a fundamental problem in ma-
chine learning. Although classical feature discovery methods
do not guarantee optimal solutions in general, it has been re-
cently noted that certain subspace learning and sparse cod-
ing problems can be solved efficiently, provided the num-
ber of features is not restricted a priori. We provide an ex-
tended characterization of this optimality result and describe
the nature of the solutions under an expanded set of practical
contexts. In particular, we apply the framework to a semi-
supervised learning problem, and demonstrate that feature
discovery can co-occur with input reconstruction and super-
vised training while still admitting globally optimal solutions.
A comparison to existing semi-supervised feature discovery
methods shows improved generalization and efficiency.

Introduction

Data representations, and transformations of data represen-
tations, are fundamental to machine learning. Expressing
complex data objects, such as documents or images, as fea-
ture vectors—e.g. as bags of words, vectors of Fourier or
wavelet coefficients, or indicators of nearest prototypes—
can reveal important structure in a data collection, as well
as in individual data items. Feature representations do not
only facilitate understanding, they enable subsequent learn-
ing. (Kernel methods achieve similar goals by expressing
data implicitly in an abstract feature space.) For any par-
ticular application, however, often one does not know which
representation to use.

Automatically discovering useful features from data has
been a long standing goal of machine learning research.
Current feature discovery methods have already proved use-
ful in many areas of data analysis, including text, image,
and biological data processing. These methods differ pri-
marily in the properties sought in any new data repre-
sentation. Some approaches seek a low dimensional rep-
resentation, such as principal components analysis (PCA)
and modern variants (van der Maaten and Hinton 2008;
Weinberger and Saul 2006). Others seek a representation
where features behave independently, such as independent
components analysis (ICA) (Comon 1994); or where the
new feature vectors are sparse, such as sparse coding or
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vector quantization (Olshausen and Field 1997). Still oth-
ers seek a representation that captures higher level, abstract
features of the data that are invariant to low level transfor-
mations, such as in deep learning (Hinton 2007).

In each case, one key issue is whether an optimal fea-
ture representation can be recovered efficiently. The lack of
an optimal feature discovery method can hamper the practi-
cal applicability of a principle—relegating its use to an art-
form. Globally solvable criteria such as PCA, by contrast,
enjoy widespread use despite the numerous shortcomings,
arguably because users need not understand the workings of
any solver—it is sufficient to understand the principle being
optimized. Recently, the development of sparsity inducing
regularizers has made great inroads in achieving globally
solvable forms of training. Indeed, convex reformulations
have recently had a significant impact on many areas of ma-
chine learning, including multitask learning (Argyriou, Ev-
geniou, and Pontil 2008), collaborative filtering (Candes and
Recht 2008; Srebro, Rennie, and Jaakkola 2004), and non-
linear dimensionality reduction (Weinberger and Saul 2006).

In this paper we contribute further progress to achieving
tractable formulations of representation learning problems.
First, we present an explicit formulation of convex feature
discovery that encapsulates classical subspace learning and
sparse coding as special cases. The main idea is to replace
a bound on the number of features with a convex, sparsity
inducing regularization scheme. We demonstrate how the
standard regularizer used in sparse coding leads to a triv-
ial form of vector quantization. However, other regulariz-
ers lead to elegant forms of subspace learning that encom-
pass PCA and extensions within a simple unified framework.
Very similar observations have already been made by (Bach,
Mairal, and Ponce 2008). However, we provide further gen-
eralizations regarding the derived regularizers and recovered
solutions, and present a more explicit framework that en-
ables easier extension to other learning scenarios. Our sec-
ond and more significant contribution is to develop a new
convex formulation of semi-supervised representation learn-
ing within the general framework we develop. This formu-
lation encompasses several previous proposals that deployed
local training procedures (Mairal et al. 2008; Lee et al. 2009;
Raina et al. 2007; Rish et al. 2007), but allows us to re-
express the problem in a joint, globally solvable form. Un-
like (Goldberg et al. 2010), we recover an explicit feature
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representation of the data that respects basis constraints, and
can extend the formulation beyond transduction.

Preliminaries: Vector and Matrix Norms

In our technical development below we will need to make
use of several vector and matrix norms, and their associated
properties, so we centralize the definitions here.

For vectors, we use ‖x‖ to denote a norm on x, and ‖y‖∗
to refer to its conjugate norm: ‖y‖∗ =max‖x‖≤1 x

′y. One
can verify that ‖x‖∗∗=‖x‖ (Rockafellar 1970, §15). We use
‖x‖p to denote a p-norm, 1≤p≤∞, whose conjugate norm
is ‖ · ‖p∗ such that 1

p+
1
p∗ =1. Norms are always convex.

For matrices, we use ‖X‖ to refer to a generic norm on X ,
and ‖Y ‖∗ to denote its conjugate norm. The conjugate satis-
fies ‖Y ‖∗ =max‖X‖≤1 tr(X ′Y ) and ‖X‖∗∗ = ‖X‖, where
tr denotes trace. We will use ‖X‖(p,q) to refer to the induced
norm on X defined by ‖X‖(p,q)=max‖z‖p≤1 ‖Xz‖q (Horn
and Johnson 1985, §5.6). The standard spectral norm will
be denoted ‖X‖sp = ‖X‖(2,2) = σmax(X). The conjugate
of the spectral norm is the trace norm ‖X‖tr =

∑
i σi(X).

