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Abstract

Ordinal regression is an important research topic in ma-
chine learning. It aims to automatically determine the
implied rating of a data item on a fixed, discrete rat-
ing scale. In this paper, we present a novel ordinal re-
gression approach via manifold learning, which is ca-
pable of uncovering the embedded nonlinear structure
of the data set according to the observations in the high-
dimensional feature space. By optimizing the order in-
formation of the observations and preserving the intrin-
sic geometry of the data set simultaneously, the pro-
posed algorithm provides the faithful ordinal regression
to the new coming data points. To offer more general
solution to the data with natural tensor structure, we
further introduce the multilinear extension of the pro-
posed algorithm, which can support the ordinal regres-
sion of high order data like images. Experiments on var-
ious data sets validate the effectiveness of the proposed
algorithm as well as its extension.

Introduction

Ordinal regression is an important research topic in machine
learning. It aims to automatically determine the implied rat-
ing of a data item on a fixed, discrete rating scale. Unlike
regular regression problem, the range of the ordinal regres-
sion function should be discrete and finite. And also in con-
trast to the multi-class classification problem, ordinal regres-
sion not only recognizes whether the data points belong to
the same group or not, but also provides the order informa-
tion of different data groups.

Some algorithms have been proposed to tackle the ordi-
nal regression problem. Herbrich et al. (2000) applied the
principle of Structural Risk Minimization (SRM) to ordi-
nal regression. Kramer et al. (2001) converted ordinal re-
gression into a regular regression problem, which maps the
ordinal variables into numeric values. In (Frank and Hall
2001), ordinal regression is transformed into a nested binary
classification problem, together with the original ranking in-
formation. Crammer and Singer (2002) proposed a ranking
algorithm, which aims to find the one-dimensional projec-
tion of the original data for ordinal regression. Shashua and
Levin (2003) solved the ordinal regression problem using

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

large margin techniques. Chu and Keerthi (2005) introduced
two support vector approaches for ordinal regression by op-
timizing multiple thresholds to define the parallel discrim-
inant hyperplanes for the ordinal scales. Li and Lin (2007)
proposed a reduction framework from ordinal regression to
binary classification based on extended examples. Sun et
al. (2010) proposed a discriminant based ordinal regression
method, which incorporates the linear discriminant analysis
into the ordinal regression framework.

In this paper, we propose a novel manifold learning
approach to address ordinal regression on more complex
data sets with nonlinear geometry. The rationale of mani-
fold learning is to uncover the embedded nonlinear struc-
ture of data sets based on the assumption that the high-
dimensional observations lie on or close to an intrinsically
low-dimensional manifold. The most representative mani-
fold learning algorithms include isometric feature mapping
(Isomap) (Tenenbaum, de Silva, and Langford 2000), locally
linear embedding (LLE) (Roweis and Saul 2000), and Lapla-
cian eigenmaps (LE) (Belkin and Niyogi 2001). Following
above algorithms, more manifold learning algorithms have
been developed for clustering and classification, such as lo-
cality preserving projections (LPP) (He and Niyogi 2004),
neighborhood preserving embedding (NPE) (He et al. 2005),
maximum variance unfolding (MVU) (Weinberger and Saul
2006), isometric projection (IsoProjection) (Cai, He, and
Han 2007), discriminant LLE (DLLE) (Li et al. 2008), and
discriminant Laplacian embedding (DLE) (Wang, Huang,
and Ding 2010).

Although many effective manifold learning techniques
have been proposed for the clustering and classification
tasks, they are not directly applicable for ordinal regression
problem. Figure 1 provides an illustration. The data points
lie on a two-dimensional manifold with four-level ranking
information. For classification or clustering task, we prefer
to seek the projection function that can maximize the dis-
criminant information, so w1 is the optimal axis for data
mapping. However, the projection on w1 cannot preserve
the order information of different data blocks, which is of
great importance in ordinal regression. To keep both the or-
der information and manifold geometry, the projection on
w2 is preferred.

Based on above considerations, this paper proposes an or-
dinal regression approach via manifold learning. To offer
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Figure 1: Illustration of ordinal regression on the data set
with nonlinear geometry. For classification, the projection
on w1 is preferred since it maximizes the discriminant in-
formation. For ordinal regression, the projection on w2 is
preferred because it keeps the order information of different
data blocks. Moreover, it preserves the manifold structure of
the data set.

more general solution to the data with natural tensor struc-
ture, we further introduce the multilinear extension of the
proposed algorithm, which can support the ordinal regres-
sion of high order data like images. The proposed algorithm
targets several goals:

• Keeping the order information among data groups of dif-
ferent ranking levels.

• Maximizing the margins between two consecutive rank-
ing levels.

• Preserving the intrinsic manifold geometry of data sets.

• Preserving the natural tensor structure of high-order data.

Ordinal Regression via Manifold Learning

Let {(xi, yi)} (i = 1, ..., n) be the training data set, where
xi ∈ R

d denotes the input data point, and yi ∈ {1, ..., k}
denotes the corresponding ordered class labels. Ordinal re-
gression aims to find a suitable function Φ which correctly
maps each training data point xi to its corresponding label
yi. In order to perform ordinal regression under the manifold
learning framework, we formulate the objective function of
the proposed algorithm as follows:

min J(w, γ) =
n∑

i,j=1

(wTxi −wTxj)
2Aij − Cγ

s.t. wT (mr+1 −mr) ≥ γ, r = 1, ..., k − 1,

(1)

where w ∈ R
d is the projection vector, and A is the

n × n adjacency matrix constructed to model the neighbor-
hood relationship between data points. Furthermore, mr =
1
nr

∑
yi=r xi denotes the mean vector of samples from rank

r, nr is the number of data samples in rank r, γ is the margin
between the projected means of two consecutive ranks, and
C ≥ 0 is a penalty coefficient used to balance the manifold
structure and order information.

Clearly, the first term of the objective function in (1) in-
tends to preserve the manifold structure of the data set in
the output space, while the second term aims to maximize
the margin between the projected means of two consecutive
ranks. By optimizing these two terms jointly, the projected
data can be sorted according to their ranks with large margin
while the intrinsic manifold structure of the data set is well
preserved.

Adjacency Matrix Construction

Manifold learning uncovers the nonlinear structure by inte-
grating the descriptions of a set of local patches using the
adjacency matrix. Therefore, the effect of manifold learning
largely depends on how well the adjacency matrix represents
the data manifold. In this section, we present a novel method
to construct the adjacency matrix of the data set.

To construct an adjacency matrix, we first need to build a
neighborhood graph. Currently, there are mainly two kinds
of neighborhood graphs: K graph and ε graph (Tenenbaum,
de Silva, and Langford 2000; Belkin and Niyogi 2001). For
the ε graph, the neighborhood radius ε is very difficult to be
decided because of the variety of data density. Therefore, the
K graph is more popular in practice (Hein and Maier 2007;
Liu and Chang 2009). However, the K graph in existing
manifold learning algorithms connect xi and xj if xi is one
of the K-nearest neighbors of xj , or, if xj is one of the K-
nearest neighbors of xi. Such an “or” assumption may not
reflect the real neighborhood relationship between two data
points. For example, some data points may be connected
with outliers since the outliers consider these data points as
”neighbors”, even though the outliers are not really belong-
ing to the neighborhood set of any data point.

To construct a more robust neighborhood graph, we in-
troduce a two-way connection criterion to construct the K
graph: we connect xi and xj only if xi is one of the K-
nearest neighbors of xj , and, xj is also one of the K-nearest
neighbors of xi. The proposed criterion adopts the “and” hy-
pothesis, which means it agrees to connect two data points
if and only if both of them are neighbors of each other. The
adjacency matrix is defined as follows:

Aij =

{
exp(−d(xi,xj)

2

2σ ), if j ∈ Ni and i ∈ Nj

0, otherwise
(2)

where d(xi,xj) denotes the distance between xi and xj , Ni

denotes the index set of the K nearest neighbors of xi, and
σ is empirically set by σ =

∑n
i=1 d(xi,xiK )2/n where xiK

is the Kth nearest neighbor of xi. A similar idea has been
presented by Liu and Chang (2009): they built a symmetry-
favored graph by putting more trust on the connection agreed
by both data points, and validated that such setting is more
reliable than the traditional K graph.