The Frobenius norm is given by ‖X‖F =
√

tr(X ′X) =√∑
i σ

2
i (X). We will also make use of the so called block

norm ‖X‖r,s = (
∑

i(
∑

j |Xij |r) s
r )

1
s , whose conjugate is

‖X‖∗r,s = ‖X‖r∗,s∗ such that 1
r +

1
r∗ = 1

s +
1
s∗ = 1 (Bradley

and Bagnell 2009). Finally, we require a preliminary fact.

Lemma 1 For any bounded closed set Z ⊂ R
n such that

span(Z) = R
n, and any 1 ≤ p ≤ ∞, the definition

‖X‖(Z,p)=maxz∈Z ‖Xz‖p establishes a norm on X .

Proof: It is easy to verify ‖X‖(Z,p) ≥ 0 and ‖αX‖(Z,p) =
|α|‖X‖(Z,p). Next, note ‖X+Y ‖(Z,p) = maxz∈Z ‖(X+
Y )z‖p ≤maxz∈Z ‖Xz‖p+‖Y z‖p ≤‖X‖(Z,p)+‖Y ‖(Z,p).
Finally, if Z is not restricted to a subspace of R

n then
maxz∈Z ‖Xz‖p=0 implies X=0. �

Below we will need to use the three distinct types of ma-
trix norms, ‖X‖p,q , ‖X‖(p,q), and ‖X‖(P,q), respectively.

Unsupervised Representation Learning

First consider the problem of unsupervised feature discov-
ery, where one is given an n×m matrix of data X such that
each column is an n-dimensional observation and there are
m observations. The goal is to learn an n×k dictionary B
containing k basis vectors, and a k×m representation ma-
trix Φ containing m new feature vectors of length k, so that
X can be accurately reconstructed from X̂ =BΦ. To mea-
sure approximation error we use a loss function L(X̂;X)
that is convex in its first argument. Conventional choices for
L include sum of squared error L(X̂;X)= ‖X̂−X‖2F or a
sum of Bregman divergences L(X̂;X) =

∑
j D(X̂:j‖X:j),

but it is not necessary to restrict attention to any particular
convex loss. Note that the factorization X̂=BΦ is invariant
to reciprocal rescalings of B and Φ, so to avoid degeneracy
their individual magnitudes have to be controlled. We will
assume that each column B:j of B is constrained to belong
to a bounded closed convex set B, hence B∈Bk.

Subspace learning methods, such as PCA and variants
seek a reconstruction matrix X̂ = BΦ that has reduced rank.
Sparse coding methods, on the other hand, seek a recon-
struction where each new feature vector Φ:j is sparse; that
is, X̂:j is reconstructed from a small subset of basis vectors
chosen from the dictionary B (Olshausen and Field 1997).
For both, the generic training problem can be expressed

min
B∈Bk

min
Φ

L(BΦ;X) + α‖Φ‖, (1)

where L is a loss, α ≥ 0 is a parameter, ‖ · ‖ is a norm
on the representation matrix Φ, and k is the number of fea-
tures to be extracted. Specific choices of L, α, ‖ · ‖, and B
yield standard forms of subspace learning and sparse cod-
ing. For example, L(X̂;X) = ‖X̂ −X‖2F , α = 0, and
B = {b : ‖b‖2 ≤ 1} yields PCA. Setting L to a Breg-
man divergence, α= 0, and B as above, yields exponential
family PCA (Collins, Dasgupta, and Schapire 2001; Gor-
don 2002).1 Unfortunately, (1) does not readily admit global
training. Certainly, the problem is convex in B given Φ and
vice versa, but it is not jointly convex. Beyond PCA, global
training procedures are not generally known, and most re-
search resorts to alternating minimization (Jenatton et al.
2010; Bradley and Bagnell 2008; Elad and Aharon 2006;
Zou, Hastie, and Tibshirani 2006).

However, it has recently been observed that if the number
of features is not bounded, and a sparse regularizer ‖Φ‖ is
used to indirectly control their number, then B can be con-
sidered large but fixed and (1) becomes convex in Φ, making
it amenable to a boosting approach that generates columns
in B (Bradley and Bagnell 2009; Nowozin and Bakir 2008).
More importantly, it has been realized that (1) can be solved
directly in certain cases (Bach, Mairal, and Ponce 2008).
We now elucidate this finding further and develop a general
framework for solving the relaxed problem

min
B∈B∞

min
Φ

L(BΦ;X) + α‖Φ‖. (2)

Notation: We use min
B∈B∞

as a shorthand for min
k∈N

min
B∈Bk

.