After considering the two-way connection criterion, more
importantly, we want to integrate order information into the
neighborhood graph. Actually, we aim to preserve the local-
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Figure 2: Schematic illustration of local neighborhood con-
struction for ordinal regression. By considering the order in-
formation, the locality within each rank is preserved, while
the locality between different ranks is enlarged.

ity within each rank, while enlarge the locality between dif-
ferent ranks. Moreover, we expect that the extent of enlarge-
ment can reflect the rank difference between two connected
data points. Therefore, we define d(xi,xj) as follows:

d(xi,xj) = (|yi − yj |+ 1)||xi − xj ||2 (3)

where | · | denotes the absolute value operator and || · ||2
denotes the L2-norm operator. If xi and xj belong to the
same rank, i.e., yi = yj , then d(xi,xj) = ||xi − xj ||2.
If xi and xj belong to different ranks, i.e., yi �= yj , then
d(xi,xj) > ||xi−xj ||2, which means the original Euclidean
distance between xi and xj has been enlarged in our model.
When the rank difference between two data points increases,
the ratio of d(xi,xj) to ||xi − xj ||2, i.e., the extent of dis-
tance enlargement, increases accordingly. As illustrated in
Figure 2, by considering the order information, the local-
ity within each rank is kept unchanged, while the distance
between different ranks are enlarged. Furthermore, the dis-
tance between rank 1 and rank 3 is enlarged more than the
distance between rank 1 and rank 2.

In the adjacency matrix construction procedure, we uti-
lize the order information from the local perspective. In the
objective function (1), we aim to maximize the distance be-
tween two consecutive ranks, which considers the order in-
formation using a global manner. By incorporating the or-
der information in our model from both local and global
viewpoints, a unified manifold learning formulation is es-
tablished for ordinal regression.

Optimization Procedure

To solve the optimization problem in (1), we first rewrite the
objective function as follows:

min J(w, γ) = wTXLXTw − Cγ

s.t. wT (mr+1 −mr) ≥ γ, r = 1, ..., k − 1,
(4)

where X = [x1, ...,xn] is the data matrix, L = D−A is the
n×n Laplacian matrix (Belkin and Niyogi 2001), and D is a
diagonal matrix defined as Dii =

∑n
j=1 Aij (i = 1, ..., n).

Then we obtain the Lagrangian equation of (4):

L(w, γ, α) = wTXLXTw − Cγ

−
k−1∑
r=1

αr

(
wT (mr+1 −mr)− γ

)
,

(5)

where αr are the Lagrange multipliers which satisfy αr ≥ 0.
The necessary conditions for the optimality are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L

∂w
= 0 ⇒ w =

1

2
(XLXT )†

k−1∑
r=1

αr(mr+1 −mr),

∂L

∂γ
= 0 ⇒ C =

k−1∑
r=1

αr,

(6)
where (XLXT )† is the Moore-Penrose pseudoinverse of
the d × d matrix XLXT . If XLXT is invertible, then the
pseudoinverse and the inverse coincide, i.e., (XLXT )† =

(XLXT )−1.
Based on Eq. (6), the optimization problem in (4) could

be converted to the following problem:

min
k−1∑
r=1

αr(mr+1 −mr)
T (XLXT )†

k−1∑
s=1

αs(ms+1 −ms)

s.t. αr, αs ≥ 0, r, s = 1, ..., k − 1,

k−1∑
r=1

αr =
k−1∑
s=1

αs = C.

(7)
Since (XLXT )† is positive semidefinite, above optimiza-
tion problem is a convex quadratic programming (QP) one
with linear constraints. Some standard algorithms, such as
the conjugate gradient method and the interior point method,
can be employed to solve it. Then we can obtain the global
optimal w by substituting αr into the first equation in (6).