Subspace Learning For subspace learning (i.e. dimen-
sionality reduction), rather than bounding the number of
columns in B, we allow it to grow as necessary and drop
features implicitly by imposing a ‖Φ||2,1 regularizer. Such a
regularizer will encourage entire rows Φi: (features) to be-
come sparse (Argyriou, Evgeniou, and Pontil 2008) but oth-
erwise only smooth the columns. To avoid degeneracy, we
set B2 = {b : ‖b‖2 ≤ 1}. Then, with these assumptions, the
training problem (2) can be solved globally and efficiently.
Proposition 1 (Convex subspace learning)

min
B∈B∞

2

min
Φ

L(BΦ;X) + α‖Φ‖2,1 (3)

= min
X̂

L(X̂;X) + α‖X̂‖tr. (4)

Given X̂ , a solution to (3) can be recovered by setting B =

U and Φ = ΣV ′, where X̂ = UΣV ′ is the SVD of X̂ .
1Note that (1) can easily accommodate missing entries in X by

restricting the loss evaluation to observed entries (Srebro, Rennie,
and Jaakkola 2004). This extension trivially available to every for-
mulation discussed in this paper, so we do not emphasize it further.
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Proof: (4) follows from Theorem 1 and Lemma 2 (22) be-
low. Given X̂ , B and Φ must be optimal since these satisfy
BΦ = X̂ and ‖Φ‖2,1 = tr(Σ) = ‖X̂‖tr respectively. �

Therefore (3) can be solved globally by solving the con-
vex problem (4), then recovering B and Φ from X̂ . The so-
lution satisfies rank(B) = rank(Φ) = rank(X̂); thus, even
though we allowed B ∈ B∞

2 , by reducing the rank of X̂
via trace norm regularization one implicitly and efficiently
controls the dimension of the result.2 Interestingly, Proposi-
tion 1 can also be extended to remove sparse noise in X ,
generalizing the robust subspace learning formulations of
(Candes et al. 2009; Xu, Caramanis, and Sanghavi 2010).

Corollary 1 (Convex robust subspace learning)

min
B∈B∞

2

min
Φ

min
S

L(BΦ+S;X)+α‖Φ‖2,1+β‖S‖1,1 (5)

= min
X̂

min
S

L(X̂+S;X)+α‖X̂‖tr+β‖S‖1,1. (6)

Sparse Coding For sparse coding, the goal is not to reduce
dimension but instead to learn a sparse representation Φ. The
standard regularizer used for this purpose has been ‖Φ‖1,1,
which encourages entry-wise sparsity in Φ (Mairal et al.
2008; Lee et al. 2009; Jenatton et al. 2010). To avoid degen-
eracy, one imposes the constraint B:j ∈Bq ={b :‖b‖q ≤1}
for some 1≤ q≤∞. As above, the resulting training prob-
lem can be solved globally and efficiently.

Proposition 2 (Convex sparse coding)

min
B∈B∞

q

min
Φ

L(BΦ;X) + α‖Φ‖1,1 (7)

= min
X̂

L(X̂;X) + α‖X̂ ′‖q,1. (8)

Given X̂ , setting B = [X̂:1/‖X̂:1‖q, ..., X̂:m/‖X̂:m‖q] and
Φ = diag([‖X̂:1‖q, ..., ‖X̂:m‖q]) provides a solution to (7).

Proof: (8) follows from Theorem 1 and Lemma 2 (23) be-
low. Given X̂ , B and Φ must be optimal since these satisfy
BΦ = X̂ and ‖Φ‖1,1 = ‖X̂ ′‖q,1 respectively. �

Therefore (7) can be solved efficiently by first solving (8),
then recovering B and Φ as shown. Note that, contrary to
common intuition, the solution is not over-complete. That
is, we obtain a simple form of vector quantization that mem-
orizes the (normalized) observations and codes the training
data by a scaled indicator vector; an outcome also witnessed
by (Bach, Mairal, and Ponce 2008). This property is an in-
herent weakness of ‖·‖1,1 reguarlization that does not appear
to be widely appreciated. Nevertheless, given a test point x,
one can recover φ = argminφ �(Bφ)+α‖φ‖1, yielding a
sparse representation in terms of the training observations.
General Formulation We now prove a general result that
yields the previous propositions as special cases. This for-
mulation is more general than (Bach, Mairal, and Ponce
2008), by allowing B:j ∈ B for any bounded closed B, more

2‖X‖tr is the convex envelope of rank(X) over the set {X :
‖X‖sp ≤ 1}, see e.g. (Recht, Fazel, and Parrilo 2007). It provides
a convex relaxation of rank widely used in low rank matrix recov-
ery (Candes and Recht 2008; Salakhutdinov and Srebro 2010).

restrictive by considering ‖Φ‖p,1 regularization, and deliv-
ers a more explicit characterization of the induced norm on
X̂ that we exploit in our semi-supervised extensions below.