For a new test data point, we can easily determine its rank
by the following decision function:

f(x) = min
r∈{1,...,k}

{r : wTx− br < 0}, (8)

where br serves as a boundary to separate rank r and rank
r + 1, which is defined as follows:

br =

⎧⎪⎪⎨
⎪⎪⎩

wT (nr+1mr+1 + nrmr)

nr+1 + nr
r = 1, ..., k − 1,

max
i∈{1,...,n}

{wTxi} r = k.
(9)

Multilinear Extension

In real-world applications, input data are sometimes repre-
sented as high-order tensors, such as images. In order to
keep the structure of input data in the learning procedure,
we introduce the multilinear formulation of the proposed al-
gorithm.

Given the training data set {(Xi, yi)} (i = 1, ..., n), where
Xi ∈ R

d1×...×dN , and N is the order of tensor Xi. To take
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the high-order tensors as the input directly, the objective
function in (1) is reformulated as follows:

min J(wp|Np=1, γ) =
n∑

i,j=1

(
(Xi −Xj)

N∏
p=1

×pw
T
p

)2
Aij − Cγ

s.t. (Mr+1 −Mr)
N∏

p=1

×pw
T
p ≥ γ, r = 1, ..., k − 1,

(10)
where w1, ...,wN are projection vectors acting on corre-
sponding orders of input tensors, Mr is the mean tensor
of samples from rank r, and Xi

∏N
p=1 ×pw

T
p denotes the

multilinear multiplication between tensor Xi and vectors
wp. Please see (Yan et al. 2005; He, Cai, and Niyogi 2006;
Dai and Yeung 2006) for details of multilinear operations.

Since the above optimization problem is not convex, we
use an iterative strategy to solve it. First we fix w2, ...,wN ,
and find the optimal w1. Then we fix w1,w3, ...,wN , and
find the optimal w2. The rest can be deduced by analogy. Fi-
nally we fix w1, ...,wN−1, and find the optimal wN . Repeat
above steps until the procedure converges. Concretely, in the
pth step (p = 1, ..., N ), we rewrite (10) as follows:

min J(wp, γ) =
n∑

i,j=1

(wT
p x

p
i −wT

p x
p
j )

2Aij − Cγ

s.t. wT
p (m

p
r+1 −mp

r) ≥ γ, r = 1, ..., k − 1,

(11)

where xp
i is defined as xp

i = Xi

∏N
q=1,q �=p ×qw

T
q , and sim-

ilarly, mp
r = Mr

∏N
q=1,q �=p ×qw

T
q . Problem (11) can be

solved similarly to problem (1), therefore, we can obtain the
optimal wp in the pth iteration.

It is easy to prove the convergence of the entire procedure.
On the one hand, the convexity of problem (11) indicates
that J(wp|Np=1, γ) is nonincreasing in each iteration. On the
other hand, it is obvious that J(wp|Np=1, γ) ≥ −Cγ, where
C and γ are upper bounded and C ≥ 0, which indicates
that J(wp|Np=1, γ) is lower bounded. Therefore, the iterative
procedure will finally converge to a local optimal solution.

For a new tensor data point, we can determine its rank by
the following multilinear decision function:

f(X ) = min
r∈{1,...,k}

{r : X
N∏

p=1

×pw
T
p − br < 0}, (12)

where br is defined as follows:

br =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(nr+1Mr+1 + nrMr)

nr+1 + nr

N∏
p=1

×pw
T
p r = 1, ..., k − 1,

max
i∈{1,...,n}

{Xi

N∏
p=1

×pw
T
p } r = k.

(13)

Computational Complexity Analysis

In this section, we analyze the computational complexity
of proposed algorithm as well as its multilinear extension.

The most demanding steps of proposed algorithm are calcu-
lating the matrix XLXT , finding the Moore-Penrose pseu-
doinverse of XLXT , and solving a QP problem with a
(k − 1) × (k − 1) Hessian matrix. The time costs of these
three steps are O(dn2 + d2n), O(d3), and O(k3), respec-
tively. Therefore, the total computational cost of proposed
algorithm is O(dn2 + d2n+ d3 + k3).

For the multilinear extension, we assume that the sam-
ple tensors are of uniform size in each order, i.e., d1 =
d2 = ... = dN = d. In each iteration, xp

i (i = 1, ..., n)
should be calculated first. Together with the normal proce-
dure in proposed algorithm, the complexity of each iteration
is O(ndN + dn2 + d2n + d3 + k3). Therefore, the total
computational cost of the multilinear extension of proposed
algorithm is O

(
tN(ndN +dn2+d2n+d3+k3)

)
, where t is

the number of loops needed for the algorithm convergence.

Experiments

In this section, we show the performance of proposed al-
gorithms on three data sets: the UMIST face data set (Gra-
ham and Allinson 1998), the 100k MovieLens data sets1,
and the USPS digit data set (Hull 1994). For the pro-
posed algorithms, the nearest neighbor number K is fixed
at 10 and the ten-fold cross validation is employed to de-
termine the parameter C. The following evaluation criterion
is used to quantify the accuracy of predicted ordinal scales
{ŷ1, ŷ2, ..., ŷn} with respect to true targets {y1, y2, ..., yn}
(Sun et al. 2010):

• The mean absolute error (MAE) - the average deviation
of the prediction from true order, i.e., 1

n

∑n
i=1 |ŷi−yi|, in

which we treat the ordinal scales as consecutive integers.

UMIST Face Data Set

In order to intuitively illustrate that the proposed algorithm
is capable of preserving both order information and man-
ifold structure, we first conduct an experiment using the
data samples from the UMIST face data set (Graham and
Allinson 1998).

Suppose that we have three kinds of face images: a man
with glasses, a man without glasses, and a woman without
glasses. Now we are required to find the face image of a man
with glasses. Clearly, these three classes can be ranked ac-
cording to the requirement: the images of a man with glasses
are ranked first since they totally match the requirement; the
images of a man without glasses are ranked second since
they partially match the requirement; and the images of a
woman without glasses are ranked last since they do not
match the requirement at all.

The data set in this experiment is composed of three
classes of human faces from UMIST face data set. There
are 26, 38, and 20 images in rank 1, 2, and 3, respectively.
Each image is grayscale and downsampled to the resolution
of 56 × 46. For each rank, 10 images are used for training
and the rest are used for test.

Figure 3 shows the projection results of training and test
data. It is clear that the projected training data are arranged

1http://www.grouplens.org/node/73
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Figure 3: Projection results of training and test data points on UMIST face data set using proposed algorithm. The order
information is correctly kept in both training and test projections. Furthermore, the manifold structure within each rank, i.e.,
the pose variation of each person, is well preserved.

Table 1: The mean absolute error (MAE) of six algorithms
on MovieLens data set.

Methods ORML LDA KDLOR
MAE 1.285± 0.176 1.459± 0.130 1.368± 0.172
Methods IsoProjection NPE LPP
MAE 1.713± 0.366 1.790± 0.451 1.676± 0.173

orderly: the data points in rank 1 (corresponding to im-
ages of a man with glasses) are located in the interval of
(−0.6,−0.3) of the X-axis; the data points in rank 2 (corre-
sponding to images of a man without glasses) are located in
the interval of (−0.3,−0.05); and the data points in rank 3
(corresponding to images of a woman without glasses) are
located in the interval of (−0.05, 0.4). Furthermore, from
the selected data points (which are marked by the circles)
and their corresponding face images we can see that the
manifold structure within each rank, i.e., the pose variation
of each person, is preserved in the projected space smoothly.
For the test data, although there are overlaps between rank 1
and rank 2, most of the samples are sorted correctly accord-
ing to their ranks, which means that the proposed algorithm
provides a faithful prediction on the test data.

MovieLens Data Set

In this subsection, we compare the proposed method with
five algorithms: linear discriminant analysis (LDA) (Fisher
1936), kernel discriminant learning for ordinal regression
(KDLOR) (Sun et al. 2010), IsoProjection (Cai, He, and Han
2007), NPE (He et al. 2005), and LPP (He and Niyogi 2004),
on the 100k MovieLens data sets, which contains 100, 000
ratings (5 levels: from 1 to 5) for 1682 movies by 943 users.
Here LDA is a classical discriminant approach, KDLOR is
a competitive ordinal regression method, and IsoProjection,
NPE, and LPP are three representative manifold learning al-
gorithms.