Theorem 1 For any 1 ≤ p ≤ ∞, and any bounded closed
set B ⊂ R

n such that span(B) = R
n

min
B∈B∞

min
Φ

L(BΦ;X) + α‖Φ‖p,1 (9)

= min
X̂

L(X̂;X) + α‖X̂ ′‖∗(B,p∗) (10)

using the induced norm definition from Lemma 1.
Proof:(9) = min

X̂
min

B∈B∞
min

Φ:BΦ=X̂
L(X̂;X) + α‖Φ‖p,1 (11)

= min
X̂

L(X̂;X)+α min
B∈B∞

min
Φ:BΦ=X̂

‖Φ‖p,1. (12)

Now consider the inner minimization in (12). Fix any X̂ ,
k ∈ N and B ∈ Bk, and observe

min
Φ:BΦ=X̂

‖Φ‖p,1=min
Φ

max
Λ

‖Φ‖p,1+tr(Λ′(X̂−BΦ)). (13)

If B does not span the columns of X̂ then the constraint
BΦ = X̂ is infeasible, and (13) is unbounded above; hence
such a B cannot participate in a minimum of (12). We con-
clude that any B selected in (12) must span the columns of
X̂ . Given such a B, a feasible Φ exists, meaning Slater’s
condition is satisfied and strong Lagrange duality holds
(Boyd and Vandenberghe 2004, §5.2.3). Thus for such a B

(13) = max
Λ

min
Φ

‖Φ‖p,1 + tr(Λ′(X̂−BΦ)). (14)

Since the dual norm of ‖ · ‖p,1 is ‖ · ‖p∗,∞, by norm duality:

(14) = max
Λ

min
Φ

max
‖V ‖p∗,∞≤1

tr(V ′Φ)+tr(Λ′(X̂−BΦ)) (15)

= max
Λ

max
‖V ‖p∗,∞≤1

min
Φ

tr(Λ′X̂)+tr(Φ′(V−B′Λ)) (16)

= max
‖V ‖p∗,∞≤1

max
Λ:B′Λ=V

tr(Λ′X̂) (17)

= max
Λ:‖B′Λ‖p∗,∞≤1

tr(Λ′X̂), (18)

where (16) follows by (Rockafellar 1970, Cor. 37.3.2), (17)
follows by eliminating Φ, and (18) follows by a straightfor-
ward substitution. Therefore, we have established

(12) =min
X̂

L(X̂;X)+α min
B∈B∞

max
Λ:‖B′Λ‖p∗,∞≤1

tr(Λ′X̂) (19)

= min
X̂

L(X̂;X) + α max
Λ:‖Λ′‖(B,p∗)≤1

tr(Λ′X̂) (20)

= min
X̂

L(X̂;X) + α‖X̂ ′‖∗(B,p∗), (21)

where (20) follows by the definition of ‖ · ‖(B,p∗) in
Lemma 1, and (21) follows again by norm duality. �
Lemma 2 Let Bq = {b : ‖b‖q ≤ 1}. In the mapping es-
tablished by Theorem 1, the induced regularizer ‖X̂‖∗(Bq,p∗)
has a simple closed form in the following special cases

‖Φ‖2,1,B2 �→ ‖X̂ ′‖∗(B2,2)
= ‖X̂‖tr (22)

‖Φ‖1,1,Bq �→ ‖X̂ ′‖∗(Bq,∞) = ‖X̂ ′‖q,1 (23)
‖Φ‖p,1,B1 �→ ‖X̂ ′‖∗(B1,p∗) = ‖X̂‖p,1. (24)

(The first two cases correspond to propositions 1 and 2.)
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Proof: Note ‖X̂ ′‖∗(B2,2)
= ‖X̂ ′‖∗(2,2) = ‖X̂ ′‖∗sp = ‖X̂ ′‖tr,

proving (22). Then by (Steinberg 2005, §1.3.1) and Hölder’s
inequality one can show ‖Y ‖∗(1,r) = max‖B‖(1,r)≤1 tr(B′Y )

= maxB:‖B:j‖r≤1∀j
∑

j B
′
:jY:j =

∑
j ‖Y:j‖r∗ = ‖Y ′‖r∗,1;

so for (24) one obtains ‖X̂ ′‖∗(B1,p∗) =‖X̂ ′‖∗(1,p∗)=‖X̂‖p,1.
Finally, ‖Y ′‖(q∗,p∗)=‖Y ‖(p,q) (Steinberg 2005, §1.2.2), so
for (23): ‖X̂ ′‖∗(Bq,∞)=‖X̂ ′‖∗(q,∞)=‖X̂‖∗(1,q∗)=‖X̂ ′‖q,1. �

Theorem 1 captures a wide range of formulations, in-
cluding for example standard sparse coding and sparse PCA
(Bradley and Bagnell 2009; Bach, Mairal, and Ponce 2008;
Zou, Hastie, and Tibshirani 2006). However, for (10) to ad-
mit an efficient global optimization procedure, the derived
norm ‖X̂ ′‖∗(B,p∗) must be efficiently computable for given

X̂ . We have already seen that this is achievable in Proposi-
tions 1 and 2, where the derived norm reduced to standard,
efficiently computable norms on X̂ . Unfortunately the in-
duced norm ‖X̂ ′‖∗(B,p∗), although convex, is not always effi-
ciently computable (Hendrickx and Olshevsky 2010; Stein-
berg 2005). In particular, this norm is not known to be effi-
ciently computable for the mixed regularizers considered in
(Bach, Mairal, and Ponce 2008; Bradley and Bagnell 2009;
Zou, Hastie, and Tibshirani 2006); hence these previous
works had to introduce relaxations, heuristic basis genera-
tors, or alternating minimization, respectively. Nevertheless,
we will see that there remain many important and useful
cases where ‖X̂ ′‖∗(B,p∗) can be computed efficiently.

Semi-supervised Representation Learning

Our main contribution in this paper is to demonstrate a
global form of semi-supervised representation learning that
can be achieved by applying the general framework.

Consider a setting where we are given an n×mu matrix of
unlabeled data Xu, an n×ml matrix of labeled data Xl, and
a c×ml matrix of target values Yl. We would like to learn a
k × (ml +mu) representation matrix Φ = [Φl,Φu] and an
n × k basis dictionary B such that X=[Xl, Xu] can be re-
constructed from X̂ = BΦ, while simultaneously learning a
c× k prediction model W such that Yl can be reconstructed
from Ŷl =WΦl. Let Lu(BΦ;X) and Ls(WΦl;Yl) denote
unsupervised and supervised losses respectively, which we
assume are convex in their first argument. To avoid degen-
eracy we impose the constraints B:j ∈ B and W:j ∈ W
for bounded closed convex sets B and W . The joint training
problem can then be expressed as a convex program.

Proposition 3 min
B∈B∞

min
W∈W∞

min
Φl,Φu

Lu(B[Φl,Φu];X)

+ βLs(WΦl;Yl) + α‖[Φl,Φu]‖p,1 (25)
= min

U∈U∞
min
Φ

Lc(UΦ;Z) + α‖Φ‖p,1 (26)

= min
Ẑ

Lc(Ẑ;Z) + α‖Ẑ ′‖∗(U,p∗), (27)

where Z =

[
Xl Xu

Yl 0

]
, U =

[
B
W

]
, Ẑ = U [Φl,Φu],

U = B×W , and Lc(Ẑ;Z) = Lu(BΦ;X)+βLs(WΦl;Yl).

Proof: (27) follows immediately from Theorem 1. �
Unlike staged training procedures that separate the unsu-

pervised from the supervised phase (Lee et al. 2009), and
previous work on semi-supervised dimensionality reduction
that relies on alternating minimization (Rish et al. 2007;
Pereira and Gordon 2006), Proposition 3 provides a jointly
convex formulation that allows all components to be trained
simultaneously. Whether (27) can be solved efficiently and
B,W,Φ recovered from Ẑ depends on the structure of the
derived norm ‖Ẑ ′‖∗(U,p∗). We show two significant cases
where this can be achieved.
Sparse Coding Formulation If in (25) we choose p = 1
and constrain the basis dictionary and prediction model to
Bq1 = {b : ‖b‖q1 ≤ 1} and Wq2 = {w : ‖w‖q2 ≤ γ}
respectively, then an efficient characterization of the induced
norm in (27) can be obtained. Thus, here we are considering
‖Φ‖1,1 regularization (hence p∗ =∞). Let Λ denote a dual
matrix the same size as Ẑ, where ΛX denotes the upper and
ΛY the lower parts respectively, and let Uq1

q2 = Bq1 ×Wq2 .
The dual of the induced norm can be easily derived first.

Lemma 3 ‖Λ′‖(Uq1
q2

,∞) = max
j

‖ΛX
:j ‖q∗1 + γ‖ΛY

:j‖q∗2 .
Proof:‖Λ′‖(Uq1

q2
,∞)= max

u∈Uq1
q2

‖Λ′u‖∞=max
u∈Uq1

q2

max
j

Λ′
:ju (28)

=max
j

max
‖b‖q1≤1

max
‖w‖q2≤γ

b′ΛX
:j+w

′ΛY
:j .(29)

The lemma then follows by norm duality. �
The induced norm on Ẑ is then easy to determine.

Corollary 2 ‖Ẑ ′‖∗
(Uq1

q2
,∞)

=
∑
j

max(‖ẐX
:j ‖q1 ,

1

γ
‖ẐY

:j ‖q2).

Therefore both the induced norm and its dual are ef-
ficiently computable in this case, resulting in an efficient
“sparse coding” formulation of semi-supervised represen-
tation learning. The training problem can be solved glob-
ally by first solving the convex optimization (27), then given
Ẑ, recovering B, W and Φ by setting U = ẐD−1 and
Φ = D, where D is a diagonal matrix such that Djj =

max(‖ẐX
:j ‖q1 , 1

γ ‖ẐY
:j ‖q2). This solution must be an opti-

mum since UΦ = Ẑ and ‖Φ‖1,1 = ‖Ẑ ′‖∗
(Uq1

q2
,∞)

. Unfortu-
nately, as in the unsupervised case, we reach the conclusion
that ‖Φ‖1,1 regularization leads to a trivial form of vector
quantization, unless the number of features is explicitly re-
stricted (but imposing this restriction leads to intractability).
Subspace Learning Formulation Fortunately, the situa-
tion for subspace learning is more interesting. If instead
in (25) we choose p = 2 and constrain the basis dictio-
nary and prediction model to B2 = {b : ‖b‖2 ≤ 1} and
W2={w :‖w‖2 ≤ γ} respectively, then we achieve an effi-
cient characterization of the derived norm, and thus recover
a novel and effective convex formulation of semi-supervised
dimensionality reduction.