In our evaluation, we randomly select 10 users who have
rated more than 100 movies. For each of these 10 users, 100
movies are used for training and the rest are used for test. For

each movie, its 19 genres are used as the original features
and its corresponding rating is used as the label. Therefore,
each data point is a 19-dimensional vector.

Table 1 lists the MAE of the six aforementioned algo-
rithms. We name our algorithm as ORML, short for ordinal
regression via manifold learning. In this experiment, we set
K = 10 for IsoProjection, NPE, and LPP, and calculate the
average results over the 10 users. By jointly optimizing the
order information and the manifold structure, ORML per-
forms better than the discriminant approach, the ordinal re-
gression method, and the manifold learning algorithms.

USPS Digit Data Set

To further evaluate the performance of ORML as well as
its multilinear extension, which is denoted as ORML/M, we
conduct an experiment on the United State Postal Service
(USPS) data set (Hull 1994), which has already been shown
containing underlying manifold structure (Zhou et al. 2004).
The USPS data set of hand written digital characters com-
prises 11000 normalized grayscale images of size 16 × 16,
with 1100 images for each of the ten classes: from 0 to 9.

In this experiment, our aim is ranking the data accord-
ing to the true digit shown in the images. We compare
ORML and ORML/M with the following nine agorithms:
LDA, multilinear LDA (MLDA) (Yan et al. 2005), IsoPro-
jection, multilinear isometric embedding (MIE) (Liu, Liu,
and Chan 2009), NPE, tensor NPE (TNPE) (Dai and Ye-
ung 2006), LPP, tensor LPP (TLPP) (He, Cai, and Niyogi
2006), and KDLOR, where MLDA, MIE, TNPE, and TLPP
are the multilinear extensions of LDA, IsoProjection, NPE,
and LPP, respectively.

For IsoProjection, MIE, NPE, TNPE, LPP, and TLPP, we
set K = 10. For each class, p (= 10, 20, 50, 100) images are
randomly selected for training and the rest are used for test.
We repeat the experiments for 20 times and report the av-
erage results. As shown in Table 2, the proposed algorithms
out perform other methods in most of the cases. In addition,
by considering the tensor structure of image data, ORML/M
performs better than ORML in general.
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Table 2: The mean absolute error (MAE) of eleven algorithms on USPS data set with different training/test partition sizes.
Train/Test ORML LDA IsoProjection NPE LPP KDLOR
100/10900 2.729± 0.220 3.091± 0.228 2.960± 0.167 2.943± 0.174 3.048± 0.277 2.503± 0.105
200/10800 2.466± 0.082 2.953± 0.131 2.849± 0.150 2.846± 0.133 2.903± 0.195 2.483± 0.157
500/10500 1.998± 0.091 2.659± 0.166 2.731± 0.141 2.634± 0.132 2.684± 0.120 2.169± 0.087
1000/10000 1.750± 0.041 2.425± 0.091 2.650± 0.090 2.471± 0.162 2.600± 0.107 1.817± 0.034
Train/Test ORML/M MLDA MIE TNPE TLPP
100/10900 2.652± 0.234 2.883± 0.186 2.878± 0.224 2.990± 0.256 2.932± 0.290
200/10800 2.328± 0.287 2.809± 0.180 2.757± 0.201 2.795± 0.314 2.836± 0.214
500/10500 2.097± 0.217 2.584± 0.190 2.704± 0.232 2.547± 0.236 2.655± 0.278
1000/10000 1.630± 0.204 2.461± 0.141 2.593± 0.172 2.420± 0.195 2.391± 0.257

Conclusion

In this paper, we present a novel ordinal regression ap-
proach via manifold learning. By taking manifold structure
into consideration, the geometry of the data sets is well pre-
served. By keeping the order information among data groups
of different ranking levels, the proposed algorithm provides
faithful ordinal regression on new coming data points. By
preserving the tensor form of input data, the proposed al-
gorithm offers more general solution to the data with natu-
rally high-order structure. Experiments on several data sets
demonstrate that the ORML and ORML/M achieve good
performance on the ordinal regression task.