To derive a concrete characterization of the induced norm
we need to introduce the following definitions. Let U2

2 =
B2×W2, and let In denote an n×n identity matrix. De-
fine two diagonal indicator matrices IX = diag([1n;0c])
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and IY = diag([0n,1c]), such that IX+ IY = In+c.
Also define the parameterized diagonal matrix Dρ =

diag([
√
1 + γρ1n;

√
γ + 1/ρ1c]) for ρ ≥ 0. As above, it

will be easier to first derive the dual norm, before using du-
ality again to recover the target norm on Ẑ.
Lemma 4 ‖Λ′‖(U2

2 ,2)
= min

ρ≥0
‖DρΛ‖sp.

Proof:‖Λ′‖2(U2
2 ,2)

= max
h:‖hX‖2=1, ‖hY ‖2=γ

h′ΛΛ′h (30)

= max
H:H
0, tr(HIX)=1, tr(HIY )=γ

tr(HΛΛ′) (31)

= min
λ≥0,ν≥0

min
{Λ:ΛΛ′ �λIX+νIY }

λ+ γν (32)

= min
λ≥0,ν≥0

min
{Λ:‖Dν/λΛ‖2

sp≤λ+γν}
λ+ γν (33)

= min
λ≥0,ν≥0

‖Dν/λΛ‖2sp=min
ρ≥0

‖DρΛ‖2sp, (34)

where (31) follows by the substitution H =hh′ and (32) is
its Lagrange dual.3 To explain (33) note that for λ ≥ 0 and
ν ≥ 0, the relation ΛΛ′ � λIX + νIY holds if and only if
Dν/λΛΛ

′Dν/λ�Dν/λ(λI
X+νIY )Dν/λ=(λ+γν)In+c. �

Not only does the dual norm have a simple characteriza-
tion, it is efficiently computable: it can be evaluated by a
simple power method iteration that renormalizes each part
hX and hY of h independently.4 Given this dual formula-
tion, the target norm can then be easily characterized.

Lemma 5 ‖Ẑ ′‖∗
(U2

2 ,2)
= max

ρ≥0
‖D−1

ρ Ẑ‖tr.

Proof: ‖Ẑ ′‖∗(U2
2 ,2)

= max
‖Λ′‖

(U2
2 ,2)

≤1
tr(Λ′Ẑ) (35)

= max
ρ≥0

max
Λ:‖DρΛ‖sp≤1

tr(Λ′Ẑ) (36)

= max
ρ≥0

max
Λ̃:‖Λ̃‖sp≤1

tr(Λ̃′D−1
ρ Ẑ) = max

ρ≥0
‖D−1

ρ Ẑ‖tr, (37)

using the definitions of the dual norms (norm duality). �
So using this induced norm, the objective (27) can be op-

timized to recover Ẑ. Although ‖Ẑ‖∗
(U2

2 ,2)
can be computed

by a line search over ρ ≥ 0,5 it is far more efficient to work
with the dual norm given in Lemma 4.
Computational Method In our experiments below we
solve the learning problem (27) for the subspace case by
working with a more efficient dual formulation (Rockafellar
1970, Theorem 31.1 and 31.3). In particular, we first recover
the matrix Λ̂ by solving the dual problem

min
Λ

L�
c(Λ;Z) + α�‖Λ′‖(U2

2 ,2)
(38)

where L�
c(Λ;Z) is the Fenchel conjugate of Lc(Ẑ;Z), and

α� is a dual regularization parameter.6 Then, with Λ̂ avail-
3When maximizing a convex function of H one of the extreme

points in {H :H�0, tr(HIn)=1, tr(HIc)=γ} must be optimal.
It is known that these extreme points have rank at most 1 (Pataki
1998), hence the rank constraint can be dropped in (31).

4The objective ‖DρΛ‖sp is also quasi-convex in ρ ∈ (0,∞).
5The objective ‖D−1

ρ Ẑ‖tr is quasi-concave in ρ ∈ (0,∞).
6In our experiments we therefore fix α�, recover Λ̂ and Ẑ by the

dual formulation given above, then recover the corresponding α in
the primal problem by α = −(L�

c(Λ̂;Z)+Lc(Ẑ;Z))/‖Ẑ′‖∗(U2
2 ,2).

able, we recover ẐX and ẐY
l by solving

min
ẐX,ẐY

l

Lu(Ẑ
X;X)+βLs(Ẑ

Y
l ;Yl)−tr(ẐX ′Λ̂X)−tr(ẐY

l
′Λ̂Y

l ).

Since ẐY
u does not affect Lc(Ẑ;Z) in (27), it can be recov-

ered by minimizing ‖Ẑ ′‖∗
(U2

2 ,2)
keeping ẐX and ẐY

l fixed.

Finally, given an optimal solution Ẑ, we recover U and Φ
by a simple cut algorithm that greedily generates columns
for U : Recall from the proof of Theorem 1 that if U and Φ
are optimal they must satisfy

‖Ẑ ′‖∗(U2
2 ,p

∗)= min
U∈(U2

2 )
∞

min
Φ:UΦ=Ẑ

‖Φ‖2,1 (39)

= min
U∈(U2

2 )
∞
min
Φ

max
Λ

‖Φ‖2,1+tr(Λ′(Ẑ−UΦ))(40)

= max
Λ:‖u′Λ‖2≤1 ∀u∈U2

2

tr(Λ′Ẑ). (41)

Thus, given a current U , a minimum cost Φ and correspond-
ing Lagrange multiplier Λ can be recovered by solving the
inner problem in (39). If Λ were optimal it would have to
satisfy ‖u′Λ‖2 ≤ 1 ∀u ∈ U2

2 in (41); hence a maximally
violated constraint can be efficiently computed by solving
u∗ ∈ argmaxu∈U2

2
u′ΛΛ′u (using the same power method

as before). If ‖u∗′Λ‖2 ≤ 1 + ε the procedure halts. Other-
wise u∗ is added as a new column to U , and the procedure
repeats. Each iteration makes maximum greedy progress in
(39) and convergence to the optimum is not hard to establish.

Therefore, by applying these computational methods
we obtain an efficient global procedure to solve a semi-
supervised representation learning problem in the spirit of
(Rish et al. 2007; Raina et al. 2007; Lee et al. 2009;
Mairal et al. 2008). Recently, (Goldberg et al. 2010) has
proposed a transductive dimensionality reduction formula-
tion that is also convex. However, that formulation does not
provide extraction of the representation Φ nor the prediction
model W—instead it only recovers the analog of Ẑ contain-
ing transductive predictions on the unlabeled data—and it
cannot enforce individual constraints on the supervised (W )
and unsupervised (B) parts of the model respectively.

Experimental Results

Algorithms To evaluate the proposed convex sparse semi-
supervised learning method (CS3), we compared its per-
formance to two local and one convex approach respec-
tively: alternation (ALT), staged-alternation (STAGE) and
a transductive matrix completion method (Goldberg et al.
2010). In the alternating approach, two of the three vari-
ables, B,Φ,W , are fixed and the other optimized, repeat-
ing optimization over each variable until convergence. In the
staged-alternator, the optimizer alternates between B and Φ
until convergence and then optimizes the prediction model,
W . Note that the staged-alternator is the approach taken by
(Lee et al. 2009); however, we included their implementa-
tion in the results for completeness.7 The implementation of
the transductive matrix completion method follows the set-
tings outlined by (Goldberg et al. 2010).

7http://www.eecs.umich.edu/∼honglak/softwares/fast sc.tgz
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Datasets We investigated six classification datasets: (i) A
synthetic dataset with features and labels generated analo-
gously to (Goldberg et al. 2010), which contains 20 features
and 400 samples. The rank of the generated feature matrix
is 4, and zero mean independent Gaussian noise with vari-
ance σ2 = 0.1 was added to the features. (ii) A UCI dataset,
Wisconsin Breast Cancer (WBC), which contains 10 fea-
tures and 683 samples.8 (iii) A UCI dataset, Ionosphere,
which contains 34 features and 351 samples.9 (iv) Three
semi-supervised learning benchmark datasets, BCI, COIL
and g241n, which all contain 1500 samples, with 117, 241
and 241 features respectively.10 For experiments on trans-
ductive learning, we randomly selected from each dataset L
examples as the labeled data and U examples as the unla-
beled data. Both L and U are reported in Table 2. Then we
measured the transductive error on the U examples, and this
error was further averaged over runs on five different random
choices of the L and U examples.

Parameter selection Cross validation is ineffective here
due to the small number of training points. Instead, we it-
erated over several different parameter settings for the two
regularization parameters, β and α, and the infinity norm
bound, γ, and chose the one that produced lowest test label
error, individually for each algorithm. For example, in Table
2, we chose the best β ∈ {10−5, 10−3, 10−2, 0.1, 1}. The
number of bases for the staged and alternating algorithms
was set to 100 for a balance between runtime and accuracy.

Comparison 1: Optimization We first investigated CS3’s
ability to obtain lower objective values, by setting the loss
functions and parameters to common choices across the al-
gorithms. In particular, we set the supervised loss to the
square Frobenius norm, the unsupervised loss to the logistic
loss, and the regularizer to ||Φ||2,1. We minimized (38) by L-
BFGS. For the local optimization methods ALT and STAGE
a projected gradient method was used to enforce norm con-
straints on B and a constrained optimization was used for
the infinity norm on W . To evaluate optimization quality, we
fixed γ = 1 and tested on β ∈ {0.1, 10} and α� ∈ {0.1, 10}
(using the recovered α to train ALT and STAGE). Two thirds
of the examples were used as labeled data while the rest used
as unlabeled data. Table 1 shows that CS3 outperforms the
non-convex approaches in terms of both the objective value
attained and the training cost on all the data sets. Interest-
ingly, ALT and STAGE occasionally find a solution that is
very close to the global optimum.