Acknowledgments

This work was supported by grant PolyU 5245/09E.

References

Belkin, M., and Niyogi, P. 2001. Laplacian eigenmaps and
spectral techniques for embedding and clustering. In NIPS
14, 585–591.
Cai, D.; He, X.; and Han, J. 2007. Isometric projection. In
AAAI.
Chu, W., and Keerthi, S. S. 2005. New approaches to support
vector ordinal regression. In ICML, 145–152.
Crammer, K., and Singer, Y. 2002. Pranking with ranking.
In NIPS 14, 641–647.
Dai, G., and Yeung, D.-Y. 2006. Tensor embedding meth-
ods. In AAAI, 330–335.
Fisher, R. A. 1936. The use of multiple measurements in
taxonomic problems. Ann. Eugen. 7:179–188.
Frank, E., and Hall, M. 2001. A simple approach to ordinal
classification. In ECML, 145–156.
Graham, D. B., and Allinson, N. M. 1998. Characterizing
virtual eigensignatures for general purpose face recognition.
In Face Recognition: From Theory to Applications, NATO
ASI Series F, Computer and Systems Sciences Vol. 163, 446–
456.
He, X., and Niyogi, P. 2004. Locality preserving projections.
In NIPS 16.
He, X.; Cai, D.; Yan, S.; and Zhang, H.-J. 2005. Neighbor-
hood preserving embedding. In ICCV, 1208–1213.
He, X.; Cai, D.; and Niyogi, P. 2006. Tensor subspace anal-
ysis. In NIPS 18. 499–506.

Hein, M., and Maier, M. 2007. Manifold denoising. In NIPS
19.
Herbrich, R.; Graepel, T.; and Obermayer, K. 2000. Large
margin rank boundaries for ordinal regression. In Advances
in Large Margin Classifiers, 115–132. MIT Press.
Hull, J. J. 1994. A database for handwritten text recog-
nition research. IEEE Trans. Pattern Anal. Mach. Intell.
16(5):550–554.
Kramer, S.; Widmer, G.; Pfahringer, B.; and De Groeve, M.
2001. Prediction of ordinal classes using regression trees.
Fundam. Inf. 47:1–13.
Li, L., and Lin, H.-T. 2007. Ordinal regression by extended
binary classification. In NIPS 19, 865–872.
Li, X.; Lin, S.; Yan, S.; and Xu, D. 2008. Discriminant
locally linear embedding with high-order tensor data. IEEE
Trans. SMC-B 38(2):342–352.
Liu, W., and Chang, S.-F. 2009. Robust multi-class trans-
ductive learning with graphs. In CVPR, 381–388.
Liu, Y.; Liu, Y.; and Chan, K. C. C. 2009. Multilinear iso-
metric embedding for visual pattern analysis. In ICCV Sub-
space Workshop, 212–218.
Roweis, S., and Saul, L. K. 2000. Nonlinear dimen-
sionality reduction by locally linear embedding. Science
290(5500):2323–2326.
Shashua, A., and Levin, A. 2003. Ranking with large margin
principle: two approaches. In NIPS 15, 961–968.
Sun, B.-Y.; Li, J.; Wu, D. D.; Zhang, X.-M.; and Li, W.-B.
2010. Kernel discriminant learning for ordinal regression.
IEEE Trans. Knowl. and Data Eng. 22:906–910.
Tenenbaum, J. B.; de Silva, V.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. Science 290(5500):2319–2323.
Wang, H.; Huang, H.; and Ding, C. H. Q. 2010. Discrimi-
nant laplacian embedding. In AAAI, 618–623.
Weinberger, K. Q., and Saul, L. K. 2006. An introduction
to nonlinear dimensionality reduction by maximum variance
unfolding. In Proc. 21st AAAI.
Yan, S.; Xu, D.; Yang, Q.; Zhang, L.; Tang, X.; and Zhang,
H.-J. 2005. Discriminant analysis with tensor representa-
tion. In CVPR, volume 1, 526–532.
Zhou, D.; Weston, J.; Gretton, A.; Bousquet, O.; and
Schölkopf, B. 2004. Ranking on data manifolds. In NIPS
16.

403