Comparison 2: Transductive error We then evaluated
the transductive generalization error attained by the differ-
ent methods. In this case, we considered different choices
for the loss functions, and report the results for the best, us-
ing either a soft-margin support vector machine (hinge loss)
or smooth logistic loss for the prediction model; and either
projecting or not projecting B and W in the local optimiza-
tion methods. Limited memory BFGS was used in all cases
with a smooth loss function, excluding (Lee et al. 2009) who

8http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
9http://archive.ics.uci.edu/ml/datasets/Ionosphere

10http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html

Table 1: Minimum objective values in Equation (25) ob-
tained by the training methods on six data sets. The numbers
in the parenthesis indicate runtime in seconds.

Method β = 0.1 β = 10
α� = 0.1 α� = 10 α� = 0.1 α� = 10

COIL
CS3 0.071 (88) 0.070 (106) 6.934 (76) 6.809 (100)
ALT 0.084 (1770) 0.076 (2352) 8.150 (766) 7.381 (2735)
STAGE 1.583 (278) 1.384 (272) 6.934 (423) 6.934 (158)

WBC
CS3 0.119 (3) 0.113 (8) 6.981 (4) 6.711 (4)
ALT 0.159 (124) 0.122 (324) 8.209 (730) 7.048 (217)
STAGE 1.484 (67) 1.321 (73) 6.982 (36) 6.982 (33)

BCI
CS3 0.073 (35) 0.069 (25) 6.936 (11) 6.483 (14)
ALT 0.086 (143) 0.609 (227) 8.158 (166) 6.668 (150)
STAGE 0.879 (45) 0.799 (45) 6.936 (85) 6.935 (51)

IONOSPHERE
CS3 0.084 (5) 0.078 (61) 6.934 (4) 6.434 (6)
ALT 0.103 (80) 0.081 (112) 8.162 (125) 6.583 (306)
STAGE 0.664 (29) 0.769 (28) 6.946 (19) 6.946 (21)

G241N
CS3 0.071 (160) 0.070 (94) 6.934 (88) 6.809 (101)
ALT 0.083 (2259) 0.076 (2648) 8.147 (756) 7.374 (1132)
STAGE 1.586 (289) 1.381 (290) 6.934 (127) 6.934 (274)

SYNTHETIC
CS3 0.094 (5) 0.090 (10) 6.956 (4) 6.503 (6)
ALT 0.111 (145) 0.093 (118) 8.171 (150) 6.687 (239)
STAGE 0.870 (36) 0.856 (29) 6.957 (24) 6.957 (17)

used a conjugate gradient method with a smooth ε-L1 reg-
ularizer. In Table 2, the best results for the alternators were
obtained with a hinge loss with an unprojected optimization.

One can see that in every case CS3 is either comparable to
or outperforms the other competitors. Surprisingly, though
the approach in (Goldberg et al. 2010) is the most similar to
CS3, it performs noticeably worse than CS3. ALT performs
surprisingly poorly for WBC and Ionosphere; one possible
reason is that the mixed supervised classification and un-
supervised regression losses create poor local minima. This
suggests that for an alternating minimization approach, sep-
arating the problem into a factorization step and a classifica-
tion learning step is more appropriate. We can also see that
LEE ET AL. often performs better than STAGE, despite hav-
ing the same objective; this result is likely due to optimiza-
tions in their code, such as the smoothed sparse regularizer.

Conclusion

We have developed a general framework for expressing con-
vex representation learning problems. For subspace learn-
ing, we showed that trace norm regularization is the nat-
ural consequence of using ‖Φ‖2,1. For sparse coding, we
found the sparse regularizer ‖Φ‖1,1 leads to vector quanti-
zation if the number of features is not restricted. Our general
framework admits many other formulations, and we demon-
strated a new convex formulation of semi-supervised sub-
space learning that shows the benefits of globally training
multiple components. For future work, we are investigating
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Table 2: Average test (transductive) error of sparse coding techniques on a variety of datasets (± standard deviation).

COIL WBC BCI IONOSPHERE G241N
(N=241, L=10, U=100) (N=10, L=10, U=50) (N=117, L=10, U=200) (N=34, L=10, U=300) (N=241, L=10, U=100)

ALT 0.464 ± 0.036 0.388 ± 0.156 0.440 ± 0.028 0.457 ± 0.075 0.478 ± 0.053
STAGED 0.476 ± 0.037 0.200 ± 0.043 0.452 ± 0.041 0.335 ± 0.050 0.484 ± 0.050
LEE ET AL. 0.414 ± 0.029 0.168 ± 0.100 0.436 ± 0.093 0.350 ± 0.042 0.452 ± 0.073
GOLDBERG 0.484 ± 0.068 0.288 ± 0.105 0.540 ± 0.025 0.338 ± 0.053 0.524 ± 0.022
CS3 0.388 ± 0.043 0.134 ± 0.072 0.380 ± 0.069 0.243 ± 0.042 0.380 ± 0.036

extensions to structured and hierarchical sparsity (Jenatton
et al. 2010), factored sparsity (Jia, Salzmann, and Darrell
2010), and robust formulations (Candes et al. 2009).
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